Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos

R. Stuart Carsience, Mary Ellen Clark, Ann M. Verrinder Gibbins and Robert J. Etches*

Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

*Author for correspondence

SUMMARY

Stage-X blastoderms, within intact eggs from White Leghorn hens, were exposed to 500-700 rads of γ radiation from a 60Co source prior to injection, into the subgerminal cavity, of approximately 100 or 200-400 dispersed cells from stage-X blastoderms isolated from eggs laid by Barred Plymouth Rock hens. Embryos developing past day 14 of incubation and hatched chicks were assessed for donor and recipient cell contribution to the melanocyte population through examination of black and yellow down pigmentation, respectively (Barred Plymouth Rocks have a recessive allele at the I locus while the White Leghorns have a dominant allele at the I locus). Of the 809 embryos injected with approximately 100 cells, 192 developed past day 14 and black pigmentation, indicating somatic chimerism, was observed on 118 of the 192 (58%) embryos and chicks. Of the 296 embryos injected with 200-400 donor cells, 86 developed past day 14 of incubation. Somatic chimerism was observed on 55 of the 86 (64%) embryos and chicks. To test for germline chimerism, birds surviving to maturity were mated to Barred Plymouth Rocks. Five somatically chimeric females were produced when approximately 100 cells were injected, and one was a germline chimera. Six somatic female chimeras were produced following the injection of 200-400 cells, three of which proved to be germline chimeras by the presence of Barred Rock chicks among their offspring. Two of the nine males produced by injecting approximately 100 cells were germline chimeras. Five of 6 somatic male chimeras, produced by injection of 200-400 cells, have sired black chicks; furthermore, one of the roosters produced by the injection of 200-400 cells has sired only donor-derived chicks. These data indicate that irradiation of the recipient embryo, prior to injection of the donor cells, consistently yields somatic and germline chimeric chickens. The ability to insert donor cells into the germline provides a powerful new tool that will facilitate molecular and cellular manipulation of the developing chick embryo.

Key words: germline chimera, chicken, embryo

INTRODUCTION

Eggs and spermatozoa are derived from a specialized lineage of cells that is separated at an early stage of embryonic development from cells that form somatic tissues (Nieuwkoop and Satasurya, 1979). In the chicken, fertilization occurs within 1 hour after ovulation and embryonic development is initiated 3 hours later as the male and female pronuclei fuse (Perry, 1987). The first cleavage furrow develops within 2 hours as the ovum enters the shell gland. The shell is deposited during the next 18-20 hours and, when the egg is laid, the embryo is composed of 40 000-80 000 morphologically undifferentiated cells designated as stage-X by Eyal-Giladi and Kochav (1976). The precise timing of differentiation of the germline during embryonic development has yet to be established but it is thought to occur at approximately stage-X (Ginsburg and Eyal-Giladi, 1987). Access to the population of cells in the newly laid, but unincubated egg, that differentiates into the lineage giving rise to the gametes of the adult chicken, would provide a powerful tool to probe the complex interactions that regulate sexual differentiation. In addition, cells in the germline lineage are attractive candidates for genetic modification because manipulation of their DNA, which could include specific gene targeting, would ensure transmission of the genetic alteration to the next generation. Although we have previously demonstrated that germline chimeras can occasionally be produced by injecting dispersed blastodermal cells from stage-X embryos into recipients at the same stage of development (Petitte et al., 1990, 1993), manipulations of the cells in the germline have been thwarted because techniques to direct the developmental destiny of isolated chicken blastodermal cells into functional gametes in chimeric chickens have been unavailable. By combining isolated blastodermal cells that give rise to functional gametes in the adult chicken with recipient embryos whose development has been compromised by exposure to γ irradiation, we have now developed a proce-
MATERIALS AND METHODS

Donor embryos were obtained from inter se matings of Barred Plymouth Rocks that are homozygous recessive at the I locus. Recipient embryos were obtained from inter se matings of White Leghorns that are homozygous dominant at the I locus. Donor cells were obtained by collecting stage-X blastoderm from freshly laid, unincubated eggs using filter paper rings (Petitte et al., 1990). The area pellucida from each embryo was dissected while submerged in Dulbecco’s phosphate-buffered saline (PBS) containing 5.6 mM glucose (PBS-G; Gibco BRL, Burlington, Ontario). Isolated area pellucida were transferred into fresh PBS-G, rinsed once in calcium- and magnesium-free PBS containing 2% (v/v) chick serum (2% CS-PBS-CMF) and dissociated with 0.25% trypsin (Sigma Chemical Company, St. Louis, Missouri) in 2% CS-PBS-CMF containing 0.04% (w/v) EDTA at 4°C. Dissociation of the cells was halted by suspending the cells in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% (v/v) Fetal Bovine Serum (DMEM-FBS) prior to injection into recipients.

Recipients were prepared by exposing freshly laid, unincubated eggs to approximately 500-700 rads of γ irradiation from a 60Co source. The embryo was accessed subsequently through a window cut into the long axis of the egg at its widest sector. The shell was removed to expose an 8 mm × 8 mm area of the shell membrane and then a 4 mm × 4 mm window was cut into the membrane to expose the embryo. Approximately 100 or 200-400 cells in 2-5 µl of DMEM-FBS were injected into the subgerminal cavity using a finely drawn micropipet. The window was closed by aligning a piece of freshly isolated shell membrane to overlap the exposed shell membrane of the recipient egg without contacting the shell. The membranes were allowed to adhere by exposure to air and a second piece of membrane was placed over the hole in the shell. When the outer covering of shell membrane was dry, it was glued to the shell with cement for plastic models and, after approximately 1 hour, was covered with Opsite™ surgical membrane (Smith & Nephew, Montreal). The eggs were placed into a conventional forced air incubator maintained at 37.5°C and 50% relative humidity for 48, 72 and 96 hours or allowed to complete development and hatch. Development of irradiated embryos was compared to development of embryos that were not irradiated but incubated for the same length of time. An estimate of embryonic development in hours of incubation under standard incubation conditions and according to the classification of Hamburger and Hamilton (1951) was assigned to irradiated and non-irradiated embryos that yields germine chimeras consistently and repeatably. The predictable incorporation of donor cells into the germine of chimera makes these birds ideal intermediates through which genetic alterations in dispersed blastodermal cells made in vitro might be transferred to the germine in vivo.

Fig. 1. The formation and analysis of chimeras. Donor embryos were obtained from inter se matings of Barred Plymouth Rocks that are homozygous recessive at the I locus. Recipient embryos were obtained from inter se matings of White Leghorns that are homozygous dominant at the I locus. Donor cells were obtained by isolating the area pellucida from stage-X blastoderm collected from freshly laid, unincubated eggs. These area pellucidae were dispersed into a single cell suspension prior to injection into recipients. Recipients were prepared by exposing freshly laid, unincubated eggs to 490-680 rads of γ irradiation from a 60Co source. The embryo was accessed subsequently through a window cut into the long axis of the egg at its widest sector. Approximately 100 or 200-400 cells were injected into the subgerminal cavity of the recipient. The window in the egg was sealed and the eggs were incubated until hatch. Somatic chimeras were identified at hatch by the presence of black down. At sexual maturity, they were mated to Barred Plymouth Rocks and the distribution of black and yellow offspring was recorded to assess the contribution of the donor and recipient lineages to the germine, respectively.
embryos. Mortality and hatching rates were also compared between irradiated and non-irradiated embryos.

RESULTS

The development of embryos exposed to 552-898 rads was delayed relative to the development of embryos not exposed to irradiation and the extent of the delay was proportional to the exposure to γ radiation (Fig. 2A-D). This delay in development was maintained throughout incubation and irradiated embryos emerged from the shell approximately one day later than non-irradiated embryos (data not shown). Of the embryos exposed to 552, 691 and 898 rads, 28.9%, 36.1% and 59.1%, respectively, did not hatch. By comparison 13% of the embryos that were not exposed to irradiation failed to hatch (Fig. 2E). These observations indicated that exposure of embryos to approximately 500-700 rads of γ irradiation prior to incubation would compromise development without reducing hatchability to impracticable levels. Chicks that developed from White Leghorn embryos exposed to 500 rads, but otherwise not manipulated, grew normally, possessed unimpaired fertility and produced only yellow chicks typical of the White Leghorn breed (data not shown).

Of 809 White Leghorn embryos exposed to 500-700 rads of γ irradiation and injected with approximately 100 donor cells, 192 developed past day 14 of incubation or hatched. Among the 192 embryos and chicks, somatic chimerism was evident on 118 (58%); on average 48% of the feather follicles of these somatic chimeras had been colonized by donor-derived melanocytes. In 2 hatched chicks, 75-90% of

Fig. 2. Development of chick embryos, exposed to (A) 0, (B) 552, (C) 691 and (D) 898 rads from a 60Co source, after 48 hours in an incubator at 37.5°C and 50% relative humidity. The embryo in A has a well developed vascular system, the head has undergone flexion and torsion and at least 12 pairs of somites are visible. In B, differentiation of the vascular system is delayed, the embryo has not undergone flexion and torsion and 11 pairs of somites can be distinguished. In C, the heart has not developed and only 7 pairs of somites are visible. In D, the anterior intestinal portal is less well developed than in C. Embryonic mortality was increased from 13% without exposure to irradiation to 59.1% when the embryos were exposed to 898 rads (E). The dose of irradiation that was chosen (500-700 rads) induced a moderate delay in development (approximately 24 hours) without increasing embryonic mortality to impracticable levels.
cells from the central disk area of the stage-X embryo into Barred Plymouth Rock offspring when mated to Barred Plymouth non-irradiated eggs, only 33 (32%) exhibited black pigmentation in their down and, on average, only 29% of the feather follicles in these chimeras were colonized by the donor cell line. Chicks in which more than 75% of the melanocytes were donor-derived were not observed using non-compromised recipients.

The frequency of germline chimerism following injection of approximately 100 donor cells was significantly \((P<0.001)\) increased from 2/106 to 3/24 by using an irradiated rather than a non-irradiated recipient. Whereas increasing the number of cells injected had no effect on the frequency of chimerism when non-irradiated recipients were used (Petitte et al., 1993), the frequency of germline chimerism was significantly \((P<0.01)\) increased to 8/14 when 200-400 cells were injected into irradiated recipients. Using the ratio of germline to somatic chimeras as the basis for comparison, the frequency of germline chimerism increased significantly \((P<0.01)\) from 2/21 when non-irradiated recipients were used, to 3/14 when approximately 100 cells were injected into recipients. Injecting 200-400 cells into irradiated recipients significantly \((P<0.01)\) increased the ratio even further to 8/12.

When White Leghorn embryos were injected with approximately 100 cells from Barred Rock donors, 9 somatically chimeric males and 5 somatically chimeric females were produced and mated to Barred Plymouth Rocks. Two of the males have sired black chicks (Table 1) providing evidence that derivatives of the donor cells colonized the germline in these chimeras. Among the 5 somatically chimeric females one has produced a Barred Plymouth Rock chick (Table 1). Four putatively chimeric males and 6 putatively chimeric hens have produced only yellow chicks (Table 1) indicating that the donor-derived cells did not enter the germline in any of these birds.

Six somatically chimeric males, 6 somatically chimeric females and 2 putatively chimeric females produced by injecting 200-400 cells into irradiated embryos have been mated to Barred Plymouth Rocks (Table 1). Donor-derived cells were incorporated into the testes of 5 of the 6 male somatic chimeras (Table 1) and, in one case (042-195 in Fig. 3 and Table 1), all of the spermatozoa that sired chicks were descendants of donor cells. Three of the 6 somatically chimeric females contained donor-derived oocytes in their ovary (Table 1) whereas neither of the putatively chimeric females produced black offspring to date.

DISCUSSION

We have previously demonstrated that it is possible to make somatic and germline chimeras by injecting dispersed cells from a stage-X chick embryo into non-irradiated recipient embryos at the same stage of development (Petitte et al., 1990) and interspecific chimeras have been reported by Naito et al. (1991) and Watanabe et al. (1992). Subsequent experience with non-compromised recipients, however, has revealed that somatic chimeras are produced infrequently, donor-derived cells have colonized the gonads in only 2 of 106 chimeras and the transmission rate of donor-derived gametes from germline chimeras was less than 0.4% (Petitte et al., 1993).

By contrast, extensive colonization of the recipient by donor cells was promoted by exposing the recipient White Leghorn eggs to 500-700 rads from a \(^{60}\)Co source within one hour after oviposition. Whereas only 32% of the embryos and chicks produced by the injection of approximately 100 cells into a non-irradiated recipient exhibited...
Germline chimeric chickens

Black pigmentation in their down, 58% and 64% of the chimeras injected with approximately 100 or 200-400 cells, respectively, into irradiated recipients exhibited donor-derived down pigmentation. The proportion of feather follicles colonized by donor-derived melanocytes was increased from 29% when about 100 cells were injected into non-irradiated recipients to 48% and 66% when approximately 100 cells and 200-400 cells, respectively, were injected into irradiated recipients.

The frequency of somatic and germline chimeras was unaffected by the number of cells that were injected into non-irradiated recipients (Petitte et al., 1992). By contrast, both the frequency and extent of incorporation of donor cells into somatic and germline lineages was increased when the number of cells injected into irradiated recipients was increased (Table 1). From these data we have concluded that irradiation compromises the ability of cells within the recipient embryo to divide and that the ratio of donor/recipient cells is increased as embryonic development proceeds during the first few hours or days of development. We assume that the relative rate of replication of cells in the chimera can favour colonization of any tissue

Table 1. The number of donor- and recipient-derived offspring from matings to Barred Plymouth Rocks of somatic and putative chimeras made using compromised White Leghorn recipients

<table>
<thead>
<tr>
<th>Description of the chimera</th>
<th>Approximate number of donor cells injected</th>
<th>Percentage of black pigmentation</th>
<th>Number of donor-derived offspring</th>
<th>Number of recipient-derived offspring</th>
<th>Percentage of donor-derived offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic ♀ 1585-1586</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>984</td>
<td>0</td>
</tr>
<tr>
<td>1583-1584</td>
<td>100</td>
<td>45</td>
<td>0</td>
<td>946</td>
<td>0</td>
</tr>
<tr>
<td>119-1592</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td>830</td>
<td>0</td>
</tr>
<tr>
<td>101-102</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td>833</td>
<td>0</td>
</tr>
<tr>
<td>103-104</td>
<td>100</td>
<td>85</td>
<td>0</td>
<td>616</td>
<td>0</td>
</tr>
<tr>
<td>114-116</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>212</td>
<td>0</td>
</tr>
<tr>
<td>142-143</td>
<td>100</td>
<td>35</td>
<td>0</td>
<td>752</td>
<td>0</td>
</tr>
<tr>
<td>1587-120</td>
<td>100</td>
<td>5</td>
<td>41</td>
<td>2147</td>
<td>1.9</td>
</tr>
<tr>
<td>105-106</td>
<td>100</td>
<td>45</td>
<td>104</td>
<td>1929</td>
<td>5.1</td>
</tr>
<tr>
<td>Somatic ♀ 1579-1580</td>
<td>100</td>
<td>45</td>
<td>0</td>
<td>199</td>
<td>0</td>
</tr>
<tr>
<td>110-111</td>
<td>100</td>
<td>25</td>
<td>0</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>125-126</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>134-139</td>
<td>100</td>
<td>85</td>
<td>1</td>
<td>73</td>
<td>1.3</td>
</tr>
<tr>
<td>163-165</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Putative ♂ 1595-1596</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>809</td>
<td>0</td>
</tr>
<tr>
<td>1597-1598</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>688</td>
<td>0</td>
</tr>
<tr>
<td>121-122</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>607</td>
<td>0</td>
</tr>
<tr>
<td>167-168</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>612</td>
<td>0</td>
</tr>
<tr>
<td>Putative ♀ 1589-1590</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>207</td>
<td>0</td>
</tr>
<tr>
<td>107-108</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>171</td>
<td>0</td>
</tr>
<tr>
<td>076-077</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>172</td>
<td>0</td>
</tr>
<tr>
<td>112-173</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>203-204</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>201-174</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>Somatic ♀ 065-066</td>
<td>275</td>
<td>20</td>
<td>398</td>
<td>539</td>
<td>42.5</td>
</tr>
<tr>
<td>075-078</td>
<td>400</td>
<td>30</td>
<td>377</td>
<td>708</td>
<td>34.7</td>
</tr>
<tr>
<td>048-049</td>
<td>275</td>
<td>99</td>
<td>9</td>
<td>271</td>
<td>3.2</td>
</tr>
<tr>
<td>042-195</td>
<td>300</td>
<td>99</td>
<td>869</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>068-198</td>
<td>275</td>
<td>45</td>
<td>62</td>
<td>1001</td>
<td>5.8</td>
</tr>
<tr>
<td>082-083</td>
<td>250</td>
<td>20</td>
<td>0</td>
<td>449</td>
<td>0</td>
</tr>
<tr>
<td>Somatic ♀ 050-055</td>
<td>275</td>
<td>99</td>
<td>1</td>
<td>43</td>
<td>2.3</td>
</tr>
<tr>
<td>021-022</td>
<td>350</td>
<td>85</td>
<td>3</td>
<td>54</td>
<td>5.3</td>
</tr>
<tr>
<td>028-029</td>
<td>300</td>
<td>3</td>
<td>15</td>
<td>45</td>
<td>25.0</td>
</tr>
<tr>
<td>046-047</td>
<td>300</td>
<td>60</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>032-033</td>
<td>300</td>
<td>95</td>
<td>0</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>034-035</td>
<td>300</td>
<td>35</td>
<td>0</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Putative ♀ 063-064</td>
<td>275</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>175-176</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>
by the more rapidly dividing donor cells although we have
direct evidence to support this assumption only for
melanocytes and germ cells.

From the data presented in Table 1, it is evident that
germline chimeric chickens can be made frequently and
reliably using a recipient that has been compromised by
exposure to irradiation. The production of chimeras from
compromised recipients significantly increased the number
of germline chimeras when an irradiated rather than a non-
irradiated recipient was used, and increasing the number of
donor cells from approximately 100 to 200-400 significa-
cantly improved the frequency of germline chimeras to
more than 50%. In addition to improving the number of
germline chimeras, the use of irradiated recipients also
increased the frequency of transmission of gametes of
donor-cell origin from the gonads of the chimeras. The 2
germline chimeras made using non-irradiated recipients
yielded donor-derived offspring at a rate of less than 0.4%,
whereas the minimum rate of transmission using compro-
missed recipients was 1.3%, the median rate was 5.8% and
the maximum rate was 100%.

Our results to date indicate that male chimeras are more
likely to accommodate donor cells in the germline than
female chimeras but this sex difference is not yet under-
stood. In a previous study, male chimeras were also
observed more frequently than females and female cells
were usually excluded from adult male chimeras (Shaw et
al., 1992). Further analysis of male germline chimeras made
with female donor cells and compromised recipients are
required to resolve this enigma.

All of the germline chimeras listed in Table 1 are also
somatic chimeras but there is little correlation between the
extent of feather pigmentation in somatic chimeras and the
likelihood that donor cells will have colonized the germline.
For example, hen 028-029 possessed only a small patch of
black feathers on her neck, but approximately 1 in 5 oocytes
was donor-derived (Table 1). The melanocyte population of
males 048-049 and 042-195 was almost exclusively donor-
derived (Table 1 and Fig. 3) but the proportion of func-
tional, donor-derived spermatozoa in their semen was
approximately 3% and 100%, respectively (Table 1). These
data support the interpretation that entry of cells into the
germline and into the ectoderm, from which the
melanocytes are derived, occurs separately and independ-
ently in chimeras made with compromised recipients. In
addition, the rates of proliferation of donor and recipient
cells in the ectoderm and the germline may not be equal.

By our definition, putative chimeras show no evidence of
donor-derived feather pigmentation and to date, no puta-
tive chimeras produced in the currently reported experiments
has proved to be germline. The lack of success in produc-
ing extensive somatic or germline chimerism in every
embryo may be due to donor cells being injected into an
inappropriate location in the irradiated egg and we are
addressing this issue. Nevertheless, the ease with which
large numbers of fertile eggs can be irradiated and injected
with donor cells, and with which somatic chimeras can be
identified, make the production of germline chimeric chick-
enas a routine and practicable procedure.

The simplicity and practicability of obtaining germline
chimeras using compromised recipients creates new oppor-
tunities for manipulation of the avian genome. Blastoder-
mal cells can be frozen and retain their ability to form
chimeras after they are thawed (Petitte et al., 1993; Naito
et al., 1992); therefore, there is a unique opportunity to cryo-
preserve the genome of chickens using these readily avail-
able cells. Blastodermal cells can be transfected and have
been shown previously to express their modified genotype
in the non-compromised recipient (Brazolot et al., 1991).
More recently, we have shown extensive incorporation of
transgenic cells in compromised recipients (Fraser, Car-
sience, Clark, Etches and Verrinder Gibbins, unpublished
results) indicating the possibility of using the compromised
recipient as a vehicle to move genetically modified blasto-
dermal cells from in vitro systems into the germline. We
have also shown that blastodermal cells retain their ability
to form germline chimeras when introduced into compro-
mised recipients after 48 hours in culture (Etches, Toner,
Clark, Vielkind and Verrinder Gibbins, unpublished results)
allowing time for selection of some types of genetically
modified donor cells. Genetically modified stocks can be
dispersed quickly and inexpensively since founder chimeras
can produce more than 1500 offspring in six months (e.g.,
1587-120 in Table 1). Taken together, these data indicate
that the compromised recipient has the potential to provide
experimental biologists with a powerful new tool that will
facilitate molecular and cellular manipulations of the de-
veloping chick embryo. To date, such manipulations have only
been possible using the mouse as the vertebrate model. The
application of these techniques to the chick embryo via
transgenic germline chimeras will allow the amalgamation
of classical information regarding development, gleaned
from anatomical studies of the chick embryo, with the
nascent understanding of the molecular control of cellular
function during both embryonic and adult life.

This work was supported by grants from the Natural Sciences
and Engineering Research Council of Canada, the Ontario Min-
istry of Agriculture and Food, and the Ontario Egg Producers’
Marketing Board. We thank all members of our laboratory for dis-
cussions and suggestions while preparing this manuscript. Appre-
ciation is extended to G. Hurnik, L. Kmiecik and B. Rodgers for
assistance at the Arkell Poultry Research Centre.

REFERENCES

Brazolot, C. L., Petitte, J. N., Etches, R. J. and Verrinder Gibbins, A. M.
(1991). Efficient transfection of chicken cells by lipofection, and
introduction of transfected blastodermal cells into the embryo. Mol.
Reprod. Dev. 30, 304-312.

formation: a complementary normal table and a new look at the first
stages of the development of the chick I. General morphology. Dev.
Biol. 49, 321-337.

young chick blastoderm originate from the central zone of the area
pellucida irrespective of the embryo-forming process. Development

Hamburger, V. and Hamilton, H. L. (1951). A series of normal stages in
the development of the chick embryo. J. Morph. 88, 49-92.

Naito, M., Watanabe, K., Kinutani, K., Nirasawa, K. and Oishi, T.
Br. Poult. Sci. 32, 79-86.

(Accepted 19 October 1992)