Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target
K. Jacobs, M.G. Todman, M.J. Allen, J.A. Davies, J.P. Bacon
Development 2000 127: 5203-5212;
K. Jacobs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.G. Todman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Allen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.A. Davies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Bacon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The tergotrochanteral (jump) motorneuron is a major synaptic target of the Giant Fibre in Drosophila. These two neurons are major components of the fly's Giant-Fibre escape system. Our previous work has described the development of the Giant Fibre in early metamorphosis and the involvement of the shaking-B locus in the formation of its electrical synapses. In the present study, we have investigated the development of the tergotrochanteral motorneuron and its electrical synapses by transforming Drosophila with a Gal4 fusion construct containing sequences largely upstream of, but including, the shaking-B(lethal) promoter. This construct drives reporter gene expression in the tergotrochanteral motorneuron and some other neurons. Expression of green fluorescent protein in the motorneuron allows visualization of its cell body and its subsequent intracellular staining with Lucifer Yellow. These preparations provide high-resolution data on motorneuron morphogenesis during the first half of pupal development. Dye-coupling reveals onset of gap-junction formation between the tergotrochanteral motorneuron and other neurons of the Giant-Fibre System. The medial dendrite of the tergotrochanteral motorneuron becomes dye-coupled to the peripheral synapsing interneurons between 28 and 32 hours after puparium formation. Dye-coupling between tergotrochanteral motorneuron and Giant Fibre is first seen at 42 hours after puparium formation. All dye coupling is abolished in a shaking-B(neural) mutant. To investigate any interactions between the Giant Fibre and the tergotroachanteral motorneuron, we arrested the growth of the motorneuron's medial neurite by targeted expression of a constitutively active form of Dcdc42. This results in the Giant Fibre remaining stranded at the midline, unable to make its characteristic bend. We conclude that Giant Fibre morphogenesis normally relies on fasciculation with its major motorneuronal target.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target
K. Jacobs, M.G. Todman, M.J. Allen, J.A. Davies, J.P. Bacon
Development 2000 127: 5203-5212;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target
K. Jacobs, M.G. Todman, M.J. Allen, J.A. Davies, J.P. Bacon
Development 2000 127: 5203-5212;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • even skipped is required to produce a trans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – Masanori Kawaguchi, Kota Sugiyama and Yoshiyuki Seki

Yoshiyuki Seki, Kota Sugiyama and Masanori Kawaguchi

Masanori Kawaguchi, Kota Sugiyama and Yoshiyuki Seki at Kwansei Gakuin University in Japan tell us the story behind their research addressing the evolution of pluripotency with an analysis of the function of PRDM14 in zebrafish, amphioxus and sea urchin.


Primer - JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates

Part of Fig. 3: JAK/STAT signaling in homeostasis and regeneration in the Drosophila intestine

Read this Primer by Salvador Herrera and Erika Bach to get an overview of the role of JAK/STAT signaling in stem cells and regeneration in Drosophila testis, intestine and appendages and see the similarities between Drosophila and vertebrates.


Spotlight - Improving the visibility of developmental biology: time for induction and specification

Developmental biology has achieved many amazing accomplishments over the years, but the field needs to consider new strategies for increasing its visibility within the wider scientific community, writes Leonard Zon.


Research Highlight - A deeper look at human retina development

Human eye

Majlinda Lako and colleagues share an integrated transcriptional and immunohistochemical analysis of human retinogenesis in vivo. Read the highlight and the full Human Development article


Call for papers: Chromatin and Epigenetics

Call for papers: Chromatin and Epigenetics

Development is pleased to welcome submissions for an upcoming Special Issue on ‘Chromatin and Epigenetics’, edited by Benoit Bruneau, Haruhiko Koseki, Susan Strome and Maria-Elena Torres-Padilla. This special issue aims to showcase the best research covering the chromatin-based and epigenetic mechanisms which regulate development across the plant and animal kingdoms. Submission deadline: 31 March 2019. 


PreLights – A direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila

PreLighter Natalie Dye

Extensive and dynamic genome binding by a steroid hormone receptor highlights the interconnection between systemic and local cues for organ development, shows a preprint written by Christopher Uyehara and Daniel McKay and highlighted by Natalie Dye.


Articles of interest in our sister journals

The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch
Kelsey F. Sugrue, Anjali A. Sarkar, Linda Leatherbury, Irene E. Zohn
Disease Models & Mechanisms 2019 12: dmm036491

Maintenance of cell fates and regulation of the histone variant H3.3 by TLK kinase in Caenorhabditis elegans
Yukimasa Shibata, Yoshiyuki Seki, Kiyoji Nishiwaki
Biology Open 2019 8: bio038448

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992