A Morpholino oligo can modify splicing of a pre-mRNA - www.gene-tools.com


Gene regulatory factors of the sea urchin embryo. II. Two dissimilar proteins, P3A1 and P3A2, bind to the same target sites that are required for early territorial gene expression
C. Hoog, F.J. Calzone, A.E. Cutting, R.J. Britten, E.H. Davidson


Previous work demonstrated that a negative regulatory interaction mediated by factor(s) termed ‘P3A’ is required for correct territory-specific gene expression in the sea urchin embryo. A probe derived from a P3A target site in the skeletogenic SM50 gene of Strongylocentrotus purpuratus was used to isolate a cDNA clone coding for a factor that binds specifically to this site. This factor, called P3A1, contains two sequence elements that belong to the Zn finger class of DNA-binding motifs, and in these regions is most closely similar to the Drosophila hunchback factor. The P3A1 factor also binds to a similar target sequence in a second gene, CyIIIa, expressed in embryonic aboral ectoderm. Another sea urchin embryo protein factor, P3A2, has been isolated by affinity chromatography and cloned, as described in Calzone et al. Development 112, 335–350 (1991). P3A2 footprints the same target sites in the SM50 and CyIIIa genes as does P3A1, but lacks the Zn finger sequence motifs and in amino acid sequence is almost entirely dissimilar to P3A1. A deletion analysis of P3A2 delimited the DNA-binding region, revealing that five specific amino acids in the first P3A1 finger region and four in the second P3A1 finger region are also present in equivalent positions in P3A2. The P3A1 and P3A2 factors could function as regulatory antagonists, having evolved similar target specificities from dissimilar DNA-binding domains.