The Company of Biologists Limited, founded in 1925, is a ‘Company Limited by Guarantee’ having tax-exempt charitable status. There is a Board of Directors consisting of about 20 professional biologists, two of them appointed annually by the Society for Experimental Biology, who receive no salary or fees for their services. The Company’s main function is to own and produce The Journal of Experimental Biology, the Journal of Cell Science and Development, and to appoint the Editors of these journals. These are part-time appointments held by established professional biologists of some eminence, and once they have been appointed the Company exercises no control over editorial policy.

The Company is precluded by its charitable status from making a commercial profit on its operations, and its aim is to produce high-quality journals at the lowest possible price. Any surplus on publishing not required for the journals’ reserves is transferred to an Educational Trust Fund, which makes substantial grants in aid of societies concerned with the fields of interest covered by the Company’s journals. Grants are also made to conferences and summer schools in the fields of its journals.
Zackson, S. L. and Steinberg, M. S.
Axolotl pronephric duct cell migration is sensitive to phosphatidylinositol-specific phospholipase C

Wetts, R. and Fraser, S. E.
Slow mixing of cells during *Xenopus* embryogenesis contributes to the consistency of the blastomere fate map

Schoenwolf, G. C. and Sheard, P.
Shaping and bending of the avian neural plate as analysed with a fluorescent-histochemical marker

Gurdon, J. B.
The localization of an inductive response

Ghysen, A. and O'Kane, C.
Neural enhancer-like elements as specific cell markers in *Drosophila*

Mitani, S. and Okamoto, H.
Embryonic development of *Xenopus* studied in a cell culture system with tissue-specific monoclonal antibodies

Dent, J. A., Polson, A. G.
and Klymkowsky, M. W.
A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in *Xenopus*

Jeffery, W. R.
Requirement of cell division for muscle actin expression in the primary muscle cell lineage of ascidian embryos

Fitch, J. M., Mentzer, A., Mayne, R.
and Linsenmayer, T. F.
Independent deposition of collagen types II and IX at epithelial–mesenchymal interfaces

Page, M.
Changing patterns of cytokeratins and vimentin in the early chick embryo

Fukumoto, H., Matsui, Y. and Obinata, M.
Mechanism of erythropoietin action on the erythroid progenitor cells induced from murine erythroleukemia cells (TSA8)

Paldi, A., Nagy, A., Markkula, M., Barna, I. and Dezso, L.
Postnatal development of parthenogenetic -- fertilized mouse aggregation chimeras

Primmett, D. R. N., Norris, W. E.,
Carlson, G. J., Keynes, R. J. and Stern, C. D.
Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle

Wilkinson, D. G., Bhatt, S. and McMahon, A. P.
Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development

Kaufman, M. H., Lee, K. K. H. and Speirs, S.
Influence of diandric and digynic triploid genotypes on early mouse embryogenesis

Slack, J. M. W. and Isaacs, H. V.
Presence of basic fibroblast growth factor in the early *Xenopus* embryo

Wilson, P. A., Oster, G. and Keller, R.
Cell rearrangement and segmentation in *Xenopus*: direct observation of cultured explants

Mahaffey, J. W., Diederich, R. J.
and Kaufman, T. C.
Novel patterns of homeotic protein accumulation in the head of the *Drosophila* embryo

Niswander, L., Yee, D., Rinchik, E. M.,
Russell, L. B. and Magnuson, T.
The albino–deletion complex in the mouse defines genes necessary for development of embryonic and extraembryonic ectoderm

ESSAY IN DEVELOPMENT
Mattaj, I. W. and Hamm, J.
Regulated splicing in early development and stage-specific U snRNPs

CONTRIBUTED PAPERS
Ifòde, F., Cohen, J., Ruiz, F., Rueda, A. T.,
Chen-Shan, L., Adoutte, A. and Beisson, J.
Development of surface pattern during division in *Paramecium*. I. Mapping of duplication and
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorganization of cortical cytoskeletal structures in the wild type</td>
<td>191</td>
</tr>
<tr>
<td>Davis, R. E. and King, M. L.</td>
<td></td>
</tr>
<tr>
<td>The developmental expression of the heat-shock responses in Xenopus laevis</td>
<td>213</td>
</tr>
<tr>
<td>Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G. and Bissell, M. J.</td>
<td></td>
</tr>
<tr>
<td>Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane</td>
<td>223</td>
</tr>
<tr>
<td>Sardet, C., Speksnijder, J., Inoue, S. and Jaffe, L.</td>
<td></td>
</tr>
<tr>
<td>Fertilization and ooplasmic movements in the ascidian egg</td>
<td>237</td>
</tr>
<tr>
<td>Smith-Thomas, L. C. and Fawcett, J. W.</td>
<td></td>
</tr>
<tr>
<td>Expression of Schwann cell markers by mammalian neural crest cells in vitro</td>
<td>251</td>
</tr>
<tr>
<td>Hirai, Y., Nose, A., Kobayashi, S. and Takeichi, M.</td>
<td></td>
</tr>
<tr>
<td>Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis</td>
<td>263</td>
</tr>
<tr>
<td>Hirai, Y., Nose, A., Kobayashi, S. and Takeichi, M.</td>
<td></td>
</tr>
<tr>
<td>Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis</td>
<td>271</td>
</tr>
<tr>
<td>Herrman, H., Fouquet, B. and Franke, W. W.</td>
<td></td>
</tr>
<tr>
<td>Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin</td>
<td>279</td>
</tr>
<tr>
<td>Herrman, H., Fouquet, B. and Franke, W. W.</td>
<td></td>
</tr>
<tr>
<td>Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin</td>
<td>299</td>
</tr>
<tr>
<td>Müller, W. A.</td>
<td></td>
</tr>
<tr>
<td>Diacylglycerol-induced multihead formation in Hydra</td>
<td>309</td>
</tr>
<tr>
<td>Tesařík, J.</td>
<td></td>
</tr>
<tr>
<td>Involvement of oocyte-coded message in cell differentiation control of early human embryos</td>
<td>317</td>
</tr>
<tr>
<td>McNally, J. G. and Cox, E. C.</td>
<td></td>
</tr>
<tr>
<td>Spots and stripes: the patterning spectrum in the cellular slime mould Polysphondylium pallidum</td>
<td>323</td>
</tr>
<tr>
<td>Smith, H.</td>
<td></td>
</tr>
<tr>
<td>Pattern regulation during the development of the ventral abdomen in the flesh fly Sarcophaga agyrostoma</td>
<td>335</td>
</tr>
<tr>
<td>Talevi, R.</td>
<td></td>
</tr>
<tr>
<td>Polyspermic eggs in the anuran Discoglossus pictus develop normally</td>
<td>343</td>
</tr>
<tr>
<td>Shi, D.-L., Darribère, T., Johnson, K. E. and Boucaut, J.-C.</td>
<td></td>
</tr>
<tr>
<td>Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles walti</td>
<td>351</td>
</tr>
<tr>
<td>Röber, R.-A., Weber, K. and Osborn, M.</td>
<td></td>
</tr>
<tr>
<td>Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study</td>
<td>365</td>
</tr>
<tr>
<td>Bennett, D. C., Cooper, P. J., Dexter, T. J., Devlin, L. M., Heusman, J. and Nester, B.</td>
<td></td>
</tr>
<tr>
<td>Cloned mouse melanocyte lines carrying the germline mutations albino and brown: complementation in culture</td>
<td>379</td>
</tr>
<tr>
<td>Wolsijk, G. and Noble, M.</td>
<td></td>
</tr>
<tr>
<td>Identification of an adult-specific glial progenitor cell</td>
<td>387</td>
</tr>
<tr>
<td>Van Lookeren Campagne, M. M., Aerts, R. J., Spek, W., Firtel, R. A. and Schaap, P.</td>
<td></td>
</tr>
<tr>
<td>Cyclic-AMP-induced elevation of intracellular pH precedes, but does not mediate, the induction of prespore differentiation in Dictyostelium discoideum</td>
<td>401</td>
</tr>
<tr>
<td>Nisson, P. E., Dike, L. E. and Crain, W. R.</td>
<td></td>
</tr>
<tr>
<td>Three Strongylocentrotus purpuratus actin genes show correct cell-specific expression in hybrid embryos of S. purpuratus and Lytechinus pictus</td>
<td>407</td>
</tr>
<tr>
<td>Lambert, C. C.</td>
<td></td>
</tr>
<tr>
<td>Ascidian eggs release glycosidase activity which aids in the block against polyspermy</td>
<td>415</td>
</tr>
<tr>
<td>ESSAY IN DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>Davidson, E. H.</td>
<td></td>
</tr>
<tr>
<td>Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism</td>
<td>421</td>
</tr>
<tr>
<td>CONTRIBUTED PAPERS</td>
<td></td>
</tr>
<tr>
<td>Nelsen, E. M., Frankel, J. and Jenkins, L. M.</td>
<td></td>
</tr>
<tr>
<td>Non-genic inheritance of cellular handedness</td>
<td>447</td>
</tr>
<tr>
<td>Nelsen, E. M. and Frankel, J.</td>
<td></td>
</tr>
<tr>
<td>Maintenance and regulation of cellular handedness in Tetrahymena</td>
<td>457</td>
</tr>
</tbody>
</table>
Pardanaud, L., Yassine, F.
and Dieterlen-Lievre, F.
Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny 473

Sadaghiani, B. and Vielkind, J. R.
Neural crest development in Xiphophorus fishes: scanning electron and light microscopic studies 487

Letourneau, P. C. and Shattuck, T. A.
Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones 505

Kohatake, E. and Sugiyama, T.
Genetic analysis of developmental mechanisms in hydra. XIX. Stimulation of regeneration by injury in the regeneration-deficient mutant strain, reg-16 521

Pituello, F., Deruntz, P., Pradayrol, L.
and Duprat, A.-M.
Peptidergic properties expressed in vitro by embryonic neuroblasts after neural induction 529

Norris, W. E., Stern, C. D. and Keynes, R. J.
Molecular differences between the rostral and caudal halves of the sclerotome in the chick embryo 541

Cooke, J., Symes, K. and Smith, E. J.
Potentiation by the lithium ion of morphogenetic responses to a Xenopus inducing factor 549

Kwok, F. W. K. and Ng, S. F.
5-azacytidine affects the programming of the somatic nucleus of Paramecium 559

Wang, M. and Schaap, P.
Ammonia depletion and DIF trigger stalk cell differentiation in intact Dictyostelium discoideum slugs 569

Developmental expression of tissue inhibitor of metalloproteinase (TIMP) RNA 575

Holder, N.
Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb 585

PDGF receptors on cells of the oligodendrocyte-type-2 astrocyte (O-2A) cell lineage 595

and Kornberg, T.
Patterns of engrailed protein in early Drosophila embryos 605

Targeted ablation of α-crystallin-synthesizing cells produces lens-deficient eyes in transgenic mice 613

Booker, R. B. and Truman, J. W.
Octopod, a homeotic mutation of the moth Manduca sexta, influences the fate of identifiable pattern elements within the CNS 621

Ng, S.-C., Perkins, L. A., Conboy, G., Perrimon, N. and Fishman, M. C.
A Drosophila gene expressed in the embryonic CNS shares one conserved domain with the mammalian GAP-43 629

Wedden, S. E., Pang, K. and Eichele, G.
Expression pattern of homeobox-containing genes during chick embryogenesis 639

Whyte, A. and Stewart, H. J.
Expression of the proto-oncogene fos (c-fos) by preimplantation blastocysts of the pig 651

RAPID PUBLICATION
Browne, L. H., Sadeghi, H., Blumberg, D., Williams, K. L. and Klein, C.
Re-expression of 117 antigen, a cell surface glycoprotein of aggregating cells, during terminal differentiation of Dictyostelium discoideum prespore cells 657

ESSAY IN DEVELOPMENT
Smith, J. C.
Mesoderm induction and mesoderm-inducing factors in early amphibian development 665

CONTRIBUTED PAPERS
Jaffredo, T., Vandenbunder, B.
and Dieterlen-Lievre, F.
In situ study of c-myc protein expression during avian development 679

Peterson, C. A., Phillips, W. H.
and Grainger, R. M.
Region-specific deposition of dermal proteins between dermis and epidermis during induction of chick feather and scale rudiments 697

Kothary, R., Clapoff, S., Darling, S., Perry, M. D., Moran, L. A. and Rossant, J.
Inducible expression of an hsp68–lacZ hybrid gene in transgenic mice 707
Contents

Whitington, P. M.
The early development of motor axon pathways in the locust embryo: the establishment of the segmental nerves in the thoracic ganglia 715

Cloning and characterization of a myoblast cell surface antigen defined by 24.1D5 monoclonal antibody 723

Beddington, R. S. P. and Robertson, E. J.
An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo 733

Tix, S., Minden, J. S. and Technau, G. M.
Pre-existing neuronal pathways in the developing optic lobes of Drosophila 739

Nagajski, D. J., Guthrie, S. C., Ford, C. C. and Warner, A. E.
The correlation between patterns of dye transfer through gap junctions and future developmental fate in Xenopus: the consequences of u.v. irradiation and lithium treatment 747

Kay, R. R.
Evidence that elevated intracellular cyclic AMP triggers spore maturation in Dictyostelium 753

Lawrence, P. A. and Johnston, P.
Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu 761

Gregg, B. C., Rowe, A., Bricknell, P. M. and Wolpert, L.
Ectodermal inhibition of cartilage differentiation in micromass culture of chick limb bud mesenchyme in relation to gene expression and cell shape 769

Jamrich, M. and Sato, S.
Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis 779

Wright, C. V. E., Schnegelsberg, P. and De Robertis, E. M.
XIIBox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm 787

RAPID PUBLICATIONS
Goodman, S. L., Deutzmann, R. and Nurcombe, V.
Locomotory competence and laminin-specific cell surface binding sites are lost during myoblast differentiation 795

Tissue specific O-linked glycosylation of the neural cell adhesion molecule (N-CAM) 803

Tabin, C. J.
Isolation of potential vertebrate limb-identity genes 813

Sater, A. K. and Jacobson, A. G.
The specification of heart mesoderm occurs during gastrulation in Xenopus laevis 821

Index of Authors and Titles 831
Subject Index 835
DEVELOPMENT (ISSN 0950-1991) is a continuation of *Journal of Embryology and Experimental Morphology* (ISSN 0022-0752).

The aim of Development is to act as a forum for all research that offers a genuine insight into mechanisms of development. Manuscripts will be considered primarily with respect to this aim.

Studies on both plant and animal development are welcome and can be focused upon any aspect of the developmental process, at all levels of biological organization from the molecular and cellular to the tissue levels.

Number of issues

Development in 1989 will have 12 normal issues and 1 casebound supplement. The 12 normal issues will be in the form of 3 volumes (105, 106, 107) each of 4 parts. In 1989 the Supplement will be *The Molecular Basis of Morphogenetic Signalling* edited by Rob Kay and Jim Smith.

Delivery

Copies of the journal for subscribers in the USA and Canada are sent by air to New Jersey for delivery with the minimum delay (second class postage paid at Rahway, NJ and at additional mailing offices).

Postmaster (USA mailing only)

Send address corrections to Development, c/o Mercury Airfreight International Inc., 2323 Randolph Avenue, Avenel, New Jersey 07001, USA (US Mailing Agent).

Subscription rates:

- **UK**
 - Institutional: £355
 - Individual: £60+£29.25p&p

- **USA, Canada and Mexico**
 - Institutional: US$780
 - Individual: US$95+$48.75p&p

- **Japan**
 - Institutional: ¥445
 - Individual: ¥60+¥30p&p

- **Rest of World**
 - Institutional: £405
 - Individual: £60+£29.25p&p

Prices include post and packaging except where quoted separately.

Orders for 1989, which can be in £ Sterling/Dollars or using Access/Visa credit cards, should be sent to The Biochemical Society Book Depot, PO Box 32, Commerce Way, Colchester CO2 8HP, UK [telephone Colchester (0206) 46351; 24-hour ordering by Fax (0206) 549331 – USA 44 206 549331] or to your normal agent or bookseller. Orders must be accompanied by payment.
INFORMATION FOR CONTRIBUTORS

Manuscripts

Send to: The Editorial Office, DEVELOPMENT, Dept of Zoology, Downing St, Cambridge CB2 3EJ, UK. Tel: (0223) 311789. USA papers should be sent direct to one of the USA editors: Dr D. Melton, Department of Biochemistry and Molecular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA or Dr R. O. Hynes, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Manuscripts should be in English and as concise as possible. They should be typewritten, double spaced, on one side of the paper, and the pages numbered. Papers should be fully ready for press, as revision in proof will not be possible. The author is requested to provide three copies of the typescript and figures, and should keep a copy.

Disk/OCR processing

Development can use author's word-processor disks (3° and 34°) or optically scan the manuscripts (see OCR below), instead of receiving accepted articles. If available please send a copy of the disk plus details of the word processor and program used with your final revised manuscript. Disks will be returned.

Where possible, please
• Label the disk with: your name; the word processor/computer used, e.g. IBM; the printer used, e.g. Laserwriter; the name of the program, e.g. Wordperfect 4.2; and any special characters used, e.g. à or â, and how you obtained them (i.e. dedicated key pressed or printer control codes used directly). If possible please also include an ASCII file.
• Create and/or edit your manuscript, using the document mode (or equivalent) in the word-processor program.
• Give the file a name which is no longer than 8 characters and put only one article in a file.
• Use paragraph indents.
• Use your word-processor facilities: Underlining, bold, superscripts and subscripts where required.
• Distinguish the numerals 0 and 1 from the letters O and l.
• Type main headings in capital letters (e.g. RESULTS).
• Apple Macintosh disks. Microsoft word users: please save your files to the 'MacWrite' format.
• OCR It may also be possible for us to 'scan' your manuscript (not photocopies) using an 'optical character recognition system'. Please ensure your manuscript is free from pen/pencil marks. Any alterations should be marked on a photocopy of your manuscript. We cannot scan papers if the underline rule touches the descending characters. If possible please provide another copy without using this facility.

Layout and style

A short title of not more than 40 characters, for use as page headings, should be supplied and at least 3 key words for indexing papers.

A summary must be provided at the beginning of the text. It should not exceed 500 words. Authors whose language is other than English may provide a translation of the summary into their own language.

Acknowledgements should be placed before the list of references. The list of references must be given in alphabetical order of author's names. The titles of journals should be abbreviated in accordance with the World List of Scientific Periodicals, 4th edn (1963). The following style is used: Lawrence, P. A. & Johnston, P. (1982). Cell lineage of the Drosophila abdomen: the epidermis, oenocytes and ventral muscles. J. Embryol. exp. Morph. 72, 197-208.

Citations in the text are given in the following form: Jones & Smith (1960) or (Jones & Smith, 1960). Where there are more than two authors citations should be in the form (Jones et al., 1960). Where more than one paper by the same author(s) have been published in the same year they are cited as Jones (1960a), Jones (1960b) etc.

Footnotes should be avoided wherever possible.

SI units

These should be used throughout in preparation of manuscripts.

Relative molecular mass: there are two preferred ways of specifying the mass of a biochemical entity. The usual form 'relative molecular mass' (M_r; not 'molecular weight') is the ratio of a molecule to 1 of the mass of the nuclide ^12C; it is thus dimensionless. 'Molecular mass' is the mass of one molecule of a substance expressed in daltons (symbol Da) or atomic mass units. It is wrong to express M_r in daltons. Where there is considerable repetition in an article, terms such as 50,000 M_r protein may be replaced by 50K protein.

Tables

Please submit on separate sheets together with their titles and legends.

Text figures/photographs

Should be numbered in a single series, in the order in which they are referred to in the text. Authors should submit the original of each illustration and two copies for reviewers. Copies of the photographic plates must be of suitable standard for reviewers to judge the quality of the work; photocopies are not acceptable. Text figures should be drawn about twice final size. Photographs should be submitted the same size as they are to appear.

Lettering should be indicated either on a duplicate, marked set of prints or on a tracing-paper overlay bearing accurately marked outlines of the objects indicated. Figure parts should be labelled in upper case and lettering on the plates should be in lower case. Each illustration should have the name of the author and the figure number written on the back, together with indication of orientation and any proposed reduction in size. The maximum printed size for illustrations is 210 mm x 168 mm for a whole page or 210 mm x 51 mm for a single column. Magnification should be indicated, where relevant, by a scale line on or beside the illustration. Illustrations should be referred to in the text as 'Fig. 1' etc. Legends for all illustrations should be typed together, separately from the main text.

Colour plates

These can be reproduced free of charge at the discretion of the editor. Any charge for excessive use of colour will also be at the editor's discretion.

Proofs

Authors will receive two sets of proofs, one for correction and return to Editorial Office. Authors may be required to pay for alterations in proof other than those needed to correct printer's errors.

Reprints

Authors will receive 200 reprints free of charge and may order additional copies when proofs are returned.

Copyright

In order to give The Company of Biologists Limited authority to deal with matters of copyright, authors will be required to assign to them the copyright of any article published in the journal.
Contents

ESSAY IN DEVELOPMENT
Smith, J. C.
Mesoderm induction and mesoderm-inducing factors in early amphibian development 665

CONTRIBUTED PAPERS
Jaffredo, T., Vandenbunder, B. and Dieterlen-Lievre, F.
In situ study of c-myc protein expression during avian development 679

Peterson, C. A., Phillips, W. H. and Grainger, R. M.
Region-specific deposition of dermal proteins between dermis and epidermis during induction of chick feather and scale rudiments 697

Kothary, R., Clapoff, S., Darling, S., Perry, M. D., Moran, L. A. and Rossant, J.
Inducible expression of an hsp68–lacZ hybrid gene in transgenic mice 707

Whitington, P. M.
The early development of motor axon pathways in the locust embryo: the establishment of the segmental nerves in the thoracic ganglia 715

Cloning and characterization of a myoblast cell surface antigen defined by 24.1D5 monoclonal antibody 723

Beddington, R. S. P. and Robertson, E. J.
An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo 733

Tix, S., Minden, J. S. and Technau, G. M.
Pre-existing neuronal pathways in the developing optic lobes of Drosophila 739

Nagajski, D. J., Guthrie, S. C., Ford, C. C. and Warner, A. E.
The correlation between patterns of dye transfer through gap junctions and future developmental fate in Xenopus: the consequences of u.v. irradiation and lithium treatment 747

Kay, R. R.
Evidence that elevated intracellular cyclic AMP triggers spore maturation in Dictyostelium 753

Lawrence, P. A. and Johnston, P.
Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu 761

Gregg, B. C., Rowe, A., Bricknell, P. M. and Wolpert, L.
Ectodermal inhibition of cartilage differentiation in micromass culture of chick limb bud mesenchyme in relation to gene expression and cell shape 769

Jamrich, M. and Sato, S.
Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis 779

Wright, C. V. E., Schnegelsberg, P. and De Robertis, E. M.
XIIbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm 787

RAPID PUBLICATIONS
Goodman, S. L., Deutzmann, R. and Nurcombe, V.
Locomotory competence and laminin-specific cell surface binding sites are lost during myoblast differentiation 795

Tissue specific O-linked glycosylation of the neural cell adhesion molecule (N-CAM) 803

Tabin, C. J.
Isolation of potential vertebrate limb-identity genes 813

Sater, A. K. and Jacobson, A. G.
The specification of heart mesoderm occurs during gastrulation in Xenopus laevis 821

Index of Authors and Titles 831

Subject Index 835

The Company of Biologists Limited
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ
ISSN: 0950-1991
© The Company of Biologists Limited 1989