Morpholinos for splice modificatio

Morpholinos for splice modification



To function properly, tissue-specific stem cells must reside in a niche. The Drosophila testis niche is one of few niches studied in vivo. Here, a single niche, comprising ten hub cells, maintains both germline stem cells (GSC) and somatic stem cells (CySC). Here, we show that lines is an essential CySC factor. Surprisingly, lines-depleted CySCs adopted several characteristics of hub cells, including the recruitment of new CySCs. This led us to examine the developmental relationship between CySCs and hub cells. In contrast to a previous report, we did not observe significant conversion of steady-state CySC progeny to hub fate. However, we found that these two cell types derive from a common precursor pool during gonadogenesis. Furthermore, lines mutant embryos exhibited gonads containing excess hub cells, indicating that lines represses hub cell fate during gonadogenesis. In many tissues, lines acts antagonistically to bowl, and we found that this is true for hub specification, establishing bowl as a positively acting factor in the development of the testis niche.

  • Accepted February 11, 2011.
View Full Text