Expression of the fibroblast growth factor-5 gene in the mouse embryo

OLIVIA HAUB and MITCHELL GOLDFARB*

Columbia University College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, 630 West 168th Street, New York, NY 10032

*To whom reprint requests should be addressed

Summary

Fibroblast growth factors (FGFs) are structurally related mitogens that can regulate the differentiation of a wide variety of cells. As a step towards elucidating the developmental roles played by one of these factors, we have used in situ hybridization methods to examine expression of the murine Fgf-5 gene during embryogenesis. Fgf-5 RNA was detected at seven distinct sites in the developing mouse embryo: (1) postimplantation epiblast (embryonic day 5–7), (2) lateral splanchnic mesoderm (E9–10), (3) lateral somatic mesoderm (E10–12), (4) myotomes (E10–12), (5) mastication muscle (E11–14), (6) limb mesenchyme (E12–14), and (7) acoustic ganglion (E12–14). At several of these sites, expression is spatially restricted within the tissues. We offer several hypotheses regarding the roles of FGF-5 in murine development.

Key words: mouse embryo, FGF-5, fibroblast growth factor-5, RNA, in situ hybridization.

Introduction

Fibroblast growth factors (FGFs) are structurally related mitogenic proteins encoded by at least seven distinct genes in mammals (Goldfarb, 1990). In addition to their growth-promoting activities towards a broad spectrum of cell types, FGFs are suspected of playing various roles in the control of cellular differentiation (reviewed in (Burgess and Maciag, 1989)). In vitro, the prototypic FGFs (acidic and basic FGF) can promote neuronal survival and neurite outgrowth (Hatten et al. 1988; Lipton et al. 1988; Morrison et al. 1986; Unsicker et al. 1987; Walicke et al. 1986; Walicke and Baird, 1988), commit sympathoadrenal progenitor cells to the sympathetic neural lineage (Birren and Anderson, 1990), regulate the development of skeletal muscle precursor cells (Lathrop et al. 1985; Seed and Hauschka, 1988), and induce mesodermal differentiation in amphibian blastula ectoderm (Kimelman and Kirschner, 1987; Slack et al. 1987). FGF in vivo implants can promote angiogenesis (Folkman and Klagsbrun, 1987), promote the formation of new nerve fiber tracts (Thompson et al. 1989) and prevent retrograde degeneration of neurons in the central nervous system (Anderson et al. 1988). Consistent with their potential roles in development, several FGF genes are expressed at various stages of embryogenesis (reviewed in (Goldfarb, 1990)).

FGF-5 was first identified as the product of a human proto-oncogene detected by DNA transfection assays (Zhan et al. 1988). The growth factor is a secreted glycoprotein (Bates et al. 1991) that is mitogenic towards fibroblasts in vitro (Zhan et al. 1988). As a step towards understanding the native functions of this growth factor in vivo, we have studied the profile of mouse Fgf-5 gene expression in adult tissues and during embryogenesis. We have previously reported the presence of Fgf-5 RNA at low levels in the adult central nervous system and its localization within certain neurons (Haub et al. 1990). In this paper, we present an analysis of Fgf-5 gene expression in the mouse embryo, as detected by in situ hybridization.

Materials and methods

Enzymes and radionucleotides

Enzymes for nucleic acid biochemistry were purchased from New England Biolabs, Boehringer Mannheim and Stratagene. Radiolabelled nucleotides were purchase from DuPont/New England Nuclear.

cDNA isolation and RNA filter blot hybridization

A 2.2 kbp cDNA clone was isolated by screening a E11 mouse embryonic cDNA library (Clonetech) with a murine Fgf-5 third exon fragment (Haub et al. 1990). The cDNA clone extends from approximately the 50th codon in the Fgf-5 open reading frame to near the 3' end of the message. RNA was isolated from cells following guanidine isothiocyanate extraction (Chirgwin et al. 1979). CCE embryonic stem (ES) cells were provided by Dr E. Robertson and were maintained in the undifferentiated state by passage on STO fibroblast feeder layers, or were used to make embryoid bodies by
standard procedure (Martin and Evans, 1975). E6–E7 egg cylinders were dissected from their decidua and teased free of ectoplacental cone, which is reddish in appearance. E. coli RNA was added as carrier during egg cylinder RNA purification. To quantitate egg cylinder RNA, one tenth of recovered material was analyzed by RNA 'northern' filter blotting (Thomas, 1980) in comparison to a 10–1000 nanogram range of E5 RNA, using rat glyceraldehyde phosphate dehydrogenase (GAPDH) cDNA (Fort et al. 1985) as hybridization control. DNA probes were 32P-radio labelled by random hexamer-primed DNA synthesis (Feinberg and Vogelstein, 1983).

In situ hybridization
Radiolabelled RNA riboprobes were synthesized in standard reactions (Melton et al. 1984) using SP6, T3, or T7 RNA polymerase, depending upon vector DNA template. Uridine[α-35S-thio]triphosphate and uridine[α-32P]triphosphate were incorporated to specific activities of 7×106 and 2×109 cts min⁻¹ ng⁻¹, respectively. The PstI–Sacl fragment of Fgf-5 DNA (Haub et al. 1990) (see Fig. 1) was used as template for antisense- and sense-strand riboprobes (antiPS and sensePS), and the PstI–PstI cDNA fragment was used to make antisense probe (antiPP) to corroborate hybridization data. A plasmid containing 120 base pairs of non-coding first exon sequence of the murine a-cardiac actin gene (Sassoon et al. 1988) and pINT2fg, containing part of the murine int-2 gene (Wilkinson et al. 1987), were also used as vectors for riboprobe synthesis.

Embryos (E3,i, 5,i, 5,f, 6,i, 7, 7,i, 8, 8,i, and daily thereafter through E154) were dissected from pregnant MF1 mice, fixed overnight at 4°C in phosphate-buffered saline plus 4% paraformaldehyde, and embedded in paraffin. E5 to E9i embryos were left in their decidua. E3i blastocysts were flushed from uteri, prefixed and loaded into dissected ampoule of pseudopregnant females before processing. Serial microtome sections (7–8 microns thick) were deparaffinized in xylene and rehydrated to water, then immersed in 30% acetic acid for 5 min. The sections were left to air dry, then rehydrated, stained with hematoxylin and eosin, and mounted with Permount (Fisher Scientific). Bright- and dark-field images were photographed from a Nikon Microphot-FXA microscope. All embryonic stages were exhaustively analyzed; multiple embryos were hybridized with both sense and antisense Fgf-5 riboprobes, using a complete series of sections for each probe for E3i–E8i embryos, and alternating groups of three sections for both probes with older, larger embryos. Anatomical assignments were made with the aid of several texts on embryonic anatomy (Gasser, 1975; Rugh, 1968; Theiler, 1989).

Computer-aided three-dimensional modelling
Camera-lucida drawings on transparencies were made from bright- and dark-field images of thirty hybridized sections spaced 96 microns apart across an E104 embryo. The drawings were manually aligned, and then traced into a SunView computer using CARP software (Biographics, Inc.). Superimposed objects were "built" from the contours of whole embryo, dorsal aorta and arches, primary head and cardinal trunk veins, Fgf-5 signal in myotomes, and Fgf-5 signal in somatic mesoderm, and visualized in various combinations for direct photography from the computer's screen.

Results
In order to localize Fgf-5 expression during embryogenesis, deparaffinized sections of prefixed mouse embryos at various stages of development were hybridized in situ, using radiolabelled antisense and sense Fgf-5 RNA probes. Two different antisense probes, transcribed from nonoverlapping segments of Fgf-5 cDNA (Fig. 1), detected identical profiles of gene expression. Hybridization to deparaffinized sections gives signals 3–4 fold weaker than to post-fixed, fresh frozen sections (our unpublished observations); in fact, our previous in situ analysis of Fgf-5 expression in adult mouse brain required the use of fresh frozen sections to detect the very low abundance of Fgf-5 RNA in this tissue (Haub et al. 1990). However, morphology in sections of fresh frozen embryos is very poor, mandating our use of paraffin-embedded material in these studies. With this technique, we have detected seven distinct sites of Fgf-5 RNA expression in the mouse between embryonic days 3f to 15½ post-conceptus1.

Expression of Fgf-5 RNA in early embryogenesis
Embryonic Fgf-5 expression first occurs soon after uterine implantation. As can be seen in Fig. 2, there is no detectable expression in preimplantation blastocysts (panels E,F). Fgf-5 RNA was detected in embryos at the next stage examined, E3i (panels A,B), while no signal was seen with the negative control (sense-strand) probe (panels C,D). The failure to detect Fgf-5 expression in blastocysts (embryonic day 3i), cannot be attributed to the small size of the blastocyst; E5i expression was readily observed in tangential embryonic slices containing very few cells (data not shown). The postimplantation induction of expression is consist-

1 We use standard nomenclature to define conception as midnight preceding the morning of vaginal plug detection. E3i=embryonic day 3i post-conceptus.
Fig. 2. Fgf-5 RNA in early postimplantation embryos. AntiPS and sensePS Fgf-5 35S-riboprobes were hybridized to egg cylinders in decidua and to blastocysts manually loaded into ampullae of pseudopregnant mice. Dark-field imaging (panels B,D,F,H,J,K) makes exposed silver grains from NTB2 emulsion luminesce. Panels C,D used sensePS probe, while all other panels used the antiPS probe. Panels A,B and C,D, E51 egg cylinder; E,F, E31 blastocyst; G,H, E51 egg cylinder, showing expression in embryonic ectoderm and adjacent visceral endoderm (arrows); I,J, cross-section through E7 egg cylinder; K,L, transverse section through E7 egg cylinder, showing expression in embryonic ectoderm, but not mesoderm. Embryo (em), deciduum (dec), blastocyst inner cell mass (icm), trophectoderm (te), ampulla (amp), embryonic ectoderm (eme), extraembryonic ectoderm (eee), visceral endoderm (ve), ectoplacental cone (epc), mesoderm (mes), primitive streak (ps), microns (um).
Fig. 4. Three-dimensional computer models of Fgf-5 expression in an E10½ embryo. Thirty sections along an E10½ embryo hybridized with Fgf-5 antiPS probe were used for modelling. For each section, a camera-lucida drawing of the embryo’s contour, dorsal aorta and aortic arches, head vein and cardinal veins, and regions of Fgf-5 expression in myotomes and somatic mesoderm was traced by computer ‘mouse’ into a SunView computer containing CARP (Biographies) software. The data was used to construct superimposed objects: embryo (tan), Fgf-5 RNA in myotomes (pink), Fgf-5 RNA in somatic mesoderm (yellow), arterial vasculature (red), and venous vasculature (blue). Panel A shows a dorsolateral view of the embryo rendered ‘transparent’ to reveal sites of Fgf-5 expression. Panel B is the same view of Fgf-5 expression along with vascular structures, with the embryo’s exterior removed. Panel C is viewed dorsally. Eye (e), nasal pit (np), branchial arches (ba), forelimb bud (fl), hindlimb bud (hi), heart bulge (hb), tail (t), head vein (hv), cardinal vein (cv), dorsal aorta (da), aortic arches (aa). Sections from the top of the head (diencephalon) were not included in the analysis, giving the embryo a flat-top distortion. The use of one section per 96 microns (12 sections) and difficulties in section alignments also caused distortions and the artefactual fusion of some Fgf-5-positive myotomes.
ent with the observed rapid induction of Fgf-5 mRNA levels when embryonal carcinoma cells or totipotent embryonic stem (ES) cells differentiate as embryoid bodies in vitro (Hebert et al. 1990, and see below).

Fgf-5 expression in E5\textsubscript{i} embryos is restricted to the embryonic ectoderm and adjacent visceral endoderm (Fig. 2, panels G,H). By contrast, extraembryonic ectoderm its flanking visceral endoderm and other extraembryonic tissues are negative. This same expression profile is evident through the onset of gastrulation at E6\textsubscript{i} (data not shown). While expression in the embryonic ectoderm of the egg cylinder persists at E7, newly formed mesoderm is negative (panels K,L). A cross-section through the E7 egg cylinder illustrates Fgf-5 RNA expression throughout the epiblast, without substantial lateral/medial or anterior/posterior variation (panels I,J). The E7\textsubscript{i} embryo shows weaker Fgf-5 RNA signals, and expression is undetectable in the E8 embryo.

The pattern of early embryonic expression for the Fgf-5 gene contrasts with that for another gene in the FGF family, int-2. int-2 is expressed in parietal extraembryonic endoderm and also in newly formed mesoderm leaving the primitive streak, commencing at E7\textsubscript{i} (Wilkinson et al. 1988). By hybridizing adjacent E7\textsubscript{i} embryo sections with Fgf-5 and int-2 antisense RNA probes, we have observed Fgf-5 expression in embryonic ectoderm adjacent to int-2 expression in mesoderm (data not shown).

Expression of Fgf-5 RNA in later embryogenesis

Between embryonic days 9\textsubscript{i} and 14\textsubscript{i}, six additional sites of Fgf-5 expression are evident. Two of these sites are in derivatives of lateral mesoderm, two others are skeletal muscle precursors derived from paraxial mesoderm, and the other two sites are limb mesenchyme and a cranial ganglion (see below). On embryonic day 15\textsubscript{i}, no sites of Fgf-5 expression are identifiable in situ. Since Fgf-5 RNA can still be detected by northern blot analysis at this developmental stage (Hebert et al. 1990), our in situ hybridization assays are failing to detect very low levels of expression in unidentified tissues. We estimate such expression to be <10 copies mRNA/cell (discussed later).

Fgf-5 RNA in lateral mesoderm

On embryonic day 9\textsubscript{i}, the Fgf-5 gene is expressed in one small region of splanchic mesoderm ventral to the portion of the foregut bearing the hepatic bud (Fig. 3, panels A–C). Expression in this mesenchyme is less readily detectable on E10\textsubscript{i} (data not shown), and undetectable thereafter. The onset of expression is approximately coincident with that of rapid liver growth, which proceeds by the invasion of hepatic cords from the hepatic bud into the underlying mesenchyme. Whether the apparent fall-off of splancnic mesodermal Fgf-5 expression from E9\textsubscript{i} to E10\textsubscript{i} represents down-regulation or merely the dilution of signal due to mesenchyme thinning and intermingling with hepatic cells cannot be ascertained.

Fgf-5 RNA is expressed in a region of somatic mesoderm between E10\textsubscript{i} and E12\textsubscript{i}. On embryonic day 10\textsubscript{i}, this region extends rostrocaudally from the level of the newly formed sixth aortic arch to approximately the level of the liver primordium. Fig 3 shows this expression in a transverse section through a E10\textsubscript{i} embryo (panels F,G) and a parasagittal section through a E11\textsubscript{i} embryo (panels H,I). Fgf-5 expression also occurs in myotomes at these times (see below). The somatic mesoderm signal is readily distinguished from that of skeletal muscle precursors by hybridization of adjacent sections with a probe for a-cardiac actin mRNA (Sassoon et al. 1988), which is expressed in striated muscle cells and their precursors. This is illustrated in Fig. 3, panel J, where the actin probe detects myotomes and cardiac muscle in the E11\textsubscript{i} embryo, but does not hybridize to somatic mesoderm.

In order to illustrate the overall region of somatic mesoderm expressing Fgf-5 RNA in the E10\textsubscript{i} embryo and the proximity of this region to vascular structures, the data in thirty transverse sections spaced 96 microns apart were used for three-dimensional computer modeling. CARP software (Computer-Aided Reconstruction Package, Biographics Inc.) was used to generate models of the entire embryo, dorsal aorta and aortic arches, primary head veins and cardinal trunk veins, and sites of somatic mesoderm and myotome Fgf-5 expression (Fig. 4). The broad anterior regions of Fgf-5-positive somatic mesoderm (panels A–C) lie both lateral and just caudal to the newly formed sixth aortic arch. It is worth noting that this approximate region of expression sees the enlargement of the sixth arch and the emergence of a caudally projecting vascular branch (the future pulmonary artery) during the ensuing 36 h of development. The caudal 'tails' of expression in the E10\textsubscript{i} embryo run adjacent to the paired cardinal veins (panels B,C).

Fgf-5 expression in skeletal muscle precursor cells

Skeletal muscles of the trunk and limbs are descendants of the somites, which arise by segmentation of paraxial mesoderm in an anterior-to-posterior sequence beginning at E8. Each maturation phase of anterior somites precedes that of posterior ones owing to their different times of birth. The precursor cells for limb muscle emigrate from the newly formed myotome derivative of the somite and enter limb buds shortly after their formation on E9\textsubscript{i} (forelimb) and E10 (hindlimb) (Sassoon et al. 1989). The trunk muscle precursor cells remain in the segmented myotomes and commence migration on E10\textsubscript{i} to E11\textsubscript{i}.

Fgf-5 RNA is expressed in myotomes starting on E10\textsubscript{i} (Fig. 3, panels D–G). This induction occurs later than the morphological appearance of myotomes (E8\textsubscript{i}) and their expression of a-cardiac actin mRNA (E8\textsubscript{i}–E9\textsubscript{i}) ((Sassoon et al. 1989), and our observations). On embryonic day 10\textsubscript{i}, only myotomes anterior to the middle of the hindlimb bud are Fgf-5 positive, as shown in the 3-D model (Fig. 4, panel A). More caudal myotomes also express Fgf-5 RNA a day later, reflecting their delayed development, but tail region myotomes never express Fgf-5 (data not shown).
Myotomal cells continue to express Fgf-5 RNA on E11½ (Fig. 3, panels H–J) and E12½ (data not shown) during their ventral and lateral migration. Expression in trunk muscle precursor cells is barely evident in E13½ embryos and is undetectable by E14½. By contrast to trunk muscle differentiation, precursors of limb muscles, identifiable by α-cardiac actin RNA expression (see below), do not express Fgf-5 RNA at any stage in their development.

Cranial skeletal muscles (tongue, mastication, extrinsic ocular and facial) all derive from paraxial mesoderm in birds (Noden, 1988), and similar origins in mammals are suspected. A prominent site of Fgf-5 RNA expression in the head of the E13½ embryo (Fig. 5, panel F) corresponds to the mastication muscle precursor cells. Hybridization of a nearly adjacent section with the α-cardiac actin probe (Fig. 5, panels D,E) reveals expression in mastication muscles as well as in the extrinsic ocular muscles. Facial and tongue muscle lineages, as recognized by α-cardiac actin hybridization, are also Fgf-5 negative (data not shown). The strong Fgf-5 mastication muscle signal persists on E14½, but is completely absent 24 h later (data not shown). This site of Fgf-5 RNA expression originates on embryonic day 11½ as bilateral patches, each situated near the juncture of the maxillary process and the mandibular arch (Fig. 5, panels A,B). Curiously, α-cardiac actin RNA expression is very weak at this site.
Expression of Fgf-5 gene in mouse embryo

Fgf-5 RNA in developing limbs

Fgf-5 RNA has been detected in developing limbs from embryonic days 12½ through 14½. Expression is limited to a patch of cells near the base of each limb, and while expression is readily detected in hindlimbs, it is far less evident in forelimbs. Panels A and B of Fig. 6 show the expression patch in a transverse section through the E12½ hindlimb. In the E13½ embryo, parasagittal sections, which effectively represent cross-sections through the base of the limb, show that the mesenchymal region of Fgf-5 expression (panel E) is ventral to the femur (panel D), which is undergoing chondrification. The expression site is distinct from the various developing muscle groups, which are visualized in adjacent sections by their expression of α-cardiac actin RNA (panel E). The tracing in panel G illustrates the spatial relationship of Fgf-5 positive mesenchyme to developing muscle and cartilage. The weaker Fgf-5 RNA signal in forelimbs is positioned similarly to that in hindlimbs (data not shown).

Fgf-5 RNA in the acoustic ganglion

Fgf-5 RNA has been detected in the acoustic branch of the eighth cranial ganglion within the inner ear on embryonic days 12½ through 14½ (Fig. 6, panels G–J). All other cranial ganglia lack detectable Fgf-5 RNA, including the vestibular branch of the eighth ganglion (Fig. 6, panels G,H) and the trigeminal fifth ganglion (Fig. 5, panels D,F). The cochlea is another developmental site where Fgf-5 and int-2 RNAs are expressed in neighboring cells. int-2 is expressed in portions of the cochlear sensory epithelium and underlying mesenchyme (Wilkinson et al. 1989), which are innervated by projections from acoustical neurons.

The seven sites of Fgf-5 embryonic expression are catalogued in Table 1.

Levels of Fgf-5 RNA in the egg cylinder

The measurement of intracellular Fgf-5 RNA concentration is only possible in tissues where dissection allows isolation of expressing cells to a known degree of purity. The one site amenable to RNA quantitation is the...
Fig. 6. Fgf-5 RNA in hindlimb and acoustic ganglion. Sections were hybridized with Fgf-5 antiPS, antiPP, and α-cardiac actin 32p-riboprobes. Panels B,D,E,H,J are dark-field images. Panels A,B, hybridization of Fgf-5 antiPP probe to E12½ transverse section through hindlimb, showing positive patch near base of limb (arrow). Panels C–E, adjacent E13½ parasagittal sections through base of hindlimb hybridized with Fgf-5 antiPS (C,D) and α-cardiac actin (E) probes. Arrows in D and E denote Fgf-5-positive mesenchyme and α-cardiac actin-positive limb muscle groups, respectively. Panel F, E13½ hindlimb schematic derived by tracings from panels C–E, showing femur cartilage (spotted), α-cardiac actin-positive muscle precursors (light shaded), and Fgf-5-positive mesenchyme (dark shaded). Panels G,H, longitudinal section through head of E12½ embryo hybridized with Fgf-5 antiPP probe, showing expression in acoustical branch of eighth ganglion (bold arrow), but not in more lateral vestibular branch (thin arrow). Panels I,J, parasagittal section through head of E14½ embryo hybridized with antiPS probe. Arrow denotes expression in acoustic ganglion. Hindlimb (hl), neural tube (nt), femur (fe), acoustic ganglion (ag), vestibular ganglion (vg), brain (b), spiral canal (sc), other canals of inner ear (iec), otic capsule (oc), head vein (v).
The hybridization signal from 1 ES cell-derived embryoid bodies (three days in suspension) cylinders (lane e), undifferentiated ES cells (lane f), and d) was also analyzed to allow quantitation of Fgf-5 equalled that from 2 pg cDNA (lane b). From this, we calculate that Fgf-5 mRNA represents 2.5x10^-6 of the total egg cylinder RNA. Since the embryonic compartment of each E6-7 egg cylinder contains ~3000 cells (Snow, 1977), the estimated level of egg cylinder Fgf-5 expression is 30-40 copies/embryonic ectodermal cell.

The Fgf-5 RNA expression level in the egg cylinder (lane e) is similar to that in ES cells allowed to differentiate into simple embryoid bodies following three days in suspension (lane g), and is dramatically higher than the level expressed in undifferentiated ES cells, which is undetectable at the exposure length shown (lane f). These simple embryoid bodies have morphological features comparable to the egg cylinder prior to gastrulation (Martin et al. 1977). Hence, the induction of Fgf-5 expression in embryoid bodies quantitatively and temporally parallels the Fgf-5 gene's in vivo induction postimplantation.

The intensity of the Fgf-5 in situ hybridization signal in egg cylinders was consistently equal to or stronger than those seen locally at the later sites of Fgf-5 gene expression. We estimate local expression in later embryogenesis to be at 10-30 copies mRNA/cell. Due to the constraints of signal versus background, we do not feel that our assay conditions could detect <10 copies RNA/cell. Hence, sites of very weak expression could be missed in our analysis. This presumably explains our failure to define the sites of Fgf-5 expression in the E15½ day embryo. Additionally, our preliminary in situ analysis of E13½ embryos, using fresh frozen tissue for higher sensitivity, has revealed weak sites of Fgf-5 expression (dorsal root ganglia, myenteric ganglia) in addition to the more prominent hindlimb, mastication muscle and acoustic ganglion signals described earlier.

Discussion

Embryonic expression of the Fgf-5 gene is regulated as a function of time, tissue type and position within tissue. This lattermost characteristic has defined subdivisions of splanchnic mesoderm, somatic mesoderm and
limb mesenchyme that were not morphologically evident nor previously appreciated by other molecular criteria. The spatial restriction of expression may, in part, be governed by combinations of transcription factors, such as homeobox proteins, which themselves are expressed within spatial boundaries. For example, the expression boundaries of various homeobox genes in vertebrate limbs define a 'grid' along both anterior–posterior and proximal–distal axes (Smith et al. 1989), and this grid may help dictate Fgf-5 expression in limb mesenchyme. Another manifestation of spatially restricted expression is the presence of Fgf-5 RNA in some skeletal muscle groups and cranial ganglia, but not in others.

The structurally related int-2 gene is also expressed in a complex spatiotemporal pattern, although the sites of expression differ from those for the Fgf-5 gene (Wilkinson et al. 1989; Wilkinson et al. 1988). At certain stages in development, Fgf-5 and int-2 are expressed in close proximity: Fgf-5 in visceral endoderm versus int-2 in parietal endoderm, Fgf-5 in E7.4 embryonic ectoderm versus int-2 in E7.4 embryonic mesoderm, and Fgf-5 in acoustic ganglion versus int-2 in cochlear sensory epithelium. Since both of these growth factors are secreted proteins (Bates et al. 1991; Dixon et al. 1989), we suspect that FGF receptors expressed in these regions differentially react with or respond to these two FGFs. While the known spectra of in vitro biological activities are similar among FGFs, there are contrasts (Finch et al. 1989; Lipton et al. 1988; Valles et al. 1990) which are presumably mediated by differences in ligand–receptor interactions.

Fgf-5 is likely to mediate a diverse set of events during embryogenesis. The Fgf-5 expression profile along with known biological effects of other FGFs in in vitro and in vivo assays allows for speculation regarding Fgf-5's native functions. Such conjecture merely serves as a guide for further studies.

Uterine implantation of the blastocyst is followed by rapid growth of the egg cylinder and rapid growth of the uterine deciduum. Fgf-5 expressed in embryonic ectoderm postimplantation could serve as an autocrine or paracrine factor to mediate these growth events. Several FGFs have been shown to possess mesoderm-inducing activity when assayed on cultures of amphibian animal cap ectoderm (Kimelman and Kirschner, 1987; Paterno et al. 1989; Slack et al. 1987). The expression of Fgf-5 RNA at the onset of mouse gastrulation suggests that this growth factor may contribute to mesoderm formation, although two facts argue against a direct role for FGF-5 in this process: (1) the onset of gene expression (≤E5.4) far precedes the start of gastrulation (E6.4), and (2) Fgf-5 RNA is not spatially restricted within the embryonic ectoderm. Future localization of Fgf-5 protein and receptors in the developing egg cylinder is of obvious importance.

Acidic and basic fibroblast growth factors are mitogenic for vascular endothelial cells in vitro and are angiogenic when applied to tissues in vivo (Burgess and Maciag, 1989). FGF-5 is most likely an endothelial cell mitogen, since conditioned medium containing secreted FGF-5 will stimulate endothelial cell growth (Zhan et al. 1988). FGF-5 might act as an angiogenic factor in lateral mesoderm, which becomes more highly vascularized than dorsal mesoderm (Le Douarin, 1975; Sherer, 1975). In splanchnic mesoderm, local Fgf-5 expression might promote vascularization required for the induction of neighboring hepatic cord proliferation (Sherer, 1975). In somatic mesoderm, local Fgf-5 expression could contribute to the ongoing remodelling of the arterial vasculature (Rugh, 1968).

FGFs have well-documented effects upon the differentiation of skeletal muscle progenitor cells. Fibroblast growth factors can inhibit the terminal differentiation of myoblasts, as monitored by biochemical markers and by myotube formation (Lathrop et al. 1985; Seed and Hauschka, 1988). Fgf-5 expression commences in myotones on E10.5 well after their formation (E8.5) and commitment to muscle lineage, as gauged by the onset of a-cardiac actin (E8.5–9.5) and MyoD (E9.5) gene expression (Sassoon et al. 1989). Fgf-5 expression diminishes by E13.5, before the first appearance of myotubes on E15 (Rugh, 1968). Fgf-5 could inhibit the terminal differentiation of myotomal myoblasts during their migration through the trunk. Limb muscle development differs from that of trunk muscle by several molecular criteria. The onset of a-cardiac actin and MyoD expression in limb muscle precursors occurs later in embryogenesis (Sassoon et al. 1989), although appearance of myofibrils occurs at similar times for limb and trunk muscle (Rugh, 1968); i.e. the later stages of muscle differentiation transpire within a more compressed time frame in limb versus trunk. A lack of Fgf-5 expression in limb muscle myoblasts might account for their more rapid terminal differentiation.

In vitro culture of dissociated chicken limb bud cells has revealed an FGF-dependent subcomponent of myoblasts which require treatment with basic FGF in order ultimately to form colonies of terminally differentiated muscle (Seed and Hauschka, 1988). It is possible that E12.5–14.5 Fgf-5 expression in limb mesenchyme acts to induce the development of FGF-dependent limb myoblasts. Furthermore, if the mandibular site of Elliot expression is clearly a myoblastic expression consistent with mesenchymal as opposed to myoblastic cells, such expression could act to induce local myoblasts to develop into the mastication muscle groups.

Several lines of experimentation are required to elucidate Fgf-5's roles in embryogenesis. FGF's receptors and their sites of expression need to be identified. Alternatively spliced transcripts of the FLG and BEK genes encode a family of related FGF receptors (reviewed in (Goldfarb, 1990)), but their affinities toward FGF-5 await characterization. A more precise cellular assignment of Fgf-5 expression is clearly desirable, particularly as it relates to mesenchymal versus myoblastic gene expression in the mandibular region. Transgenes linking an enzymatic reporter to Fgf-5 transcriptional regulatory elements may provide such insights. Lastly, the use of in vivo gene targeting to disrupt FGF-5 production partially or completely may generate informative embryonic phenotypes.
Expression of Fgf-5 gene in mouse embryo

We thank Beverly Drucker for help in several experiments, and Matthew Buttrick for assisting in paraffin embedding and sectioning. We are most grateful to David Sassoon (Boston University) and to Godon Peters (Imperial Cancer Research Fund, London) for α-cardiac actin and int-2 clones, respectively, to Elizabeth Robertson for providing ES cells, to Françoise Poirier for instruction in egg cylinder dissection, to James Lee for help with blastocyst preparation, to Connie Cepko (Harvard Medical School) for access to her SunView CARP 3-D imaging system, and to Lisa Isepoel and Elizabeth Ryder for instruction in its use. We also thank Vassilis Pachnis, Jane Dodd, Taube Rothman, David Sassoon, Elizabeth Taparowsky (Purdue University) and Cliff Tabin (Harvard Medical School) for helpful discussions. This work was supported by PHS research grant CA48054. O.H. is supported by NIH Training Grant DK07328.

References

BIRREN, S. J. AND ANDERSON, D. J. (1990). A v-myc immortalized sympathoadrenal progenitor cell line in which neuronal differentiation is initiated by FGF but not NGF. Neuron 4, 189–201.

(Accepted 14 March 1991)