Morpholinos for splice modificatio

Morpholinos for splice modification


Expression of achaete-scute homologues in discrete proneural clusters on the developing notum of the medfly Ceratitis capitata, suggests a common origin for the stereotyped bristle patterns of higher Diptera
C. Wulbeck, P. Simpson


The stereotyped positioning of sensory bristles in Drosophila has been shown to result from complex spatiotemporal regulation of the proneural achaete-scute genes, that relies on an array of cis-regulatory elements and spatially restricted transcriptional activators such as Pannier. Other species of derived schizophoran Diptera have equally stereotyped, but different, bristle patterns. Divergence of bristle patterns could arise from changes in the expression pattern of proneural genes, resulting from evolution of the cis-regulatory sequences and/or altered expression patterns of transcriptional regulators. Here we describe the isolation of achaete-scute homologues in Ceratitis capitata, a species of acalyptrate Schizophora whose bristle pattern differs slightly from that of Drosophila. At least three genes, scute, lethal of scute and asense have been conserved, thus demonstrating that gene duplication within the achaete-scute complex preceded the separation of the families Drosophilidae and Tephritidae, whose common ancestor goes back more than 100 million years. The expression patterns of these genes provide evidence for conservation of many cis-regulatory elements as well as a common origin for the stereotyped patterns seen on the scutum of many Schizophora. Some aspects of the transcriptional regulation have changed, however, and correlate in the notum with differences in the bristle pattern. The Ceratitis pannier gene was isolated and displays a conserved expression domain in the notum.