Morpholinos for splice modificatio

Morpholinos for splice modification

Advertisement

Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins
L.T. Peltenburg, C. Murre

Summary

Two classes of homeodomain proteins, Hox and Engrailed, have been shown to act in concert with the atypical homeodomain proteins Pbx and extradenticle. We now show that specific residues located within the Pbx homeodomain are essential for cooperative DNA binding with Hox and Engrailed gene products. Within the N-terminal region of the Pbx homeodomain, we have identified a residue that is required for cooperative DNA binding with three Hox gene products but not for cooperativity with Engrailed-2 (En-2). Furthermore, there are similarities between heterodimeric interactions involving the yeast mating type proteins MATa1 and MATalpha2 and those that allow the formation of Pbx/Hox and Pbx/En-2 heterodimers. Specifically, residues located in the a1 homeodomain that were previously shown to form a hydrophobic pocket allowing the alpha2 C-terminal tail to bind, are also required for Pbx/Hox and Pbx/En-2 cooperativity. Furthermore, we show that three residues located in the turn between helix 1 and helix 2, characteristic of many atypical homeodomain proteins, are required for cooperative DNA binding involving both Hox and En-2. Replacement of the three residues located in the turn between helix 1 and helix 2 of the Pbx homeodomain with those of the atypical homeodomain proteins controlling cell fate in the basidiomycete Ustilago maydis, bE5 and bE6, allows cooperative DNA binding with three Hox members but abolishes interactions with En-2. The data suggest that the molecular mechanism of homeodomain protein interactions that control cell fate in Saccharomyces cerevisiae and in the basidiomycetes may well be conserved in part in multicellular organisms.