Increased levels of the *Drosophila* Abelson tyrosine kinase in nerves and muscles: subcellular localization and mutant phenotypes imply a role in cell-cell interactions

RANDY L. BENNETT and F. MICHAEL HOFFMANN*

McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA

*Author for correspondence

Summary

Mutations in the *Drosophila* Abelson tyrosine kinase have pleiotropic effects late in development that lead to pupal lethality or adults with a reduced life span, reduced fecundity and rough eyes. We have examined the expression of the abl protein throughout embryonic and pupal development and analyzed mutant phenotypes in some of the tissues expressing abl. abl protein, present in all cells of the early embryo as the product of maternally contributed mRNA, transiently localizes to the region below the plasma membrane cleavage furrows as cellularization initiates. The function of this expression is not yet known. Zygotic expression of abl is first detected in the post-mitotic cells of the developing muscles and nervous system midway through embryogenesis. In later larval and pupal stages, abl protein levels are also highest in differentiating muscle and neural tissue including the photoreceptor cells of the eye. abl protein is localized subcellularly to the axons of the central nervous system, the embryonic somatic muscle attachment sites and the apical cell junctions of the imaginal disk epithelium. Evidence for abl function was obtained by analysis of mutant phenotypes in the embryonic somatic muscles and the eye imaginal disk. The expression patterns and mutant phenotypes indicate a role for abl in establishing and maintaining cell-cell interactions.

Key words: Abelson tyrosine kinase, *Drosophila*, eye development, muscle development, expression, disabled, cell-cell interaction, nervous system.

Introduction

Cytoplasmic protein-tyrosine kinases (PTKs) were first identified as the transforming proteins of several acutely oncogenic retroviruses (Collett and Erikson, 1978; Hunter and Sefton, 1980; Witte et al., 1980). One of these, the Abelson tyrosine kinase, is the transforming protein of the Abelson murine leukemia virus in mice and the Philadelphia chromosome in humans (Witte, 1986). Although much is known about the oncogenic activation of the Abelson kinases (reviewed by Daley and Ben-Neriah, 1991), little is known about the biochemical pathways through which the transforming forms of the Abelson kinase lead to neoplastic transformation. Similarly, little is known about the functions of the non-oncogenic, cellular forms of PTKs that are expressed in diverse tissues at many times during development, and have been implicated in normal cellular and developmental processes (Adamson, 1987; Hanley, 1988). To gain a better understanding of the functions of Abelson-like PTKs in development, we have undertaken a developmental genetic and molecular study of the Abelson tyrosine kinase gene (*abl*) in *Drosophila melanogaster* (Henkemeyer et al., 1987, 1988, 1990; Gertler et al., 1989, 1990; Holland et al., 1990; Hoffmann, 1991).

The *Drosophila* and mammalian abl proteins are well conserved in regions believed to be important for kinase activity and regulation. *Drosophila* abl is approximately 80% similar to the vertebrate c-abl proteins in the src-homology 2 (SH2), src-homology 3 (SH3) and kinase domains (Henkemeyer et al., 1988). Like the type IV (mouse) and 1b (human) forms of the c-abl proteins, *Drosophila* abl contains an amino-terminal glycine, which in the mammalian proteins is a site for myristylation. There is, however, little conservation of *Drosophila* abl in the mammalian c-abl carboxy-terminal domain (24% identity; Henkemeyer et al., 1988). A second member of the Abelson family cloned from human cells is the Abelson related gene (*arg*; Kruh et al., 1990; Perego et al., 1991). *Drosophila* abl is equally similar to the mammalian arg and c-abl proteins in the SH2, SH3 and kinase domains (Kruh et al., 1990). In the carboxy-terminal domain, the *Drosophila* abl and human arg proteins share a statistically significant 30% identity in alignments generated by the GCG Bestfit program (Devereaux et al., 1984; F. Gertler, unpublished observations).
Mutations in the abl gene of Drosophila lead to developmental defects that appear late in development. These include: pupal lethality as pharate adults, reduced fecundity, a shortened life span and rough eyes (Henkemeier et al., 1987). Paralleling these results in Drosophila, gene disruptions of murine c-abl lead to pleiotropic defects late in development (Shwartzberg et al., 1991; Tybulewitz, et al., 1991). Multiple mutant alleles of three different genes that enhance the Drosophila abl mutant phenotypes have been isolated (Gertler et al., 1989; Hoffmann, unpublished observations). When abl mutant animals are heterozygous for mutations in any of these genes, the lethal phase is shifted from late pupal/early adult stages to embryonic/larval stages. The earlier lethality is associated with the appearance of visible defects in the axonal architecture of the embryonic central nervous system (CNS). In addition, three mutations that suppress the abl mutant phenotypes have also been isolated, all of which map to the gene enabled (ena; Gertler et al., 1990). Understanding the molecular basis for these genetic interactions is a primary goal in our laboratory.

We have previously shown that the Drosophila abl protein is expressed at higher levels in the axons of the developing CNS during Drosophila embryogenesis (Gertler et al., 1989). Consistent with this axonal expression, genetic interactions with disabled (dab) and fasciclin I (fas I) indicate that abl is involved in axonogenesis and axon pathfinding (Gertler et al., 1989; Elkins et al., 1990). Proper localization of abl to the axonal compartment of the neuronal cells correlates with the ability of the abl protein to carry out its functions (Henkemeier et al., 1990). In this report, we present a detailed description of the localization of the abl protein during embryogenesis and pupal development of Drosophila melanogaster. We have generated a more sensitive antibody to the abl protein and demonstrate that the expression of abl is more diverse and dynamic during Drosophila development than previously reported. We also show that the abl protein is localized to specialized regions of cell-cell interactions and report on the abl-dependent mutant phenotypes in the developing embryonic muscle and adult eye.

Materials and methods

Production of abl antibodies

Antibodies to abl were raised against the β-galactosidase-Abelson bacterial fusion protein, pURABLkin (Henkemeier et al., 1988). This fusion protein contains the SH3, SH2 and kinase domains of abl. Fusion protein was produced and purified as described in Gertler et al. (1989). Briefly, inclusion bodies were isolated by the method of Nagai et al. (1985), except large molecular mass proteins were sheared using a polytron rather than incubating lysates with DNaseI in the presence of divalent cations. Inclusion bodies were then homogenized in 2× SDS sample buffer (Laemmli, 1970) and fractionated by electrophoresis on a preparative 5% polyacrylamide gel (Laemmli, 1970). The preparative gel was stained with an aqueous Commassie stain (0.6% Brilliant Blue R, Sigma Chemical Co., 20% Methanol, 16 mM Tris-Cl [pH 7.5]). The protein band corresponding to the ABLkin fusion protein was excised. For immunizations, New Zealand White rabbits (New Franken) were immunized with a polyacrylamide gel slice containing approximately 500 µg of fusion protein homogenized in Freund’s incomplete adjuvant (Sigma Chemical Co.). Rabbits were injected on days 1, 14, and 21 followed by monthly boosts. For affinity purification of anti-ABLkin antibodies, 10 mg ABLkin protein was electroeluted using an Elutrap (Schleicher and Schuell), dialyzed against 0.01 M Hepes buffer (N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)), pH 8.0 and coupled to a mixed bed of Affigel 10 and Affigel 15 (BioRad) at 1 mg/ml column bed according to manufacturer’s directions. For removal of anti-β-galactosidase antibodies, 50 mg of β-galactosidase was coupled to Affigel 10 in 0.01 M Hepes buffer (2 mg/ml column bed). Anti-serum was passed over the β-galactosidase column until no immunoreactivity in the flowthrough was detected on dot blots (1 µg/spot) of a second β-galactosidase-abl fusion protein, pURABLcarb (Henkemeier et al., 1988). Antibodies to abl were then affinity purified by passing the antiserum over the ABLkin column. The column was washed thoroughly (until A280 < 0.01) with phosphate-buffered saline (PBS, 6.13 mM K2HPO4, 3.87 mM KH2PO4, 140 mM NaCl [pH 7.0-7.2]), followed by washes with borate-buffered saline (1 M NaCl, 0.1 M boric acid, 0.025 M sodium borate [pH 8.3]) containing 0.1% Tween-20. The column was then equilibrated with 10 mM sodium phosphate buffer (pH 7.2) prior to elution with 0.1 M glycine (pH 3.0). 1 ml fractions were collected into 200 µl of 1.0 M Tris-HCl (pH 8.0). Peak fractions were pooled and tested for specificity for the abl portion of the fusion protein using dot blots of ABLcarb (Henkemeier et al., 1988) and ABLkin. The affinity purified antibodies (anti-ABLkin) could readily detect 5 ng of ABLkin fusion protein; no immunoreactivity was detected against 1 µg of ABLcarb fusion protein (data not shown). Antibodies raised in rabbits to abl, using the β-galactosidase-Abelson fusion protein ABLkin, were found to be approximately 20- to 50-fold more sensitive when assayed on dot blots of fusion proteins than the anti-ABLcarb antibodies used in previous studies (data not shown).

Immunoprecipitations and western blot analysis

Protein extracts were prepared 0-24 hours postpuparium formation (ppf) from wild-type pupae (Canton S), abl null pupae (ena20; Df(3L)std11, Df(3L)stj7) and pupae containing abl point mutant alleles (abl1, abl2, abl3, or abl5; Df(3L)stj7) as described in Henkemeier et al. (1990). Briefly, 100 pupae were homogenized in 2 ml of IP buffer (1% Triton X-100, 10 mM Tris-HCl [pH 7.6], 10 mM EDTA, 50 mM NaCl, 30 mM sodium pyrophosphate, 0.1% NaN3) supplemented with a protease inhibitor cocktail (2 mM PMSF, 20 µg/ml leupeptin, 20 µg/ml pepstatin, 20 µg/ml aprotinin; Boehringer Mannheim) and 1 mg/ml bovine serum albumin (BSA, Sigma Chemical Co.). Extracts were clarified by centrifugation in a microfuge at 12,000 g at 4°C. 1 ml of each extract was incubated with 2 µg of anti-ABLkin at 4°C for 2 hours, followed by incubation with 50 µl of protein-A agarose (Sigma Chemical Co.) for 2 hours at 4°C. Precipitates were washed at room temperature 3 times in IP buffer with protease inhibitors and BSA, followed by 3 washes in IP buffer with protease inhibitors without BSA, and then boiled in 50 µl 2× SDS-sample buffer (Laemmli, 1970). Proteins were resolved on an 8% polyacrylamide gel (Laemmli, 1970) and electrotransferred to nitrocellulose (400 mA for 8 hours at 4°C) in 25 mM Tris base, 20 mM glycine and 20% methanol. The nitrocellulose membrane was blocked with Blotto (1× PBS, 1% Carnation instant non-fat dry milk, 0.5% Tween-20; Johnson et al., 1984). After blocking for 1 hour, the nitrocellulose membrane was incubated with anti-ABLkin at 0.4 µg/ml in Blotto for 1 hour. The blot was washed for 30 minutes with Blotto and then incubated with goat anti-rabbit IgG conjugated to alkaline phosphatase (Sigma Chemical Co.) diluted 1:1000 in Blotto from the manufacturer’s stock concentration. The blot was washed for 30 min-
utes in Blotto, followed by a brief rinse in 0.1 M Tris (pH 9.4). Immunoreactive proteins were visualized using 1.2 mg/ml nitro blue tetrazolium and 25 µg/ml bromochloroindolylphosphate (Sigma Chemical Co.) in 0.1 M Tris (pH 9.6), 0.1 M NaCl, and 5 mM MgCl2. This procedure detected the anti-ablkin immunoglobulin heavy chain at 48×103 M. No protein bands were observed at 48×103 M when 125I-labeled protein A was used to detect immunoreactive proteins on the western blots (data not shown). We concluded from this observation that the presence of the anti-ablkin heavy chain did not mask the presence of abl proteins in this size range.

Whole-mount RNA in situ

A 2.8 kb EcoRI fragment from the abl cDNA P1 and a 1.2 kb EcoRI/BglII fragment from the abl cDNA L (Henkemeier et al., 1988) were labeled with digoxigenin using the modified method of Tautz and Pfeifle (1989) described by Masucci et al. (1990). Embryos were fixed and probed with the labeled abl cDNA fragments using the method of Tautz and Pfeifle (1989), except hybridization was extended to 36 hours, washes after hybridization were extended to overnight (12-14 hours) and washes after the incubation with anti-digoxigenin antibody were extended to 8 hours. These extended washes generally reduced background staining.

Immunostaining

Embryos were collected and prepared for immunostaining as previously described (Gertler et al., 1989), except that 100% methanol was used to remove the vitelline membrane from the embryos. Embryos were stage using the conventions established by Campos-Ortega and Hartenstein (1985). Embryos were blocked for several hours in PBT (PBS containing 2% BSA, 0.1% Triton X-100) containing 5% normal goat serum (PBT+NGS). Embryos were incubated in primary antibody (anti-ablkin) diluted to 0.3 µg/ml in PBT+NGS overnight at 4°C. Embryos were washed for 12 hours at 4°C with several changes of PBT (at least 10). PBT+NGS was added to the last wash to block embryos prior to the addition of the secondary antibody. The secondary antibody (biotinylated goat anti-rabbit, Vector labs) was added to the embryos at a concentration of 2.5 µg/ml in 1 ml of PBT+NGS. Embryos were incubated for 8 hours at 4°C. The embryos were then washed for 8 hours at 4°C with several changes of PBT. NGS was added to the last wash. The embryos were then incubated for 4 hours at 4°C in streptavidin-conjugated horseradish peroxidase (HRP) diluted 1:300 from the supplier’s concentration (Immunoselect, Bethesda Research Labs) in PBT+NGS. Embryos were washed for 4 hours with several changes of PBT. Embryos were rinsed once in TBS (50 mM Tris-HCl [pH 7.5], 150 mM NaCl), and then stained in HRP reaction buffer (1× TBS, 0.003% H2O2, 0.5 mg/ml 3,3-diaminobenzidine, Sigma Chemical Co.) for 15 minutes. The reaction was stopped by flooding the embryos with PBT containing 0.2% NaN. After several washes in PBT, followed by several washes in PBS, embryos were dehydrated through an ethanol series and cleared in methyl salicylate. Embryos (and all HRP-stained tissues) were examined using differential interference contrast optics on a Zeiss Axioshot microscope.

To obtain embryos that did not express the abl protein, females containing deletions overlapping in abl and containing an allele of the suppressor of abl, enabled (enda·104); Df(3L)std11/Df(3L)stE36), were crossed to males that contained an abl deletion heterozygous with a tandem duplication covering the abl gene, Df(3L)stE36/Dp(3;3)stg18. In this cross there is no maternal expression and 50% of the embryos are also without zygotic expression. The duplication was used to increase the level of paternal inherited abl expression.

To examine the phenotype of embryonic muscles, embryos were stained with both anti-ablkin and anti-myosin 722 antibody (provided by Dr Daniel Kiehart, Harvard University) by the method described above. Anti-myosin 722 antibodies were used at a 1:50 dilution of the stock provided. abl dab double mutant embryos were derived from a cross of Df(3L)ajf7, dab2/TM6B (females) × Df(3L)std11/TM6B (males). Mutant embryos were identified as those that failed to show axon staining in the CNS with the anti-ablkin antibody.

Larvae and pupae were dissected in PBS and fixed in 4% paraformaldehyde in PBS for 30 minutes at room temperature. Late pupal tissues (24 hours ppf or older) were fixed overnight (12-16 hours) at 4°C. Following fixation, tissues were washed three times in PBS followed by incubation in PBS containing 0.3% H2O2 for 5 minutes. Tissues were washed again three times in PBS (5 minutes each), followed by two washes in PBS containing 0.1% Triton X-100, and then placed in PBT for three hours at 4°C. All subsequent treatments were performed at 4°C. Prior to primary antibody incubation, tissues were placed in PBT+NGS for 2 hours. Transfer of tissues through the washes and incubations was facilitated by using nitex mesh baskets. For the disk staining, anti-ablkin was pre-absorbed against imaginal disk/brain complexes dissected from pupae null for the abl protein (approximately 20-30) at 5 µg/ml overnight. Tissues were incubated with anti-ablkin at 0.2 µg/ml in PBT+NGS overnight (12-14 hours). Tissues were washed with several changes (at least 12 changes) of PBT for 18 hours with slight agitation. Tissues were then incubated in biotinylated goat anti-rabbit IgG (1 µg/ml in PBT+NGS) for 8 hours, followed by extensive washes with PBT (at least 12 changes) for 12-14 hours (overnight). Tissues were then incubated in streptavidin HRP diluted 1:500 in PBT+NGS for 4 hours. Following 4 hours of washes in PBT (at least 10 changes), tissues were rinsed in TBS and reacted in HRP reaction buffer for 15 minutes. Immunagous tissues were cleared in glycerol and mounted in Aqua-polymount (Polysciences) for whole-mount viewing or dehydrated in ethanol, cleared in methyl salicylate and mounted in Epon-Araldite for sectioning (See below).

To generate larvae and pupae that did not express the abl protein, ena2/TubB; Df(3L)std11/TM6.B males were crossed to Df(3L)stE36/TM6.B females. The TM6.B balancer carries the dominant larval/pupal marker Tabby. abl null larvae (Tabby+) were picked and either dissected or aged to the appropriate pupal stage. Pupal stages are in hours from white puparium formation (hours postpuparium formation, ppf) at 25°C.

To examine phenotypes in abl mutant eye imaginal disks, abl mutant (abl2/Df(3L)stE36) disks were stained with monoclonal antibody (mAb) BP104 (provided by Dr Corey Goodman, University of California, Berkeley), which specifically stains the developing photoreceptor cells of the eye imaginal disk (Hortsch et al., 1990). Dissections and stainings were performed as described above except 0.1% saponin was used in place of Triton X-100. mAbBP104 was used at a 1:3 dilution of the hybridoma supernatant. Goat anti-mouse IgG conjugated to lissamine rhodamine (Boehringer Mannheim), diluted 1:50, was used to detect mAbBP104 staining. Images were collected using a Bio-Rad MRC660 laser-scanning confocal system.

To determine when photoreceptor cell specific expression of the abl protein began, wild-type imaginal disks were double labeled with anti-ablkin and the sensory neuron specific mAb, 22C10 (Fujita et al., 1982) as described for mAbBP104. Anti-ablkin was used at 0.2 µg/ml and mAb22C10 was used at a 1:3 dilution from a hybridoma supernatant (provided by Dr Tadmir Venkatesh, University of Oregon, Eugene). mAb22C10 was detected using a goat anti-mouse IgG conjugated to fluorescein isothiocyanate (Sigma Chemical Co.) diluted 1:50. Disks were...
analyzed using the BioRad MRC600 laser-scanning confocal system.

Sectioning of immunostained embryos and disks
Embryos and disks were dehydrated through an ethanol series, equilibrated with methyl salicylate, washed once with methyl salicylate, and infiltrated with Epon-Araldite (26.3%(w/w) Epoxy 812, 19.1%(w/w) Araldite 506, 52.4%(w/w) dodecyl succinic anhydride, 2%(w/w) Tris-dimethylaminoethyl phenol, Ernest F. Fullum Co.). Embryos and disks were then embedded in Epon-Araldite between two glass slides supported by no. 1 coverslips. One slide was treated with Teflon to permit easy removal. Selected embryos and disks were excised from the slide, oriented and glued to an Epon-Araldite block with Elmer’s super fast epoxy cement. Alternatively, samples were excised from the slide and re-embedded in Epon-Araldite in a tapered end flat mold in the proper orientation. 6 μm sections were cut using a glass knife on a Reichert-Jung Ultracut E ultramicrotome or Porter-Blum MT-2 ultra-microtome. Sections were floated on a drop of water on a glass slide, allowed to dry on a 65°C slide warmer and mounted under Permount (Fisher Scientific).

Results

Characterization of abl mutant proteins with anti-ablkin
The anti-ablkin antibodies were assayed on western blots to determine their specificity for the abl protein. Whole pupal lysates were prepared from wild-type pupae, pupae that were null for the abl protein (heterozygous for two deletions which overlap only in abl, Df(3L)std11/Df(3L)stE36) and pupae containing each of the five abl point alleles heterozygous with an abl deletion (abl1, abl2, abl3, abl4 or abl5/Df(3L)stE36). These lysates were immunoprecipitated with anti-ablkin, fractionated by SDS-PAGE, transferred to nitrocellulose and probed with anti-ablkin (Fig. 1). In the wild-type pupal lysates, anti-ablkin precipitated and detected a protein doublet migrating at approximately 180×10^3 M_r, as well as many smaller proteins believed to be degradation products of the abl protein (Fig. 1, lane 1). No immunoreactive protein bands were immunoprecipitated from the abl null pupal lysates (Fig. 1, lane 2). The anti-ablkin antibody, therefore, was specific for the product of the abl gene under the conditions of these western blots. Interestingly, immunoreactive proteins were detected in lysates from all five of the abl point mutant alleles. Lysates prepared from abl1, abl2, abl3, and abl5 pupae contained distinct immunoreactive protein doublets ranging from 48 to 75×10^3 M_r (Fig. 1, lanes 3, 4, 5 and 6). In lysates from abl4 pupae, anti-ablkin detected several small (between 25 and 35×10^3 M_r), faint immunoreactive protein bands, making the abl4 mutation closest to being a protein null (Fig. 1, lane 7).

Expression of the abl protein from maternally derived mRNA
Using a genetic suppressor mutation in the gene enabled that rescues the abl mutant phenotypes (Gertler et al., 1990), we obtained abl mRNA and protein null animals at all stages of development including embryos null for the maternal contribution of abl. abl null animals were used as controls to ascertain the specificity of the observed staining for abl expression. It has been reported that abl mRNA is contributed maternally to the embryo (Wadsworth et al., 1985). RNA in situ hybridization detected abl mRNA distributed throughout the preblastoderm embryo (Fig. 2A,C). Negligible staining was detected in preblastoderm embryos derived from abl null mothers (Fig. 2B,D). The level of staining detected by RNA in situ hybridization remained constant through cellularization of the blastoderm (Fig. 2E wild type). By early gastrulation, the level of staining observed in embryos derived from wild-type mothers decreased to the levels of background staining observed in embryos derived from abl null mothers (compare 2G, wild type, with 2B,D,F and 1, abl null). abl mRNA was not detected during germ band extension in any of the embryos derived from abl null mothers (compare Fig. 2H, wild type, with 2I, abl null). Since 50% of the embryos from the mating inherited a wild-type abl allele from their fathers, this indicated that no detectable zygotic expression of the abl gene occurred until after germ band extension.

In contrast to the abl mRNA, the abl protein was not maternally supplied to the oocyte. Embryos derived from wild-type and abl null mothers showed similar levels of background staining with anti-ablkin through the second
Fig. 2. Maternally derived abl mRNA and protein in early embryos. Wild-type and maternal abl null embryos were probed with digoxigenin-labeled abl cDNAs to detect abl mRNA (A-I) or with anti-ablkin to detect abl protein (J-S). Embryos are shown anterior to the left and dorsal to the top. Maternal abl null embryos at equivalent stages were used to indicate background levels of staining with the digoxigenin-labeled abl cDNA probes (B, D, F and H) or with anti-ablkin (K, M, O, Q and S). (A) High levels of abl mRNA were detected in stage 1 wild-type embryos. (C, E) The intensity of staining remained relatively unchanged through cellularization of the blastoderm (C, mid stage 2 embryo and E, cellular blastoderm). (G) During early gastrulation, the level of staining for abl mRNA decreased. (H, I) By germ band extension, the staining levels in wild-type (H) and maternal abl null embryos (I) were indistinguishable. (J) In contrast to the presence of abl mRNA at the earliest stages, stage 1 embryos did not contain detectable levels of abl protein. Arrowheads in J indicate positions of the embryonic nuclei following the second mitosis. (L) abl protein was detected in stage 2, above the background level of staining observed in the maternal abl null embryos. Staining for abl was associated with the energids around the precellular nuclei (arrowheads in L and M). (N, P, R) At cellular blastoderm and during germ band extension, abl was detected throughout the embryo. In contrast to the decline in staining for abl mRNA at the later stages, the intensity of the immunostaining did not change.
nuclear division (compare Fig. 2J, wild type, with Fig. 2K, abl null). At this stage cytoplasmic islands, energids, form around the nuclei in the anterior end of the embryo (arrowheads in Fig. 2J; Campos-Ortega and Hartenstein, 1985). A detectable level of abl protein was first observed after the fourth nuclear division (stage 2). The protein was distributed throughout the embryos (compare Fig. 2L with Fig 2M). The intensity of anti-ablkin staining increased through the remaining nuclear cleavage cycles to the onset of gastrulation (Fig. 2N,P). The level of abl, as detected by anti-ablkin, remained constant throughout gastrulation and early germ band extension (Fig. 2R). Embryos produced from abl null mothers did not stain with anti-ablkin at these stages (Fig. 2K,M,O,Q and S). Perdurance of the abl protein through gastrulation and germ band extension was in contrast to the decrease in the level of the maternal abl mRNA (compare Fig. 2P,R with G,H). Staining of abl protein derived from the maternal message was detected through full germ band extension (data not shown).

The subcellular localization of the abl protein during these early stages of embryogenesis was examined in sections through cellularizing and gastrulating embryos. The abl protein in precellular embryos was detected throughout the energids and cortical regions, but was concentrated near the plasma membrane (Fig. 3A, arrows). At the onset of cellularization, cleavage furrows formed between the peripheral nuclei of the embryo. Immunostaining for the abl protein was concentrated near the cleavage furrows (Fig. 3B, arrows) and remained associated with the furrows as they progressed inward (Fig. 3C, arrows). The highest level of immunostaining for the abl protein was concentrated at cell junctions in the apical region of the cells through the completion of cellularization (Fig. 3D, arrows). This localization to the plasma membrane was transient; by early gastrulation the immunostaining for the abl protein was detected more diffusely throughout the apical cytoplasm (Fig. 3E), and in germ band extended embryos, the staining for the abl protein was diffuse throughout the cytoplasm of all cells in the ectoderm and mesoderm (Fig. 3F).

Expression of abl in the developing embryonic nervous system

We have previously reported that zygotic expression of the abl protein was detected in the axons of the developing central nervous system (CNS) of the Drosophila embryo (Gertler et al., 1989). The increased sensitivity of the anti-ablkin antibodies confirmed this observation and revealed a broader pattern of zygotic expression. Zygotic expression in the embryo was detected in the developing central nervous system and in the somatic and visceral musculature (Fig. 4). Embryos null for both maternal and zygotic abl protein expression were used to demonstrate that this immunostaining was specifically detecting abl protein (data not shown). After the completion of germ band extension (stage 11/12), immunostaining of zygotic abl protein was most intense in the neurons of the central nervous system (Fig. 4A). The tissue specificity of this early zygotic expression was masked by the ubiquitous perdurance of the maternal abl protein, therefore, the embryo shown in Fig. 4A was produced by a mother null for abl. Zygotic abl protein within the developing CNS was limited to the neurons; immunostaining was not detected in the neuroblasts or ganglion mother cells (Fig. 4B). The abl protein was found concentrated in the axons as they extended from the neurons (small arrows in Fig. 4E,F). The highest level of immunostaining throughout embryogenesis was observed in the axon scaffold of the CNS. As we have previously reported, immunostaining became stronger in the longitu-
dinal connectives than in the commissures (data not shown). In sagittal sections of stage-16 embryos it was clear that the abl protein was not restricted to CNS neurons, as faint staining for the abl protein could be detected with anti-ablkin in the neurons of the peripheral nervous system (PNS; Fig. 4C).

Expression of abl during embryonic muscle development

The mesodermal precursor cells undergo three rounds of cell divisions during germ band extension with the third mitosis at the end of stage 10 (Hartenstein and Campos-Ortega, 1985). This mitosis leads to the disruption of the mesodermal epithelium, separating the mesoderm into two layers which form the visceral and somatic musculature (stage 11/12; Campos-Ortega and Hartenstein, 1985). It is at this stage that zygotic abl protein can be detected in the developing mesoderm (Fig. 4A). By stage 14, expression of abl protein was readily detected in the visceral meso-
derm and faintly detected in the somatic mesoderm in both whole-mount embryos (Fig. 4D) and cross sections (Fig. 4E). The abl protein was detected in the mesoderm cells as they differentiated to form the visceral and somatic musculature (Fig. 4F). In the somatic muscle, immunostaining for the abl protein was concentrated at the muscle attachment sites (Fig. 4G). In later, stage 17, embryos, abl protein staining was no longer observed in the visceral or somatic muscle (data not shown).

Mutations in abl and dab affect the stability of somatic muscles

We have previously shown that embryos mutant for abl do not show overt embryonic mutant phenotypes and survive to pharate adult and adult stages (Henkemeyer et al., 1987). However, in the absence of one or both copies of disabled (dab), the axon scaffold of the CNS is disrupted, although no mutant phenotypes were observed in the PNS or the epidermis (Gertler et al., 1989). The observation that the abl protein was expressed in the developing muscles led us to look for mutant phenotypes in the muscle. Dr Rachel Drysdale (Cambridge University, Cambridge, UK) analyzed effects of mutations in abl and dab on embryonic muscle formation for us using polarized light microscopy (Broadie and Bate, 1991). She observed defects only in abl dab double mutant embryos; the presence of a single copy of abl or dab alleviated the majority of muscle defects. We examined the mutant phenotype of abl dab double mutant embryos using antibodies against myosin. Mutant embryos were selected for study as described in the methods. Of 15 mutant embryos examined at stage 15 (as determined by the morphology of the gut), only one exhibited a musculature defect (data not shown). In contrast, 13 of 15 embryos examined at late stage 16 had obvious defects in the somatic musculature (compare Fig. 5A,B with C,D). In the mutant embryos, many muscle fibers were absent, and those that remained were often thin and disorganized. In place of the missing fibers were round balls, possibly remnants of muscle fibers that detached from the epidermis.

abl expression in the larval and pupal imaginal disks

Mutations in abl result in reduced adult viability. The results of our studies on the expression of the abl gene in the embryo and the phenotypes of embryos mutant for both abl and dab, indicated that the reduction in adult viability might be due to disruptions in the development or function of the adult nervous system and musculature. Therefore, we examined the expression pattern of abl protein during late larval and early pupal development when the adult structures were being formed.

Many adult cuticular structures are derived from the larval imaginal disks. Since abl mutant flies do not have

![Fig. 5](image_url) Muscle defects associated with abl dab double mutant embryos. Ventral lateral views are shown of wild-type (A,B) and abl dab double mutant (C,D) embryos at stage 16 stained with an antibody against myosin to reveal the somatic musculature. (A,B) The regular structure of the embryonic musculature in wild-type embryos was observed. The muscles were highly organized and thick. (C,D) In the abl dab double mutant embryos, the muscles were disorganized and often absent. Compare the bracketed regions of A and B with those of C and D. The ends of the muscle were not as broad as in wild type (small black arrowheads) and the muscles were often thin (large black arrowhead). In place of some muscles were irregular balls that stained with the myosin antibody; these balls were often connected by thin cytoplasmic bridges (white arrowheads).
cuticular defects outside of the eye (discussed below), we did not expect to find abl protein generally expressed in the imaginal disks. However, abl protein was detected in the epithelial cells of all imaginal disks examined (leg, wing, and eye-antennal; Figs 6A,C, 7A). The level of staining observed in these cells was consistently lower than the level observed in developing neurons and muscle (discussed below). That this low-level staining resulted from detection of the abl protein was confirmed by staining imaginal disks dissected from abl protein null larvae and pupae with anti-ablkin (data not shown). The abl protein was present throughout the cytoplasm, but was concentrated within the apical cortical region of the cells (Fig. 6B), a region containing actin-rich adherens-type junctions (Poodry and Schneiderman, 1970).

In addition to the epithelial sheet of cells, the imaginal disks contain groups of cells outside the epithelium, the adepithelial cells. These cells give rise to much of the muscleature of the adult thorax (Poodry and Schneiderman, 1970; Reed et al., 1975; Ursprung et al., 1972; Bate et al., 1991). In wing and leg imaginal disks, there were patches of immunostaining for the abl protein that were more intense than the general staining of the epithelial cells of the imaginal disks. This staining was most striking in the leg disk (Fig. 6C, arrow). Sections through a leg imaginal disk confirmed that this staining was in the adepithelial cells (Fig. 6D). In the leg imaginal disk, only the adepithelial cells that had migrated into the more distal folds of the leg pouch, and had begun morphological changes, showed an increased level of immunostaining for the abl protein.

In leg and wing disks dissected from 6 hour ppf pupae, there was a higher level of staining in the proximal region where the leg and wing imaginal disks had fused to form the notum (Fig. 6E,G). This higher level of staining was restricted to the cells adjacent to the basal surface of the disk epithelium (Fig. 6F). In whole-mount preparations, the pattern of staining with anti-ablkin was similar to that reported using the twist antibody, a marker for muscle precursor cells (Fernandes et al., 1991). By 27 hours ppf indirect flight muscle fibers were well formed as most of the myoblasts had fused to form the muscle fibers. At this stage, abl protein was detected in the muscle fibers as well as in the unfused myoblasts (arrowheads) in indirect flight muscles dissected from 27 hour ppf pupae.
Expression of abl during differentiation of the eye imaginal disk

The *Drosophila* eye consists of approximately 700 repeated simple eye units, or ommatidia. Differentiation of the eye imaginal disk from an unpatterned epithelium to a highly structured retina begins in the late third instar larvae when a morphogenetic furrow forms in the posterior end of the eye imaginal disk and moves toward the anterior end. Ahead of the furrow are mitotically active, unpatterned cells. Behind the furrow the cells become organized in a well established sequential pattern and begin neuronal differentiation (Tomlinson and Ready, 1987).

Low levels of abl protein expression were detected in undifferentiated cells ahead of the furrow (Fig. 7A). This level was similar to the level of immunostaining found in the epithelial cells of the leg and wing imaginal disks. Higher levels of abl immunostaining were detected in the developing photoreceptor cells (R-cells; Fig 7A), beginning approximately 3 rows behind the expression of the mAb22C10 antigen (Fig. 7C.D), a marker for neuronal differentiation of R-cells (Fujita et al., 1982; Tomlinson and Ready, 1987). The higher levels of abl protein were first detected simultaneously in R-cells 2, 5, and 8. The abl protein was then detected in the developing photoreceptor cells in the same order in which they had initiated neuronal differentiation within the developing ommatidial cluster: R-cells 3 and 4, followed by R-cells 1 and 6 and finally R-cell 7. The abl protein, though present throughout the photoreceptor cell bodies and axons, was concentrated in the apical portion of the cells (black arrow, Fig. 7C). abl was detected in the photoreceptor cells during the remaining stages of eye development examined (through 72 hours ppf). In the retina 27 hours ppf, higher levels of immunostaining were detected in all eight photoreceptor cells (Fig. 7E). Lower levels of staining were observed in the apical membranes of the accessory cells of the retina (Fig. 7F). By 72 hours ppf, abl protein was detected at higher levels in the neurons of the interommatidial bristles as well as the photoreceptor cells (Fig. 7G). Within the photoreceptor cells, the protein remained centrally localized and the staining extended into the forming rhabdomeres (Fig. 7H).

Developing eye imaginal disks were dissected from *abl* null larvae and pupae and stained with anti-ablkin to demonstrate that the immunostaining observed in the eye was due to the expression of abl protein (Fig. 7B and data not shown).

Phenotype of abl mutant eye

Eyes of *abl* mutant adults were rough, have a slightly reduced number of facets, missing and supernumerary bristles, and facets irregular in shape and size (R.B., unpublished observations). Sections through *abl* mutant eyes reveal defects in all cell types of the retina: photoreceptor cells, cone cells and pigment cells (Henkemeyer et. al., 1987). These defects include a general lack of the hexagonal arrangement of ommatidia, missing and aberrantly oriented photoreceptor cells and rhabdomeres, and enlarged and dying pigment cells. Staining of *abl* mutant third instar eye imaginal disks with a monoclonal antibody against a neuronal specific form of neuroglian, mAbBP104 (Hortsch et al., 1990), revealed defects in the photoreceptor cell clusters early in ommatidial development (Fig. 7I,J). The initial establishment of photoreceptor patterning appeared to occur normally. No defects were detected in ommatidial spacing or the initial three and five cell staining patterns of mAbBP104, representing the establishment of the 5 cell precluster and the neuronal differentiation of R-cells 2, 3, 4, 5 and 8. However, by row 6, when R-cells 1 and 6 were detected with mAbBP104, abnormal clusters were seen. At this stage, some clusters in the *abl* mutant eye imaginal disks had lost their symmetrical organization and contained extra cells expressing the mAbBP104 antigen, indicating a breakdown in the regulation of differentiation in the mutant ommatidia.

abl expression in the developing adult nervous system

Sensory neurons in the imaginal disks differentiate during late larval and early pupal development (Hartenstein and Posakony, 1989). Wings dissected from 6 hour ppf pupae had, in addition to the general immunostaining observed in early wing disks with the anti-ablkin antibody, strong immunostaining of the early neurons of the wing blade that...
Drosophila abl expression

form along the presumptive third wing vein, L3 (Fig. 8A, black arrows). The staining was detected in the axons extended along L3 (white arrowheads in Fig. 8A). Later in development, at 27 hours ppf, the triple row and double row bristle neurons along the anterior wing margin stained intensely with anti-ablkin (Fig. 8B,C). Staining was detected in both the cell bodies and axons of these neurons along the anterior wing margin of a 27 hour ppf wing is shown in C. Increased staining was also present in stripes on the wing blade that appear to delineate the wing veins. (D) Immunostaining of the neurons of the vertical and post-orbital bristles (arrowheads) observed in heads dissected from 72 hour ppf head and stained with anti-ablkin.

In addition to the neurons of the sensory bristles and the eye, abl protein was detected in the neurons of the developing adult CNS (Fig. 9). By late third instar, the axons of the larval neurons, which were formed during embryogenesis, no longer expressed detectable levels of abl protein, but staining was observed in the neurons that were forming the adult CNS (Fig. 9A). As in the embryo, abl protein was not detected in the neuroblasts, but was restricted to their progeny, the neurons of the adult CNS (Fig. 9B). Sections through the nerve cord and brain of a 6 hour ppf pupa stained with anti-ablkin revealed that the abl protein was present in the developing neuropil (Fig. 9C,D).

Discussion

abl protein levels increase transiently in post-mitotic differentiating cells

abl is expressed in a variety of tissues during several stages of Drosophila development. Aside from the levels of abl protein supplied to the early embryo by maternally provided abl mRNA, the highest levels of abl protein are achieved in differentiating neurons and muscles during both embryogenesis and pupation. In the embryonic CNS, this increase in abl protein level does not occur in the proliferating cells of the neural cell lineage, the neuroblasts and ganglion mother cells, but in the post-mitotic neurons as they begin axonogenesis. Similarly, increased levels of abl protein occur in embryonic post-mitotic muscle development. In the developing eye imaginal disk, the delay between neural differentiation and increased levels of abl protein expression can be more clearly distinguished: the photoreceptor cells begin expressing higher levels of abl protein approximately 6 hours after they begin expressing neural antigens.

Although abl protein is present at higher levels in differentiating nerve and muscle cells, the level of abl protein falls after these tissues complete development. This observation is consistent with northern analyses, which indicate higher levels of abl expression during late embryogenesis and mid-pupation, times of neural and muscle development (Telford et al., 1985). We propose, therefore, that increased levels of abl protein may be involved in proper neural and muscle development, but are probably not necessary for nerve or muscle function. This is analogous to proposals regarding the function of c-src during vertebrate neuronal development. The level of pp60c-src in the nervous system is lower in adults than in embryos (Maness, 1988). However, if adult nerves are damaged, higher levels of pp60c-src reoccur in neurons and growth cones in the damaged region as the nerve regenerates, consistent with a requirement for increased tyrosine phosphorylation in neuronal differentiation and axonogenesis (Ignelzi et al., 1992).

abl protein is localized to specialized regions of cell-cell contact

Perhaps the most intriguing aspect of abl protein localization is the finding that the abl protein is asymmetrically distributed in most of the cells in which it is detected and is concentrated at specialized regions of cell-cell interaction. This is most apparent in the embryonic CNS where abl is highly concentrated in the axons relative to the cell bodies. In addition, the abl protein is concentrated at the muscle...
attachment sites in the embryo, and at apical cell junctions in both the blastoderm embryo and the imaginal disks. In the blastoderm embryo, the apical junctions are primarily desmosomes, adhesive junctions that are proposed to regulate the invagination of the plasma membrane during cellularization of the blastoderm (Campos-Ortega and Hartenstein, 1985). In the larval imaginal disks, the apical cell junctions are adherens and septate junctions (Poodry and Schneiderman, 1970). Adherens junctions are believed to be involved in tissue morphogenesis through their interactions with both actin and cell adhesion molecules (Tsukita et al., 1991) and are rich in phosphorytrosine containing proteins (Takata and Singer, 1988). The major protein components of adherens junctions, actin, α-actinin, talin, vinculin and integrins, are also major components of axonal growth cones and at the muscle attachment sites (Kellie, 1988; Sobue, 1988; Volk et al., 1990; Fyrberg et al., 1990). The localization of Drosophila abl to these structures indicates that the PTK may play some role in the regulation of these specialized cytoskeletal structures in several tissues.

Elimination of redundant processes reveals roles for abl in neural and muscle development

Null mutations in abl alone do not result in detectable phenotypes in the embryonic CNS or musculature. The development of these tissues in an abl mutant background, however, becomes sensitized to further genetic insults such that dominant genetic enhancer mutations have been recovered (Hoffmann, 1991). The genes in which the dominant genetic enhancer mutations map, e.g., the dab gene, may encode proteins that are functionally redundant to the abl PTK. While the molecular mechanisms for this functional compensation are not yet understood, the mutations in the enhancer genes have allowed the observation of tissue-specific developmental roles for the abl PTK in tissues that express transient, high levels of subcellularly localized abl protein.

In abl dab double mutant embryos, axons do not properly fasciculate to form commissures or longitudinal connectives, consistent with a role for the abl PTK in axonal outgrowth or for the proper intercellular adhesion required during axonal pathfinding (Gertler et al., 1989). In this paper we report that abl dab double mutant embryos also exhibit defects in embryonic muscle structure late in development. At earlier times in development, the muscle structure of abl dab double mutant embryos could not be distinguished from that of wild-type embryos. The late onset of the mutant phenotype within the developing muscles is consistent with failure of the muscle attachments as the muscles begin to twitch. This phenotype is similar to that reported for animals mutant for lethal(1)myospheroid.
(Newman and Wright, 1981; Volk et al., 1990), which encodes the Drosophila β-integrin (MacKrell et al., 1988).

The eye is the only tissue in which we have scored morphological defects in simple abl mutant backgrounds but it should be noted that the eye phenotypes discussed in this paper can be rescued by a catalytically inactive abl protein (Henkemeyer et al., 1990). This phenotype and the poor adult viability of abl mutant flies, indicates that the abl protein has a non-catalytic structural role, perhaps bringing together other regulatory molecules in a multi-protein complex. We suspect that the catalytic role of the abl kinase activity in this complex is compensated for by dab or other gene products. With this caveat, we conclude from the observations reported here that abl is not involved in pattern formation within the eye imaginal disk, but is required for proper differentiation of retinal cells. The gross morphological defects in the adult eye may be due to additional requirements for abl in the brain or in the later development decisions in the eye, consistent with the continued expression of abl during pupal eye development. Examination of eye development in clones of cells mutant for both abl and dab may provide better insights about the role of the abl PTK in eye development.

All of the observed phenotypic consequences caused by abl mutations occur in tissues exhibiting transient increases in the level and subcellular localization of abl protein. However, the role of the abl PTK in these processes is largely redundant. The existence of compensatory regulatory mechanisms may be quite common in signal transduction and developmental processes such as those regulated by PTKs. Drosophila genetics provides an opportunity to identify and eliminate the compensatory mechanisms so that the developmental functions of PTKs and other highly conserved regulatory molecules can be studied.

We are grateful to Dr Rachel Drysdale for her help in studying the abl-dependent muscle phenotype and communications of her results, Dr Dan Woods for discussions regarding abl localization within imaginal disks and Dr Don Ready for discussions regarding the abl mutant eye phenotype. We thank Drs Daniel Kiehart, Corey Goodman and Tadmiri Venkatases for gifts of antibodies. Drs Grace Panganiban and Carol Sattler provided technical advice for sectioning, Dr Stephen Paddock assisted with confocal microscopy and Jerry Sattler provided much needed photographic advise. We thank Drs Eric Liebl, Frank Gertler, and Grace Panganiban for thoughtful reading and comments on the manuscript. This work was supported by funding from the NIH including CA 49582 to F. M. H., Cancer Center Core support CA 07175 to H.C. Pitot and predoctoral training grant CA 09135 for support of R. L. B.; F. M. H. is the recipient of a Faculty Research Award from the American Cancer Society.

References

(Accepted 28 August 1992)