A Morpholino oligo can modify splicing of a pre-mRNA - www.gene-tools.com


The cadherins: cell-cell adhesion molecules controlling animal morphogenesis
M. Takeichi


Cadherins are a family of glycoproteins involved in the Ca2+-dependent cell-cell adhesion mechanism which is detected in most kinds of tissues. Inhibition of the cadherin activity with antibodies induces dissociation of cell layers, indicating a fundamental importance of these molecules in maintaining the multicellular structure. Cadherins are divided into subclasses, including E-, N- and P-cadherins. While all subclasses are similar in molecular weight, Ca2+- and protease-sensitivity, each subclass is characterized by a unique tissue distribution pattern and immunological specificity. Analysis of amino acid sequences deduced from cDNA encoding these molecules showed that they are integral membrane proteins of 723–748 amino acids long and share common sequences; similarity in the sequences between subclasses is in a range of 50–60% when compared within a single animal species. L cells, with very little endogenous cadherin activity, transfected with the cadherin cDNA acquired high cadherin-mediated aggregating activity. Their colony morphology was altered by the ectopic expression of cadherins from the dispersed type to the compact type, providing direct evidence for a key role of cadherins in cell-cell adhesion. It has been suggested that cadherins bind cells by their homophilic interactions at the extracellular domain and are associated with actin bundles at the cytoplasmic domain. It appears that each cadherin subclass has binding specificity and this molecular family is involved in selective cell-cell adhesion. In development, the expression of each cadherin subclass is spatiotemporally regulated and associated with a variety of morphogenetic events; e.g. the termination or initiation of expression of a cadherin subclass in a given cell collective is correlated with its segregation from or connection with other cell collectives. Antibodies to cadherins were shown to perturb the morphogenesis of some embryonic organs in vitro. These observations suggest that cadherins play a crucial role in construction of tissues and the whole animal body.