Double anterior chick limb buds and models for cartilage rudiment specification

LEWIS WOLPERT and AMATA HORNBRUCH

Department of Anatomy and Developmental Biology, University College and Middlesex School of Medicine, Windeyer Building, Cleveland Street, London, W1P 6DB, UK

Summary

Most models for the specification of the skeletal elements in the developing limb bud are based on a chemical specification well before overt cartilage differentiation. By contrast, a physico-mechanical model proposes that the process of condensation – an early feature of cartilage differentiation – is itself the basis for patterning the elements. The models thus make quite different predictions as to when the rudiments are specified. Double anterior limb buds have been constructed at stages earlier than condensation, with the expectation that, if specification of the humerus occurs before cartilage condensation, then limbs containing two humeri should develop, since the presumptive humerus lies largely in the anterior region. The development of anterior and posterior parts, on their own, was in general, consistent with the fate map; both developed a humerus that was thinner than normal. Double anterior limbs developed two humeri in 28% of cases and a much thicker humerus in 39%. These results strongly support models based on an early specification of limb rudiments and cannot be accounted for by the physical model. Double anterior limbs in which the two parts were from different stages, developed such that a digit 3 could lie adjacent to the radius, giving further striking evidence for early specification and local autonomy of development.

Key words: cartilage, chick, limb, model, specification.

Introduction

Most models for the development of the skeletal rudiments in the developing chick limb bud are based on early specification of the cartilage elements by some sort of cell-to-cell interactions involving chemical signals, well before overt differentiation of cartilage. It is assumed that there are signals that specify which cells in the mesenchyme will form cartilage irrespective of whether the mechanism involves a positional signal (Summerbell et al. 1973; Tickle et al. 1985) or a prepattern (Wilby and Ede, 1975; Newman and Frisch, 1979; Wolpert and Hornbruch, 1987). By contrast, a very different sort of model has recently been proposed which is based on mechanical forces acting at the time of cartilage differentiation (Oster et al. 1983, 1985).

One of the earliest indications of cartilage formation in the limb bud is the condensation of the cells in the region of the early cartilaginous element, the cells coming closer together and adopting a different shape (Rooney et al. 1984). In the mechanical model, this condensation is seen as the primary event in the formation of the cartilage rudiment; the rudiment forms as a result of the forces arising from degradation of the extracellular matrix together with cell traction forces (Oster et al. 1985). An analysis of the physicochemical situation claims to show that a pattern of cartilage condensations, resembling those in the limb, will develop. A weakness of the model is that it does not specifically deal with the problem of why only the cells that mechanically undergo condensation form cartilage: the implication is that change in cell shape alone is sufficient to specify cartilage. This unlikely hypothesis is further weakened by our recent demonstration that the relationship between cell shape and cartilage differentiation is rather tenuous (Gregg et al. 1989). We have thus tried to devise an experiment to test the two classes of model.

The chemical model – whether or not it is based on positional information or prepattern (Wolpert and Stein, 1984) – requires that the cartilage cells are specified before condensation and that condensation is merely an early manifestation of cartilage differentiation. By contrast the physical model assumes rudiment specification to result from condensation and thus specification must occur at this time. A test of the different models is to find out when specification occurs. The conventional view, based on apical ridge removal, is that the humerus is laid down at about stage 18 and the radius and ulna at about stage 20 (Summerbell, 1974). However, condensation in the humerus begins at stage 24 and the radius and ulna at stage 25/26; that is some 24 h later. The large interval between the time when specification by a chemical
mechanism is assumed to occur and the time at which
the physical model operates, offers the possibility of a
relatively simple test. If it could be shown that the
specification does in fact take place prior to conden-
sation then the physical model can be excluded.

We have constructed double anterior limbs at stages
of limb development prior to the condensation. Our
expectation was that if specification of the humerus
occurs before condensation then such limbs will contain
two humeri since the humerus lies largely in the anterior
half of the limb.

Materials and methods

Fertilized eggs from a local breeder were incubated on
stationary shelves at 38±1°C in a humidified atmosphere.
Operations were performed on stage 19-22 embryos (Ham-
burger and Hamilton, 1951). Host and donor were always of
the same stage, unless specifically mentioned. The graft tissue
was the anterior part of a left wing replacing the posterior half
of the host right wing, to create a mirror-symmetrical double
anterior wing (Fig. 1). To get access to the left wing the
embryo was carefully turned over. Grafts were held in place
with platinum wire. Three levels were chosen for the plane of
symmetry: the junction between somites 17 and 18, the
midpoint of somite 18, and the junction between somites 18
and 19. The midpoint of somite 18 corresponds to the midline
of the limb bud, so limbs constructed at this level were of
normal width whereas those at somite 17/18 were slightly
narrower and those at somite 18/19 slightly wider. The apical
ridge is much less prominently developed on the anterior half
of the limb bud. In a few experiments, very different stages of
anterior halves were joined together, for example a stage 24
anterior half was joined to a stage 19 host.

To determine the development of the anterior parts used in
the operation, posterior parts were removed at different
somite levels and allowed to develop on their own. In
addition, posterior parts of the left wing from which the
anterior half was taken, were also allowed to develop.
Embryos were killed at day 10 of incubation and the wings
were fixed in 5% TCA, stained in 0.1% alcian green,
dehydrated in alcohol and cleared in methyl salicylate as
whole mounts.

Results

The development of the anterior part of the limb bud
after removal of the posterior part gave quite consistent
results (Table 1). Anterior parts from stage 19 failed to
develop. Anterior parts prepared from stages 20-22 at
somite level 17/18 developed a thinner humerus, which
on average measured 65% of the width compared to
the contralateral humerus of the same embryo, and the
radius was missing or shortened by up to 50%. The
average width of the humerus developing from anterior
parts from levels 18 and 18/19 for stages 20-22 was
75% and 85%, respectively, and the average length of
the radius was 90% and 95%. At stage 22 and somite
level 18/19, some anterior parts developed digits. The
posterior parts typically developed humerus, ulna and
digits 3 and 4, (Table 2) the humerus and ulna being
thinner by about 20% and 10% respectively (Fig. 2B).

The 98 double anterior limbs that developed gave
quite a range of results but there were some common
features. In general, the limbs were truncated at the
level of the wrist or more proximally; occasionally a
digit 2 developed and more rarely a digit 3. Attention
was focused on the development of the humerus
(Table 3). 28% of the limbs had two proximal elements
which could be up to 40% shorter than normal but
could also be of normal length (Fig. 2D,E). Another
39% had a thickened proximal element and in this case
the humerus was broader than normal. The epiphysis
could be 20% broader, and the diaphysis could have its
width increased 50%. In those cases where the humerus
was shorter by up 40%, the diaphysis could have a
threefold increase in width (Fig. 2F). In some cases,
two humeri were present proximally and fused more
distally to give a single thickened element (Fig. 2E). In
general, the later the stage of development and the
more posterior the somite level, the more often was the
humerus either double or thickened. Distal to the

<table>
<thead>
<tr>
<th>Level of excision (somite)</th>
<th>Number of limbs containing different elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 20</td>
</tr>
<tr>
<td></td>
<td>Stage 21</td>
</tr>
<tr>
<td></td>
<td>Stage 22</td>
</tr>
<tr>
<td>17/18</td>
<td>2H</td>
</tr>
<tr>
<td></td>
<td>1HR</td>
</tr>
<tr>
<td></td>
<td>5H (incomplete)</td>
</tr>
<tr>
<td></td>
<td>2H (incomplete)</td>
</tr>
<tr>
<td></td>
<td>3HR (radius short)</td>
</tr>
<tr>
<td>18</td>
<td>4HR</td>
</tr>
<tr>
<td></td>
<td>1HR</td>
</tr>
<tr>
<td></td>
<td>1HR</td>
</tr>
<tr>
<td></td>
<td>1H</td>
</tr>
<tr>
<td></td>
<td>8HR</td>
</tr>
<tr>
<td></td>
<td>5H</td>
</tr>
<tr>
<td></td>
<td>7HR</td>
</tr>
<tr>
<td>18/19</td>
<td>7HR</td>
</tr>
<tr>
<td></td>
<td>5H</td>
</tr>
<tr>
<td></td>
<td>1HR</td>
</tr>
<tr>
<td></td>
<td>2H</td>
</tr>
</tbody>
</table>

The number preceding each entry is the number of cases.
H, humerus; R, radius; 2 and 3, are digits.
Table 2. Development of posterior limb bud parts from which the anterior portion has been removed

<table>
<thead>
<tr>
<th>Level of excision (somite)</th>
<th>Number of limbs containing different elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 19</td>
</tr>
<tr>
<td>17</td>
<td>4HU2 3 4</td>
</tr>
<tr>
<td>17/18</td>
<td>2HU3 4</td>
</tr>
<tr>
<td>18</td>
<td>1HU3 4</td>
</tr>
<tr>
<td>18/19</td>
<td>2HU3 4</td>
</tr>
</tbody>
</table>

The number preceding each entry is the number of cases. H, humerus; U, ulna; 2, 3, 4, are digits.

Table 3. The development of the humerus in double anterior limbs

<table>
<thead>
<tr>
<th>Level of junction (somite)</th>
<th>Number of limbs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 19</td>
</tr>
<tr>
<td>17</td>
<td>3 no development</td>
</tr>
<tr>
<td>17/18</td>
<td>2H*</td>
</tr>
<tr>
<td></td>
<td>2HH</td>
</tr>
<tr>
<td>18</td>
<td>6H</td>
</tr>
<tr>
<td></td>
<td>1H</td>
</tr>
<tr>
<td>18/19</td>
<td>2H</td>
</tr>
<tr>
<td></td>
<td>3HH</td>
</tr>
</tbody>
</table>

The numbers preceding each entry is the number of cases. H is a thickened humerus and HH represents two humeri. *These developed as normal limbs.

Discussion

Anterior parts on their own developed a humerus and radius, and the posterior parts on their own developed a humerus, ulna and, unlike the anterior halves, digits. These results are similar to those obtained by Hinchliffe and Gumpel-Pinot (1981), who attributed the failure of the anterior half to develop distal structures to the role of the polarizing region at the posterior margin in maintaining the apical ridge. The results are consistent with the idea that each part develops more or less autonomously with respect to a fate map in which the radius develops from the anterior part of the wing bud, the ulna from the posterior part, and that both parts contribute to the humerus (Hinchliffe and Gumpel-Pinot, 1981). If that were so and if there were early specification of the humerus and radius, well before cartilage condensation, then it would be expected that double anterior limbs should have a double humerus and radius in mirror image apposition.

The development of the double anterior limbs was found to be variable and 28% of limbs had two proximal elements, and these were often thinner than normal. In 39% of cases, the humerus was significantly thicker than the normal humerus (Table 3). These results strongly support the idea that specification of the humerus occurs many hours before cartilage condensation presumably by chemical signals involved in cell-to-cell interactions. The development of two proximal elements is inexplicable in terms of the physical model. The shape of the limb bud is essentially humerus there could be a single thickened radius, sometimes truncated, or two radii, sometimes thinner than normal (Fig. 2D,C). Otherwise, there were no striking differences between limbs constructed at stage 19 to 22 though there was a tendency for the later stages and limbs constructed at level 18/19 to have more elements.

Two grafts made at stage 19 at level 18 developed into normal limbs.

Of the 12 limbs constructed between anterior portions of stage 19 and stages 23 to 25, 8 limbs developed with digits distal to a humerus and radius. In four cases, digits developed immediately adjacent to the radius, all contained digit 3 (Fig. 2G) and two had a digit 2 as well.
seen that a humerus will develop in an anterior fragment; similarly cannot account for the large number of cases (Yallup and Hinchliffe, 1983). The physical model is specified and fused in the region where the graft was made. If the humerus is thicker than normal. However, this double humerus found in double anterior limbs is most likely due to the presence of polarizing activity in the flank at the posterior margin of the limb bud (Hornbruch and Wolpert, 1990 in preparation).

We conclude that cartilage specification occurs well before condensation and once specified is quite stable with respect to removal of adjacent regions. Condensation itself is not involved in any way in the specification of the elements themselves and may merely represent an early phase of cartilage differentiation in which hyaluronic acid surrounding the cells is degraded and cartilage matrix starts being produced. Physical forces may very likely do play a role in the further development of the rudiments particularly in relation to cell orientation and the development of the perichondrium (Archer et al. 1983).

The early and stable specification of the cartilage elements still requires an explanation of the considerable capacity of the limb bud to regulate these patterns when parts of the early limb bud are rotated or removed, provided there is a continuous set of proximo-distal positional values (Wolpert et al. 1975).

We are indebted to the Medical Research Council for support, to Dr C. Tickle for her advice.

References


(Accepted 11 May 1990)