Genetic analysis of the *Drosophila cdc2* homolog

Bodo Stern¹,*, Gabriele Ried¹, Nigel J. Clegg²†, Thomas A. Grigliatti² and Christian F. Lehner¹‡

¹Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstrasse 37-39, 7400 Tübingen, FRG
²Department of Zoology, University of Vancouver, 6720 University Boulevard, Vancouver BC, Canada V6T 1Z4

*Present address: ICRF Cell Cycle Group, Department of Microbiology, University of Oxford, Oxford UK
†Present address: Department of Zoology, University of Washington, Seattle, Washington
‡Author for correspondence

SUMMARY

We have identified mutations in the *Drosophila cdc2* gene. The recessive lethality of these mutant alleles was rescued after P-element-mediated transformation with a genomic cdc2 fragment. Sequence analysis of amorphic alleles revealed non-conservative exchanges in evolutionary conserved positions. These alleles caused lethality at the larval-pupal interphase due to the absence of imaginal tissues. Embryonic lethality resulted when the maternal *Dm cdc2* contribution was reduced through the use of a temperature-sensitive allele. *Dm cdc2* function, therefore, is essential for cell proliferation throughout development. *Dm cdc2* function is clearly required for mitosis, but no evidence for a requirement in S-phase was obtained. The reversible block of the mitotic proliferation which was observed in the PNS of mutant embryos occurred exclusively in the G₂-phase. Moreover, while the mitotic proliferation of imaginal cells was blocked in the amorphic mutant larvae, non-imaginal larval cells continued to grow and endoreplicate their DNA. The *Dm cdc2* mutant phenotype could neither be rescued with *Dm cdc2c* (encoding a cdc2-like kinase) nor enhanced by a reduction of the *Dm cdc2* gene dose. These results indicate that the *Dm cdc2*- and *Dm cdc2c*-kinases control different processes.

Key words: cdc2, cdc2c, cell cycle, *Drosophila*, proliferation

INTRODUCTION

The p34cdc2 kinase of *Schizosaccharomyces pombe* and the homologous p34CDC28 kinase of *Saccharomyces cerevisiae* regulate the progression through the cell cycle at two important control points. They are required for progression through START (G₁/S-transition) and for entry into mitosis (G₂/M-transition) (Hereford and Hartwell, 1974; Nurse and Thuriaux, 1980; Nurse and Bissett, 1981; Piggott et al., 1982). Analyses in *Drosophila*, *Xenopus*, and humans have not only revealed cdc2 homologs that are able to complement efficiently mutations in the homologous yeast genes but also have revealed additional cdc2-related genes which do not or inefficiently complement despite extensive similarity (Lee and Nurse, 1987; Lehner and O’Farrell, 1990a; Paris et al., 1991; Elledge and Spottswood, 1991; Milarski et al., 1991; Ninomiya-Tsuji et al., 1991; Tsai et al., 1991). The different cdc2-related kinases of vertebrates appear to be specialized for either the G₁/S- or the G₂/M-transition. While depletion of the p34cdc2 kinase from *Xenopus* extracts prevents M-phase, depletion of the cdc2-related kinase p33cdc2 prevents S-phase (Fang and Newport, 1991). Observations in humans are also consistent with the idea that the G₁/S transition is controlled by the p33cdc2 kinase in higher eukaryotes and the G₂/M transition by the p34cdc2 kinase (Riabowol et al., 1989; Th’ng et al., 1991; Hamaguchi et al., 1992; Pagano et al., 1992; Rosenblatt et al., 1992; G. Draetta, personal communication).

For entry into M-phase in all eukaryotes, the p34cdc2 kinase has to be activated. This activation of the p34cdc2 kinase is controlled by an evolutionary conserved network of regulators (for reviews see Nurse, 1990; Pines and Hunter, 1991). In a first step, p34cdc2 associates with the regulatory subunit cyclin B and is modified by phosphorylation on different sites. Phosphorylation of Thr167 in *S. pombe* (and of the corresponding Thr in higher eukaryotes) appears to be required for kinase activity (Ducommun et al., 1991; Gould et al., 1991; Krek and Nigg, 1991a; Solomon et al., 1992). In contrast, phosphorylation of Tyr15 in *S. pombe* (and of both Tyr15 and Thr14 in higher eukaryotes) inhibits kinase activity (Gould and Nurse, 1989; Solomon et al., 1990; Krek and Nigg, 1991b; Norbury et al., 1991). While the kinase that phosphorylates Thr167 has not yet been identified, Tyr15 is presumably phosphorylated by the kinases encoded by *weel* and *mik1* in *S. pombe* (Russell and Nurse, 1987; Featherstone and Russell, 1991; Lundgren et al., 1991; Parker et al., 1991). In a second step, immediately before entry into mitosis, the inhibitory phosphate modifications are removed by the cdc25-phosphatase (Dunphy and Kumagai, 1991; Gautier et al., 1991; Millar et al., 1991; Strausfeld et al., 1991). The resulting activation of the cyclin B/p34cdc2 kinase initiates mitosis. The
mitotic, ubiquitin-dependent degradation of cyclin B results in the inactivation of the associated p34\(^{\text{cdk2}}\) kinase and in the completion of mitosis (Glotzer et al., 1991).

The regulation of the kinase activity required for the G1/S-transition is less well understood, but it involves distinct cyclin proteins. Genetic approaches in \(S.\ cerevisiae\) have led to the identification of several, functionally overlapping G1-cyclins (CLN1,2,3), which are involved in the regulation of the p34\(^{\text{CDC28}}\) activity required for progression through START (Richardson et al., 1989). Several potential G1-cyclins have also been identified in higher eukaryotes. In humans, cyclin A, which is also abruptly degraded during mitosis, is found not only in complexes with the p34\(^{\text{cdk2}}\) kinase but also in association with the p33\(^{\text{cdk2}}\) kinase. Cyclin A accumulation starts prior to S-phase and the cyclin A/p33\(^{\text{cdk2}}\) complex is active throughout S-phase (Pagano et al., 1992; Rosenblatt and Morgan, 1992). Recent observations have implicated the cyclinA/p33\(^{\text{cdk2}}\) complex in the regulation of the G1/S-transition and oncogenesis (D’Urso et al., 1990; Wang et al., 1990; Devoto et al., 1992; Girard et al., 1991; Mudryj et al., 1991; Pagano et al., 1992).

Similarly, cyclin C, D and E, which have been identified in higher eukaryotes, have also been implicated in these processes (Koff et al., 1991; Lew et al., 1991; Matsushima et al., 1991; Motokura et al., 1991; Xiong et al., 1991). These cyclins were identified because of their ability to complement \(S.\ cerevisiae\) mutants deficient for G1-cyclins, but it remains to be demonstrated that these cyclins have the same function in higher eukaryotes as the G1-cyclins in \(S.\ cerevisiae\). Moreover, the kinases that are regulated by cyclin C, D and E have also not yet been identified. The number of candidate kinases is increasing. In humans, an extensive search has revealed eleven cdc2-related kinases, including seven novel kinases apart from p34\(^{\text{cdk2}}\), p33\(^{\text{cdk2}}\) and two other previously identified kinases (Meyerson et al., 1992). A large family of cyclin/cdc2-related kinase complexes can therefore be anticipated in higher, multicellular eukaryotes where they may participate in the complex regulation of cell proliferation.

In order to dissect this complexity, we started with a genetic approach in \(Drosophila\) melanogaster. The genes encoding cyclins A, B, C, D and E as well as cdc2-related kinases have been identified in this organism (Lehner and O’Farrell, 1989, 1990a,b; Whitfield et al., 1989; Jimenez et al., 1990; Lahue et al., 1991; Leopold and O’Farrell, 1991; H. Richardson and R. Saint, personal communication; R. Finley and R. Brent, personal communication; K. Sauer and C.F.L., unpublished observation), and mutations in the cyclin A and the cyclin B gene have been isolated (Lehner and O’Farrell, 1989, J. Knoblich and C.F.L., unpublished observation).

Here we describe the identification and characterization of mutant alleles in the \(D.\ melanogaster\) cdc2 gene. Among the cdc2-related kinases identified in \(D.\ melanogaster\), the \(D.\ melanogaster\) cdc2 kinase is most similar to the yeast kinases (p34\(^{\text{cdk2}}\) and p34\(^{\text{CDC28}}\)). Complementation experiments have shown that \(D.\ melanogaster\) cdc2 can complement mutations in these yeast homologs. In yeast, therefore, \(D.\ melanogaster\) cdc2 appears functional at both the G1/S and the G2/M transition. In \(D.\ melanogaster\), however, our phenotypic analyses reveal only a G2/M function which cannot be complemented by the closely related \(D.\ melanogaster\) cdc2 gene.

MATERIALS AND METHODS

Drosophila stocks

Abbreviations of genetic loci are used according to Lindsley and Zimm (1992).

The isolation of recessive lethal mutations in the chromosomal region 31 is described in detail elsewhere (Clegg et al., 1992). The lethal mutations were placed into complementation groups based on inter se complementation analyses. The complementation group corresponding to the \(Dm\) cdc2 gene comprised 10 alleles, 8 of which are characterized here. The alleles \(Dm\) cdc2\(^{216A}\), \(Dm\) cdc2\(^{247}\), \(Dm\) cdc2\(^{257}\), \(Dm\) cdc2\(^{311}\), \(Dm\) cdc2\(^{E1-9}\), \(Dm\) cdc2\(^{E1-23}\) and \(Dm\) cdc2\(^{E1-24}\) were isolated after mutagenesis with ethyl methanesulfonate (EMS). The allele \(Dm\) cdc2\(^{216P}\) was isolated after mutagenesis by P-M dysgenesis. The chromosome with the allele \(Dm\) cdc2\(^{216A}\) acts as a dominant suppressor of position-effect variegation \([\text{Su(var)}\text{]}\), which appears to be due to a closely linked second site mutation (Sinclair et al., 1992).

The deficiency \(Df(2L)J27\) (which deletes the \(Dm\) cdc2 gene (C. F. L., data not shown)), was isolated by Sandler (1977). The deficiency \(Df(3R)H81\), which deletes the \(Dm\) cdc2 gene (C. F. L., data not shown), was isolated and kindly provided by A. Preiss, University Basel. The enhancer trap line A37, which directs lacZ expression to the cells of the PNS, has been isolated and characterized previously (Ghysen and O’Kane, 1989).

\(Drosophila\) strains with transgenes were obtained by P-element-mediated transformation (Spradling, 1986). \(Drosophila\) strains with a genomic \(Dm\) cdc2 fragment (\(P[w^{+}\text{[\text{a}]},Dm\) cdc2\]) were obtained after transformation with a \(pc\text{CaSpeR}\text{[4]}\) (Pirrotta, 1988) construct containing a 5.8 kb HindIII fragment, which includes the \(Dm\) cdc2 gene (see Fig. 1A). This fragment was derived from the lambda phage PS-5, which had been isolated from a genomic library by Crommiller et al. (1988) for the molecular analysis of the \(\text{daughterless}\) (\(da\)) gene. The \(Dm\) cdc2 transcription unit is upstream of \(da\) and separated from \(da\) by a single transcription unit encoding a 0.8 kb transcript.

\(Drosophila\) strains harbouring transgenes with a heat-shock promoter controlling the expression of either \(Dm\) cdc2 (hs-cdc2) or \(Dm\) cdc2c (hs-cdc2c) were obtained after transformation with \(pc\text{CaSpeR-hs}\) (Pirrotta, 1988) constructs containing cDNA of either \(Dm\) cdc2 or \(Dm\) cdc2c (Lehner and O’Farrell, 1990a).

Genetic crosses were done using standard \(Drosophila\) techniques.

Identification of mutant progeny

For the analysis of larval phenotypes, the \(Dm\) cdc2 alleles and the deficiency \(Df(2L)J27\) were balanced with \(In[2LR]Gla\) carrying the dominant marker \(Bc\). Mutant larvae were identified based on the lack of the \(Bc\) marker.

For the analysis of the \(Dm\) cdc2 function during embryonic proliferation, we analyzed the progeny of \(Dm\) cdc2\(^{216P}\), \(Tf\text{r}Dm\) cdc2\(^{E1-24}\) females crossed with \(Df(2L)J27\rt{CyO}\ (P[w^{+}\text{[\text{a}]},\text{ft-lacZ}])\) males. The lacZ-expressing progeny, which were phenotypically wild type, were analyzed as controls. The phenotypically abnormal class of progeny observed after development at 25°C was identified as \(Dm\) cdc2\(^{216P}\)/\(Df(2L)J27\) based on the following observations (data not shown). An aberrant pattern of cyclin A expression was found in 25% of the progeny only. Based on the results of double-labeling with anti-lacZ antibodies, we concluded that these 25% were either \(Dm\) cdc2\(^{216P}\), \(Tf\text{r}Df(2L)J27\) or \(Dm\) cdc2\(^{E1-24}\)/\(Df(2L)J27\). Analysis of the lethal phase revealed embryonic lethality for about 25% of the progeny and late pupal lethality...
Complementation experiments with heat-shock antisense strand of the Drosophila cdc2 gene (Fig. 1A, for details see Materials and methods). The genomic region containing the complete Dm cdc2 gene (Lehner and O’Farrell, 1990a). The PCR product obtained with template DNA isolated from flies that had the mutant Dm cdc2 allele over the deficiency Df(2L) J27. This strain also contained the genomic 5.8 kb Dm cdc2 transgene, which was required to rescue the lethality of the hemizygous Dm cdc2 mutants. The choice of the first primer assured that the transgene sequence was not amplified during the PCR. The first primer (5’-CCG CCT TGA TGG GCA-3’) for the analysis of the EMS-induced alleles, a DNA fragment containing all of the coding sequence of the mutant allele was isolated by PCR. As a template, we used genomic DNA isolated from flies that had the mutant Dm cdc2 allele over the deficiency Df(2L) J27. This strain also contained the genomic 5.8 kb Dm cdc2 transgene, which was required to rescue the lethality of the hemizygous Dm cdc2 mutants. The choice of the first primer assured that the transgene sequence was not amplified during the PCR. The first primer (5’-CCG CCT TGA TGG GCA-3’) was derived from the DNA sequence immediately upstream of the HindIII fragment present in the Dm cdc2 transgene. The sequence of the second primer (5’-TTT GCT TTA GAT TAG ATA CCA AG-3’) was derived from the DNA sequence immediately upstream of the polyadenylation signal of the Dm cdc2 gene (Lehner and O’Farrell, 1990a). The PCR product obtained with these primers was digested with HindIII and BglII. The resulting HindIII-BglII fragment was cloned into the corresponding sites of a Bluescript KS+ vector (Stratagene) and sequenced with specific primers spaced at 350 bp intervals. For each allele, at least three different clones obtained from independent PCR reactions were analyzed to exclude PCR artefacts. All the changes shown in Fig. 1B were found in all of the respective clones.

RESULTS

Identification of mutant Dm cdc2 alleles

Mapping by in situ hybridization to polytene chromosomes assigned the Dm cdc2 gene to the chromosomal region 31D/E (Lehner and O’Farrell, 1990a). This region was saturated for EMS-induced recessive lethal mutations (Clegg et al., 1992). In order to determine whether any of these lethal mutations were in the Dm cdc2 gene, we constructed transgenic Drosophila lines. A genomic 5.8 kb fragment containing no other complete transcription unit except Dm cdc2 (Fig. 1) was introduced into the germ line by P-element-mediated transformation. This fragment was able to rescue the lethality of a complementation group with multiple alleles (Table 1), demonstrating that this complementation group represents the Dm cdc2 gene.

Several of these alleles were characterized at the molecular level. The allele Dm cdc2E1-24, which had been isolated after P-element mutagenesis, was found to have a P-element insertion in the 5’ untranslated region of the Dm cdc2 gene (Fig. 1A, for details see Materials and methods).

For the analysis of the EMS-induced alleles, Dm cdc2E1-216A, Dm cdc2E1-216D, Dm cdc2E1-24, Dm cdc2E1-9, Dm cdc2E1-21 and Dm cdc2E1-23, the genomic region containing the complete coding sequence was amplified by polymerase chain reactions (PCR) (see Materials and methods). All mutant alleles that were sequenced proved to be missense mutations. The DNA sequence of the genomic region and the changes causing these missense mutations are shown in Fig. 1B. With the exception of Dm cdc2E1-216A, all mutations result in
non-conservative exchanges at positions that are completely invariant in all the known cdc2 homologs (Fig. 2).

Phenotypic characterization of Dm cdc2 alleles

Males containing mutant Dm cdc2 alleles were crossed to females containing a deficiency of the Dm cdc2 gene, Df(2L)J27, and the lethal phase of the mutant progeny was determined (Table 1). Mutants with the Dm cdc2 alleles over the deficiency died after pupariation at the larval-pupal interphase except in the case of Dm cdc2E1-24. Analyses at different temperatures indicated that the Dm cdc2E1-24 is a temperature-sensitive allele. At 18°C Dm cdc2E1-24/Df(2L)J27 flies were fully viable, whereas at 29°C they did not develop beyond the larval-pupal interphase. At 25°C, Dm cdc2E1-24/Df(2L)J27 flies died during eclosion. In the case of Dm cdc2D57/Df(2L)J27, embryonic instead of larval/pupal lethality was observed if the reciprocal cross was analyzed. Thus, the mutant Dm cdc2D57 product appears to have a weak dominant negative effect.

Mutant larvae that reached the wandering stage were completely wild type in appearance in all cases, but in general they reached this stage 1-2 days after the non-mutant

Fig. 1. Dm cdc2 gene structure of wild-type and mutant alleles. (A) Molecular map of the Dm cdc2 gene region illustrating the position of the Dm cdc2 transcription unit (Dm cdc2), of uncharacterized transcription units flanking Dm cdc2 (dashed lines, Cronmiller et al., 1988; H. Vässin, C.F.L., unpublished results) and of the daughterless transcription unit (da). The insertion site of the P-element associated with the Dm cdc2216P allele is indicated by a triangle. The 5.8kb HindIII fragment was used for germ line transformation and rescued the lethality of Dm cdc2 alleles. The region amplified from Dm cdc2 alleles for subsequent sequence analysis is indicated (PCR). B, BglII, H, HindIII, R, EcoRI, S, SalI. Some of these restriction sites were found to be polymorphic in different stocks. (B) The sequence of the transcribed region of the Dm cdc2 gene. The mutant changes (bold) identified in the different Dm cdc2 alleles (Dm cdc2216A, Dm cdc2D57, Dm cdc2E1-24, Dm cdc2E1-23, Dm cdc2E1-9) are indicated above the wild-type sequence. The conceptual translation (one letter code) is shown under the wild-type sequence. Non-translated regions are represented in italics. The arrow marks the site of the P-element insertion in the Dm cdc2216P allele. The polymorphisms that were identified in some of the Dm cdc2 alleles and which do not change the predicted protein sequence are not included.
Dissection of mutant larvae hemizygous for strong alleles, however, revealed clear defects in imaginal tissues. Imaginal discs were missing or rudimentary and the larval brains were reduced in size. The lower numbers of imaginal cells observed in the imaginal ring of salivary glands of wandering stage larvae are shown in Fig. 3. The number of cells present in this region varied with different Dm cdc2 alleles (Table 1). The most extensive reduction in cell number was observed with the alleles Dm cdc2 B47, Dm cdc2 D57, Dm cdc2 E10, Dm cdc2 E1-9 (Fig. 3H) and Dm cdc2 E1-23. These alleles appear to be amorphic, since the same reduction was also observed in mutant larvae homozygous for Dm cdc2 E1-9 or Dm cdc2 E1-23 (data not shown).

The hypomorphic alleles Dm cdc2 216A (Fig. 3F) and Dm cdc2 216A (Fig. 3G) caused less extensive defects and the defects observed with Dm cdc2 E1-24 were temperature-dependent (compare Fig. 3I and J). The results of interallelic complementation tests agreed with the phenotypic evaluation of allele strength (Table 1).

Our phenotypic analyses demonstrated that Dm cdc2 function is required for the mitotic proliferation of the imaginal cells during larval life. In contrast, the larval cells which no longer proliferate mitotically during the larval stages were not affected in the mutants. As in wild type, larval growth in mutants was accompanied by endoreplication and polytenization of larval cells. Salivary glands in wandering stage larvae from wild-type (Fig. 3A) or mutant larvae (Fig. 3C) were comparable in size, and also the intensity of the DNA staining in the polytene cell nuclei was indistinguishable. Pulse labeling with BrdU revealed that endoreplication continued in amorphic mutant larvae. The polytene nuclei were also labeled by BrdU pulses during the last larval stage (Fig. 3D). These results indicate that Dm cdc2 function is not required for the endoreplication cycles.

The function of the maternal Dm cdc2 contribution

The presence of maternally derived Dm cdc2 mRNA and protein in embryos has been described previously (Lehner and O'Farrell, 1990a). The following results demonstrate the functional significance of this maternal contribution. Moreover, they indicate that this maternal contribution permits the embryonic proliferation in mutants with strong Dm cdc2 alleles over a deficiency. For these analyses, we took advantage of the temperature-sensitive allele Dm cdc2 E1-24. Unfortunately, however, flies homozygous for the original Dm cdc2 E1-24 chromosome were not viable due to a recessive, embryonic lethal mutation at a second site. After this second site mutation had been removed by recombination, homozygous Dm cdc2 E1-24 flies were recovered at 18°C, but proved to be completely sterile according to preliminary experiments. Therefore, we used females transheterozygous for Dm cdc2 E1-24 and the hypomorphic allele Dm cdc2 216A. Such flies were fully viable at 18°C and displayed temperature-dependent fertility.

The progeny of Dm cdc2 216A/Dm cdc2 E1-24 females developed normally at 18°C and 25°C (not shown). At 29°C, however, the early syncytial divisions occurred...
embryos. Observations indicated that the maternally derived Dm cdc2 kinase is required during the early syncytial division cycles. In detail, and for simplicity, such embryos will be designated as mutant embryos in the rest of the text. In the blowfly Calliphora erythrocephala, the small nuclei that were observed in larvae with strong amorphic alleles are not imaginal precursor cells, but the equivalent of the neck cells which have abnormally and defective nuclei were observed particularly in the polar regions (Fig. 4B). Such defects were observed in all of the embryos from mutant mothers. In contrast, the function of the maternal contribution was also evidenced by other maternal effects. The lethal period of the Dm cdc2°/Df(2L)J27 progeny, for instance, was strongly dependent on the maternal genotype. Late larval/pupal lethality was observed if mothers were Dm cdc2°/+.

The function of the maternal contribution was also evidenced by other maternal effects. The lethal period of the Dm cdc2°/Df(2L)J27 progeny, for instance, was strongly dependent on the maternal genotype. Late larval/pupal lethality was observed if mothers were Dm cdc2°/+.

<table>
<thead>
<tr>
<th>Allele</th>
<th>Mutagen</th>
<th>Rescue</th>
<th>Lethal phase</th>
<th>Imaginal cells</th>
<th>Interallelic complementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>5-11 (16)</td>
<td>2.6</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>7-12 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>5-10 (18)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>4-7 (14)</td>
<td>4.6</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>5-11 (14)</td>
<td>0.9</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>10-25 (16)</td>
<td>6.3</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>105-115 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>155-170 (8)</td>
<td>58</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>5-8 (14)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>160-170 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>EMS</td>
<td>+</td>
<td>l/p</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Characterization of Dm cdc2 alleles

<table>
<thead>
<tr>
<th>Allele</th>
<th>Rescue</th>
<th>Lethal phase</th>
<th>Imaginal cells</th>
<th>Interallelic complementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>5-11 (16)</td>
<td>2.6</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>7-12 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>5-10 (18)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>4-7 (14)</td>
<td>4.6</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>5-11 (14)</td>
<td>0.9</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>10-25 (16)</td>
<td>6.3</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>105-115 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>155-170 (8)</td>
<td>58</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>5-8 (14)</td>
<td>0</td>
</tr>
<tr>
<td>Dm cdc2°/P</td>
<td>+</td>
<td>l/p</td>
<td>160-170 (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

aBy crossing Dm cdc2 allele/SM6a.Cy with Df(2L)J27/SM6a.Cy, P[w+,Dm cdc2] progeny, it was determined whether the 5.8 kb genomic HindIII fragment present in the P element insertion was able to rescue the lethality of the flies hemizygous for Dm cdc2 alleles.
bAfter crossing Dm cdc2 allele/In(2LR)Gla.Bc males with Df(2L)J27/In(2LR)Gla.Bc females, the lethal phase of the progeny hemizygous for the Dm cdc2 allele was determined after development at 25°C if not otherwise indicated. l/p, lethality during larval-pupal interphase. p, late pupal lethality. nl, not lethal.
cAfter crossing Dm cdc2 allele/In(2LR)Gla.Bc with Df(2L)J27/In(2LR)Gla.Bc; the number of putative imaginal cells at the position of the imaginal rings in larval salivary glands of the progeny hemizygous for the Dm cdc2 allele was determined. The number of glands that were analyzed is given in brackets. The putative imaginal precursor cells were identified after Hoeechst 33258 labeling based on the small size of their nuclei. It is possible that the cells with the small nuclei that were observed in larvae with strong amorphic alleles are not imaginal precursor cells, but the equivalent of the neck cells which have been described in the blowfly Calliphora erythrocephala (Berridge et al., 1976). The exact number of imaginal precursor cells present in salivary glands at the end of embryogenesis is not known, but it has been estimated to be 9 in Calliphora erythrocephala (Berridge et al., 1976). In Drosophila at third larval instar wandering stage, we counted 150-190 (4) cells per imaginal ring in wild-type larvae.
dAfter crossing Dm cdc2 allele/SM6a.Cy to Dm cdc2°/In(2LR)Gla.Bc; at 25°C, the percentage of adult escapers (Dm cdc2 allele/Dm cdc2°/In(2LR)Gla.Bc) in the progeny was determined. At least 300 flies were analyzed, 100%, full viability.
eThe original Dm cdc2°/In(2LR)Gla.Bc chromosome which was used in these complementation tests has a second site mutation which results in embryonic lethality in the homozygous Dm cdc2°-/- progeny.

Embryonic proliferation can be monitored accurately by immunofluorescent labeling with antibodies against the cell cycle regulatory protein cyclin A (Lehner and O’Farrell, 1989). Cyclin A is expressed exclusively in proliferating cells. It accumulates during interphase and is rapidly degraded during each mitosis. At stage 14 of embryogenesis, mitotic proliferation is terminated in the epidermis and in the peripheral nervous system (PNS), but it continues in the developing central nervous system (CNS). Accordingly, cyclin A staining is restricted to the CNS in wild-type embryos at stage 14 (Fig. 5A, region c). However, cyclin A labeling was not restricted to the CNS in mutant embryos (Fig. 5B). In addition to the labeling in the CNS (which was more extensive than in the wild type), mutants displayed labeling also outside the CNS in a segmentally repeated pattern highly reminiscent of the pattern of the PNS. The same observations were also made with antibodies against cyclin B (not shown).

Experiments with the enhancer trap P-element insertion A37 which directs lacZ-expression to the PNS (Ghysen and O’Kane, 1989) confirmed the idea that the persistent cyclin A expression in mutant embryos occurred predominantly in cells associated with the PNS (data not shown). These experiments also demonstrated that the number of cells in the PNS was significantly lower in mutants than in controls. In contrast, cell density in the epidermis appeared normal in mutant embryos and anti-cyclin A labeling did not reveal abnormalities during the embryonic proliferation of the epidermal cells (not shown).

Our observations suggested, therefore, that the sum of the maternally and zygotically derived Dm cdc2 function was sufficient for the early embryonic proliferation in...
Drosophila cdc2 mutants

mutant embryos, but not for the late embryonic proliferation in the PNS and CNS. Accordingly, the persistence of cyclin A expression in the PNS of mutant cells would reflect a block of cell cycle progression. In order to test this notion, we crossed a transgene with a heat-shock promoter controlling expression from a Dm cdc2 cDNA (hs-cdc2) into the mutant embryos. As expected, the embryonic lethality of the mutants was prevented when the expression of hs-cdc2 was induced with a heat pulse (45 minutes, 37°C) in 7 hour old embryos. Moreover, the persistent expression of cyclin A was no longer observed in the PNS region of mutant embryos after a heat pulse (Fig. 5C). In a control experiment, we confirmed that the cyclin A persistence was not abolished by an identical heat treatment in mutant embryos that did not have the hs-cdc2 transgene (Fig. 5D). The heat pulse alone, therefore, did not destabilize cyclin A.

A heat pulse applied in 12 hour old embryos also abolished the persistence of cyclin A expression in mutant embryos containing the hs-cdc2 transgene. In order to determine the dynamics of the cyclin A disappearance, embryos were fixed at different times following the heat shock. A significant reduction in the number of cyclin A-positive cells was observed after only 15 minutes of recovery (Fig. 5C). In a control
mitotic proliferation and not endoreplication. This observation therefore suggested that some mitotic cell proliferation was still proceeding in the mutant CNS (see discussion).

Essentially identical results were obtained when the BrdU labeling was started concomitant with a heat pulse and extended during a 1 hour recovery period (compare Fig. 6B and D). The absence of BrdU incorporation in the region of the PNS demonstrated that the cells did not progress through an S-phase during the time when cyclin A expression disappeared (Fig. 6C). The heat-induced expression of Dm cdc2 did therefore not trigger entry into S-phase in these cells.

In a subsequent experiment, we monitored mitoses after triple-labeling with anti-cyclin A antibodies, anti-β-tubulin antibodies, and a DNA stain. Mitotic figures were only detected in mutant embryos that had the hs-cdc2 transgene and had been subjected to a heat shock. In these experiments, mutant embryos were identified based on the persistence of cyclin A expression in the PNS region. Since the disappearance of the persistent cyclin A expression after hs-cdc2 expression is incomplete (especially after only 25 minutes of recovery at 25°C), mutant embryos could readily be identified. An example of the mitotic spindles and metaphase plates observed in the PNS region of mutants during the period during which the persistence of cyclin A expression disappeared, is shown in Fig. 7. For a quantitative estimation, we counted the mitotic figures in the PNS region of the first four abdominal hemisegments in mutant embryos that had been fixed 25 minutes after the end of the heat shock. We found a total of 68 mitotic figures in 6 mutant embryos with a hs-cdc2 transgene and no mitotic figures in 6 mutant embryos without a hs-cdc2 transgene. Our determinations of the number of cells in mitosis provide a lower estimate, since whole-mount preparations do not allow the identification of all mitotic cells. Moreover, as shown in Fig. 5, the hs-cdc2-induced cyclin A disappearance is not completely synchronous. Thus only a fraction of the hs-cdc2-induced mitoses are detected in embryos fixed after 25 minutes of recovery.

All these experiments indicated that the heat-induced expression of Dm cdc2 caused in the cells of the PNS region of mutant embryos a progression through mitosis during which cyclin A was degraded. Since this division was not preceded by an S-phase, we conclude that these cells were arrested in the G2-phase.

Independent functions of Dm cdc2 and Dm cdc2c

The Dm cdc2c gene encodes a cdc2-related kinase (see Fig. 2) that is essentially coexpressed with Dm cdc2 (Lehner and O’Farrell, 1990a, J. Knoblich and C.F.L., unpublished observations). In order to evaluate the functional specificity of the Drosophila kinases, we analyzed in a first experiment whether a reduction in the Dm cdc2c gene dose affected the phenotypic effects of mutations in Dm cdc2. Since Dm cdc2c alleles have not yet been isolated, we used the deficiency Df(3R)H81, which deletes the Dm cdc2c gene as determined by in situ hybridizations to polytene chromosomes (not shown). We crossed this deficiency into a Dm cdc2 mutant background (Dm cdc2216P/Dm cdc2E1-24, Fig. 8B). This allele combination was chosen because the

5E) and, after 45 minutes of recovery, only very few cells were cyclin A-positive in the region of the PNS (Fig. 5F). This experiment demonstrated that a heat pulse caused in the great majority of cells in the PNS region, within 45 minutes, a complete disappearance of cyclin A expression.

Longer recovery periods after a heat pulse at 12 hours did not lead to a further reduction of cyclin A-positive cells. The fact that the cyclin A persistence was not completely abolished if the heat pulse was applied at 12 hours was consistent with the observation that such late heat pulses were also unable to rescue the embryonic lethality of the mutants.

In order to investigate whether the disappearance of cyclin A observed after the heat-induced expression of Dm cdc2 in mutant embryos was accompanied by progression through the cell cycle, we first performed pulse-labeling experiments with BrdU. The base analog BrdU is incorporated into DNA during replication and can be visualized with a monoclonal antibody.

In non-heat-pulsed mutant embryos containing the hs-cdc2 transgene, BrdU incorporation was never observed in the cells of the PNS region after labeling pulses during stage 14 (Fig. 6A,B). The absence of BrdU incorporation in the PNS region of mutant embryos with the characteristic persistent cyclin A expression is consistent with the presumed cell cycle block. In contrast to the PNS region, BrdU incorporation was readily detected in the endoreplicating midgut cells (arrowhead in Fig. 6B). Interestingly, BrdU incorporation was also observed in cells of the CNS of mutant embryos. BrdU incorporation in the CNS reflects, at least in wild-type embryos during these embryonic stages,
resulting phenotype was strongly temperature dependent. At 18°C, *Dm cdc2*216P/*Dm cdc2*E1-24 flies appeared wild type (Fig. 8A, left). At 25°C, however, these flies eclosed with severe phenotypic abnormalities (Fig. 8A, right). Defects were particularly evident in the abdomen. Tergites were severely reduced and segment fusions were frequent. At 29°C, this allele combination was completely lethal. According to these observations, slight changes in *Dm cdc2* activity were expected to have profound phenotypic consequences in *Dm cdc2*216P/*Dm cdc2*E1-24 flies. However, no significant differences were observed at 25°C in *Dm cdc2*216P/*Dm cdc2*E1-24 flies with either one or two copies of the *Dm cdc2c* gene indicating that the *Dm cdc2c* kinase function does not overlap with the limiting *Dm cdc2* kinase function.

In a second experiment, we tested whether expression from a heat-shock promoter *Dm cdc2c* transgene (hs-cdc2c) could rescue the lethality caused by mutations in *Dm cdc2* (Fig. 8C). Immunoblot experiments demonstrated that the hs-cdc2c transgene was expressed after heat pulses. Nevertheless, periodic hs-cdc2c expression induced in a thermocycler (see Materials and methods) did not rescue the lethality of the *Dm cdc2* mutants, in contrast to the periodic hs-cdc2c expression, which fully rescued the lethality. In addition, heat-induced hs-cdc2c expression was also unable to rescue the persistence of cyclin A expression in...
mutant embryos (not shown). These experiments demonstrate that Dm cdc2c is unable to complement Dm cdc2 in Drosophila.

DISCUSSION

The cdc2 kinase is of central importance in the regulation of the eukaryotic cell cycle. Initial genetic analyses in fission and budding yeast have established that the p34cdc2 kinase (or the homologous p34CDC28 kinase, respectively) is required for progression through START (G\textsubscript{1}/S-transition) and for entry into mitosis (G\textsubscript{2}/M-transition). Interesting differences, however, exist between fission yeast, where the G\textsubscript{2}/M-transition has an especially high p34cdc2 requirement, and budding yeast, where the G\textsubscript{1}/S-transition is characterized by a high p34CDC28 requirement. Analyses have therefore emphasized the G\textsubscript{2}/M function in fission yeast and the G\textsubscript{1}/S function in budding yeast. cdc2 homologs have since been identified in a great variety of organisms ranging from plants to humans, and complementation experiments in yeast have demonstrated their functional conservation. While most of these complementation tests were performed with temperature-sensitive S. pombe cdc2 strains and therefore assayed primarily the G2/M function, experiments with the Drosophila homolog and most rigorously with the human cdc2 homolog have clearly demonstrated that these homologs are able to complement both the G1/S and the G2/M function (Lee and Nurse, 1987; Wittenberg and Reed, 1989; Lehner and O’Farrell, 1990a).

Our identification of mutant Dm cdc2 alleles has allowed
the genetic characterization of cdc2 function in Drosophila, which clearly revealed a requirement for mitosis. Interestingly, our results do not provide evidence for a requirement for entry into S-phase. The cell cycle arrest that was observed in the cells of the developing PNS of mutant embryos with a reduced maternal contribution occurred exclusively during the G2-phase according to our results. Dm cdc2 expression from an inducible transgene caused in these mutant cells a rapid entry into a normal mitosis. Entry into S-phase was not observed in these cells after Dm cdc2 expression as would have been expected in the case of a G1-arrest.

Similar results were obtained with human and mouse cells and with Xenopus egg extracts. Microinjection of antibodies against p34cdc2 was found to be ineffective in blocking the G1/S transition in human tissue culture cells but caused an arrest before entry into mitosis (Ribasolow et al., 1989). Furthermore, immunodepletion of the p34cdc2 kinase from Xenopus egg extract was ineffective in preventing S-phase but completely inhibited M-phase (Fang and Newport, 1991). Finally, the cell cycle arrest in the mouse FT210 cell line, which has a temperature-sensitive mutation in the cdc2 gene, occurred exclusively during the G2-phase at the restrictive temperature (Th’ng et al., 1991; Hamaguchi et al., 1992).

Although the evidence arguing against a role of the higher eukaryotic p34cdc2 homolog in the G1/S-transition is very strong, the presence of low amounts of residual p34cdc2 kinase activity sufficient for entry into S-phase cannot be excluded completely in all these experiments in higher eukaryotes where, similar to S. pombe, the cdc2 requirement might also be much lower for the G1/S than for the G2/M-transition. However, the identification and functional characterization of an additional cdc2-related kinase (p33cdk2) in vertebrates has provided further support for the notion that the p34cdc2 kinase acts specifically during the G2/M-transition and not during the G1/S-transition, since this additional p33cdk2 kinase appears to be specialized for the G1/S-transition. Immunodepletion of p33cdk2 from Xenopus egg extracts or microinjection of anti-p33cdk2-antibodies into human cells was found to inhibit entry into S-phase (Fang and Newport, 1991; Draetta et al., personal communication).

As yet it is unclear whether the additional cdc2-related kinase (Dm cdc2c) that has been identified in Drosophila is functionally homologous to cdk2. According to structural
comparisons, vertebrate p33^{cdk2} is only marginally more related to Dm cdc2c- than to Dm cdc2-kinase. Circumstantial evidence, however, argues in favour of a cdc2c-cdk2 homology. Similar to p33^{cdk2}, Dm cdc2-kinase is located predominantly in the nucleus and is not associated with cyclin B. However, it is associated with low amounts of cyclin A according to preliminary observations. Moreover, none of the additional cdc2-related kinases identified in an extensive search in Drosophila are more closely related to cdk2 than cdc2 (K. Sauer and C.F.L., unpublished results). Conversely, none of the cdc2-related kinases that have been identified in an extensive search in humans (Meyerson et al., 1992) is more closely related to cdc2c than cdk2. The isolation of mutant Dm cdc2c alleles (which is currently in progress) will hopefully clarify this relationship and reveal the functional role of the Dm cdc2c kinase. Our demonstration here that the Dm cdc2c kinase was unable to rescue Dm cdc2 mutants and that a reduction of the Dm cdc2c gene dose did not enhance the phenotype caused by limiting Dm cdc2 function, indicates clearly that the Dm cdc2c kinase is functionally distinct from Dm cdc2.

During Drosophila development, a variety of different cell cycle types are encountered. During the first thirteen cycles, G1- and G2-phases, as well as cytokinesis, are omitted. Starting with cycle 14, cell cycles acquire a G2-phase and entry into M-phase is precisely regulated according to developmental fate. Cell cycle regulation at later stages is even more complex and entry into S-phase also is subjected to developmental regulation. Our experiments involving the temperature-sensitive allele Dm cdc2^{E1-24} indicate that the Dm cdc2 kinase is essential for all these different mitotic cycles, including the early syncytial cycles which are dependent on maternally derived Dm cdc2 kinase.

In contrast to these mitotic cycles, Dm cdc2 kinase does not appear to be required during the process of polytenization during which cells progress through cycles of alternating G- and S-phases (Smith and Orr-Weaver, 1991). This endoreplication, which accompanies the growth of larval cells, continued normally in mutant larvae with amorphic Dm cdc2 alleles up to the last larval instar. Although we cannot rule out the persistence of very low levels of maternally derived cdc2 activity present even in late mutant larvae, we emphasize that this hypothetical residual activity is insufficient to support the mitotic proliferation of the imaginal cells. Moreover, zygotic expression of Dm cdc2 was detected exclusively in mitotically proliferating cells and not in polytene tissues (Lehner and O’Farrell, 1990; J. Knoblich and C.F.L., unpublished observation). The Dm cdc2c kinase, however, is present in endoreplicating salivary glands although at 10-fold lower levels compared to diploid imaginal tissues (B.S., unpublished observation).

The presence of a maternal contribution sufficient for all the mitotic proliferation during embryogenesis, but not sufficient for the imaginal cell proliferation during larval life, combined with the independence of larval growth from mitotic proliferation (Shearn et al., 1971; Szabad and Bryant, 1982; Gatti and Baker, 1989), results in a characteristic terminal phenotype in the case of amorphic Dm cdc2 alleles. Fully grown larvae pupariate but fail to develop further because of the absence of imaginal tissues (imaginal discs, imaginal rings, abdominal histoblast nests). This organisinal phenotype was postulated previously to characterize mutations in genes encoding functions specifically required for mitotic proliferation (Szabad and Bryant, 1982; Gatti and Baker, 1989). In the case of null mutations, however, this organisomal phenotype can only be expected if the maternal contribution is stable enough to last through all the embryonic proliferation. While this is true in the case of Dm cdc2, this is not true in the case of the other mitotic regulators that have been analyzed so far. Zygotic expression of cyclin A and of string, which encodes a cdc25 phosphatase homolog, is required for embryonic proliferation (Lehner and O’Farrell, 1989; Edgar and O’Farrell, 1990). In contrast to Dm cdc2, the regulation of protein levels is crucial for the function of these regulators and necessitates the instability of the maternal contribution.

The reduction of the maternal Dm cdc2 contribution resulted in an arrest of the mitotic proliferation in mutant embryos. Interestingly, we observed proliferation in the CNS of mutant embryos while the proliferation in the PNS was completely blocked. Moreover, according to BrdU pulse-labeling experiments, the proliferation in the CNS appeared surprisingly normal, and the pattern and number of labeled cells in mutant embryos were comparable to wild type (data not shown). These findings might be explained by the pattern of residual expression from the Dm cdc2^{216P} allele, which is characterized by a P-element insertion in the 5′-untranslated region. However, in contrast to the nearly normal pattern of BrdU-incorporation, cyclin A was clearly much more widely expressed in the CNS of mutants compared to controls (compare Fig. 5A and B). This observation is consistent with the idea that exclusively terminal mitoses (i.e. the last divisions before cells withdraw from mitotic proliferation and enter a G0-phase) are inhibited in these mutants. The consequences of Dm cdc2 expression induced in the mutant embryos with the help of the hs-cdc2 transgene are consistent with this idea. In the PNS, cells divided rapidly after Dm cdc2 expression but never entered an additional cell cycle. In the CNS, the number of BrdU-labeled cells increased only twofold, whereas the number of mitotic figures increased over 20-fold (B. S. and C. F. L., data not shown). All these observations suggest that the imminent change in the proliferation status is forecasted by a higher Dm cdc2 requirement during the terminal mitosis. A further analysis of cell cycle regulators in Drosophila is expected, therefore, to reveal regulatory mechanisms specifically involved in the developmental control of cell proliferation in multicellular organisms.

We would like to thank C. Crommiller and T. Cline for providing genomic lambda clones, A. Preiss and W. Gehring, for providing Drosophila stocks, and H. Vässin and A. Preiss for communicating results prior to publication. Fly food was provided by C. Nüsslein-Volhard. M. Mullins and the members of the laboratory improved the manuscript. The work described in this paper was started in the laboratory of P.H. O’Farrell (UCSF) and was assisted by N. Yakubovich and supported by the NIH grant PO1 HL43821. Later work was assisted by E.M. Iligen and M. Langegger. Work in the laboratory of T.A.G. was supported by grants from the National Cancer Institute No. 2153 and from the National Centre of Excellence - Insect Biotechnology.

(Accepted 8 October 1992)