Morpholinos for splice modificatio

Morpholinos for splice modification


Rhombomere rotation reveals that multiple mechanisms contribute to the segmental pattern of hindbrain neural crest migration
J. Sechrist, T. Scherson, M. Bronner-Fraser


Hindbrain neural crest cells adjacent to rhombomeres 2 (r2), r4 and r6 migrate in a segmental pattern, toward the first, second and third branchial arches, respectively. Although all rhombomeres generate neural crest cells, those arising from r3 and r5 deviate rostrally and caudally (J. Sechrist, G. Serbedzija, T. Scherson, S. Fraser and M. Bronner-Fraser (1993) Development 118, 691–703). We have altered the rostrocaudal positions of the cranial neural tube, adjacent ectoderm/mesoderm or presumptive otic vesicle to examine tissue influences on this segmental migratory pattern. After neural tube rotation, labeled neural crest cells follow pathways generally appropriate for their new position after grafting. For example, when r3 and r4 were transposed, labeled r3 cells migrated laterally to the second branchial arch whereas labeled r4 cells primarily deviated caudally toward the second arch, with some cells moving rostrally toward the first. In contrast to r4 neural crest cells, transposed r3 cells leave the neural tube surface in a polarized manner, near the r3/4 border. Surprisingly, some labeled neural crest cells moved directionally toward small ectopic otic vesicles that often formed in the ectoderm adjacent to grafted r4. Similarly, they moved toward grafted or displaced otic vesicles. In contrast, surgical manipulation of the mesoderm adjacent to r3 and r4 had no apparent effects. Our results offer evidence that neural crest cells migrate directionally toward the otic vesicle, either by selective attraction or pathway-derived cues.