Morpholinos for splice modificatio

Morpholinos for splice modification

Advertisement

An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution
P.W. Holland, L.Z. Holland, N.A. Williams, N.D. Holland

Summary

The embryology of amphioxus has much in common with vertebrate embryology, reflecting a close phylogenetic relationship between the two groups. Amphioxus embryology is simpler in several key respects, however, including a lack of pronounced craniofacial morphogenesis. To gain an insight into the molecular changes that accompanied the evolution of vertebrate embryology, and into the relationship between the amphioxus and vertebrate body plans, we have undertaken the first molecular level investigation of amphioxus embryonic development. We report the cloning, complete DNA sequence determination, sequence analysis and expression analysis of an amphioxus homeobox gene, AmphiHox3, evolutionarily homologous to the third-most 3′ paralogous group of mammalian Hox genes. Sequence comparison to a mammalian homologue, mouse Hox-2.7 (HoxB3), reveals several stretches of amino acid conservation within the deduced protein sequences. Whole mount in situ hybridization reveals localized expression of AmphiHox3 in the posterior mesoderm (but not in the somites), and region-specific expression in the dorsal nerve cord, of amphioxus neurulae, later embryos and larvae. The anterior limit to expression in the nerve cord is at the level of the four/five somite boundary at the neurula stage, and stabilises to just anterior to the first nerve cord pigment spot to form. Comparison to the anterior expression boundary of mouse Hox-2.7 (HoxB3) and related genes suggests that the vertebrate brain is homologous to an extensive region of the amphioxus nerve cord that contains the cerebral vesicle (a region at the extreme rostral tip) and extends posterior to somite four.(ABSTRACT TRUNCATED AT 250 WORDS)