Genetic analysis of laminin A reveals diverse functions during morphogenesis in *Drosophila*

Claire Henchcliffe, Luis García-Alonso, Joyce Tang and Corey S. Goodman*

Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 519 Life Science Addition, University of California, Berkeley, Berkeley, CA 94720 USA

*Author for correspondence

SUMMARY

In order to dissect the functions of laminin A in vivo, we have undertaken a molecular and genetic characterization of the laminin A subunit (*lamA*) gene in *Drosophila*. Sequence analysis predicts a multidomain structure similar to mammalian homologs. We generated a series of complete and partial loss-of-function mutant alleles of the *lamA* gene; complete loss-of-function mutations lead to late embryonic lethality. Certain combinations of partial loss-of-function *lamA* alleles give rise to escaper adults, which have rough eyes associated with changes in cell fate and pattern, misshapen legs and defects in wing structure. These phenotypes suggest that laminin A has diverse functions during morphogenesis in *Drosophila*.

Key words: laminin A, *Drosophila* genetics, cell fate, limb structure, wing structure

INTRODUCTION

Laminin is a large glycoprotein complex, which forms a major component of basement membranes in a wide variety of organisms. Although variant forms have been described, the most studied form of laminin in vertebrates exists as a heterotrimer of subunits A (400\times10^3 M_r), B1 (220\times10^3 M_r) and B2 (200\times10^3 M_r). Tissue culture and biochemical studies using purified laminin have made considerable progress in dissecting its different activities. Laminin has complex biochemical properties, binding both to cell surfaces through multiple receptors (including six identified integrins) and to other components of the extracellular matrix, such as collagen type IV, nidogen/entactin and heparan sulfate proteoglycan. Laminin affects cell behavior in vitro in many ways, including, for example, morphology, differentiation, mitosis and migration (reviewed by Martin and Timpl, 1987; Beck et al., 1990) and promotes substratum adhesion for many cell types, including epithelial, myoblast and Schwann cells (Kleinman et al., 1981, 1985; Terranova et al., 1980).

Studies using proteolytic fragments of laminin and synthetic peptides have allowed mapping of function domains. Within the laminin A chain, an activity located in fragment E8 (comprising the end of the long arm including the G domain) is necessary for development of polarity in mouse embryonic mesenchymal cells during formation of a polarized, differentiated kidney epithelium (Klein et al., 1988). This same fragment promotes neurite outgrowth in tissue culture (Edgar et al., 1984) and the peptide IKVAV within E8 promotes cell attachment and neurite outgrowth (Tashiro et al., 1989).

Many of the in vitro activities of laminin vary according to the cell type studied and the conditions of the experiment. For example, although laminin promotes substratum adhesion for many cell types, it appears to interfere with substratum adhesion for neurons of the embryonic olfactory epithelium (Calof and Lander, 1991; also see Chiquet-Ehrismann, 1991). Attachment of cultured neural retinal cells to a laminin substratum may be dependent on the conformation or distribution of binding sites of laminin (Adler et al., 1985). Although laminin promotes cell migration in many experiments, at high concentration it inhibits migration of avian neural crest cells (Perris et al., 1989).

Given this diverse and at times opposing array of activities of laminin in tissue culture, it is not surprising that laminin has been predicted to have many different functions in the developing organism. As a step towards unravelling these roles in vivo and dissecting its structure and function, we have used a combined genetic and molecular genetic approach in *Drosophila*. Laminin is one of a number of cell and substratum adhesion molecules that are well conserved between vertebrates and arthropods (reviewed by Hortsch and Goodman, 1991). Just as in vertebrates, so too in *Drosophila*, the laminin complex consists of three subunits, A (400\times10^3 M_r), B1 (220\times10^3 M_r) and B2 (180\times10^3 M_r) (Fessler et al., 1987; Montell and Goodman, 1988). The genes encoding all three subunits have been cloned (Montell and Goodman, 1988) and the complete open reading frames for the B1 and B2 subunits have been sequenced.
(Montell and Goodman, 1988, 1989; Chi and Hui, 1989). The B1 and B2 subunits show similarity to their vertebrate homologs in both the arrangement and sequence of their multidomain structures. Furthermore, in tissue culture, preparations of Drosophila laminin are able to promote attachment and spreading of cells cultured from late Drosophila gastrulae (Volk et al., 1990). Although the receptors for laminin in Drosophila are not yet known, a number of integrins have been cloned in this organism (Bogaert et al., 1987; Leptin et al., 1987, 1989). Thus, laminin provides the opportunity to begin to use a genetic approach to understand the roles of individual components of the extracellular matrix during development, and to elucidate further their interactions with cell receptors in a pathway in which extrinsic cues are translated into changes in such events as signal transduction, cytoskeletal reorganization and cell behavior.

As in vertebrates, Drosophila laminin has been localized to basement membranes such as those covering the inside of the epidermis, developing muscles, and internal glands and organs of the embryo (Fessler et al., 1987; Montell and Goodman, 1989; Kusche-Gullberg et al., 1992). Laminin is also an abundant component of the basement membrane surrounding the larval imaginal discs (Fessler et al., 1987). These are unique to holometabolous insects and arise during embryonic development. At the end of larval development, the discs consist of an epithelial monolayer surrounded by a basement membrane. During metamorphosis, adult structures develop from these discs by complex morphogenetic changes and cell differentiation. The final cuticular adult structures are easily scored and in particular cases such as the compound eye, many steps in the differentiation of cell fate and pattern have been well described. Thus, the derivatives of imaginal discs, and in particular the compound eye, are ideal systems to begin a genetic analysis of the role of laminin during development.

In this paper, we present the open reading frame from the Drosophila laminin A subunit (lamA), which predicts a multidomain protein similar to vertebrate laminin A. We have generated mutations in the lamA gene, some of which correspond to a complete loss of function leading to lethality at a late embryonic stage and others of which are hypomorphic alleles which in certain combinations give rise to escaper adults with reduced viability and defects in a number of tissues. The pleiotropy of these defects indicates that laminin A has diverse functions during morphogenesis in Drosophila.

MATERIALS AND METHODS

Isolation of cDNA and genomic clones

A short cDNA clone corresponding to part of the laminin A subunit of Drosophila was previously isolated by screening the Crews 10-13 hour Drosophila embryo CNS λgt11 cDNA library with anti-laminin antisera (Montell and Goodman, 1988). The corresponding gene was localized by in situ hybridization to polytene chromosomes to 65A10-11. This cDNA was used to isolate a 3.8 kb cDNA clone and genomic clones of 13.5 kb and 13.9 kb by screening the Zinn 9-12 hour Drosophila cDNA library (Zinn et al., 1988) and a Drosophila genomic library (Maniatis et al., 1978). Fragments of these genomic clones were then used to isolate overlapping cDNA clones. A genomic clone encompassing the 5′ end of the laminin A gene was isolated by screening the genomic library with a DNA fragment isolated from the P element insert line l(3)neo11 by following the plasmid rescue method (Hanahan et al., 1980). This was in turn used to screen a cDNA library resulting in a 3 kb cDNA clone being obtained which covered the 5′ end of the translated sequence of the laminin A subunit. Thus we were able to obtain overlapping cDNA clones covering the entire translated region of the laminin A subunit, as determined by sequencing.

Sequencing of cDNA clones

Subclones of cDNA clones were sonicated and cloned into M13 following standard procedures (Maniatis et al., 1982). Single-stranded templates obtained from the M13 transfectants were sequenced according to the dideoxy method (Sanger et al., 1977), using Sequenase (US Biochemical Corp.). Five stretches of sequence information were obtained to fill gaps by sequencing single-strand templates with specific 20-mer oligonucleotides. The cDNAs were sequenced on both strands. Sequence data were assembled and analyzed using the Intelligenetics software package, and alignments to determine the level of identity between given sequences were performed with the FASTDB program.

Genetic methods and mutations

The P insertion line AS249 or l(3)Poe065A (formerly called l(3)neo11) was obtained from Allan Spradling. It contains a P element, pUChsneo, encoding neomycin resistance (Steller and Pirrotta, 1985) inserted at 65A10-11. A recessive lethal phenotype was separable from the P element insert by recombination and no phenotype found in this stock could be attributed to presence of the P element insertion. The transposon was mobilized by crossing to flies carrying a stable source of transposable activity (Robertson et al., 1988). From the progeny of each of 40 single F1 males, 30 single males were used to generate a total of 939 fertile lines. These were screened for: recessive lethal mutations and viable visible mutations. Loss of the P-element insert, which contains a gene conferring resistance to neomycin as a marker, was examined by testing for survival and development of eggs laid on yeast-glucose food containing neomycin (Genetecin, from GIBCO, at 1 mg/ml in yeast-glucose food). Of 939 total lines generated after P element mobilization, 71 recessive lethal mutations have been obtained, of which 20 (neomycin sensitive) fall into a single complementation group. Members of this complementation group fail to complement a deficiency, Df(3L)Wn-2, which deletes the region between 64E and 65C-D (Budnik and White, 1987). Southern blot analysis of the genomic DNA of these lines showed that all had rearrangements in the sequences upstream and/or including the 5′ part of the laminin A gene. Some of the restriction patterns were identical, indicating that 11 out of the 20 of these were independent alleles. Identical alleles can arise by excision of the P element during pre-meiotic stages of sperm development. One of these excision alleles, lamA7.5, was used to isolate all further mutations. Canton S flies were mutagenized with 15 mM EMS and crossed to TM1/TM2 females. 2400 F1 males were successfully crossed to lamA7.5/TM3 females and 9 alleles were recovered, all of which were lethal in combination with lamA7.5 and also Df(3L)Wn-2.

For analysis of interactions between lamA with the β subunit of the integrin encoded by the lethal myospheroid gene, we used the viable myS (= ny42) allele of l(1)mys. For analysis of interactions with the α subunit of integrin encoded by the inflated gene, we used the viable if2 allele.

Characterization of mutant phenotypes

Mutant adults and pupae from crosses of different combinations of alleles were identified by absence of the dominant markers Sb and...
Production of lamA clones
Mitotic recombination clones were induced using the Minute technique (Morata and Ripoll, 1975). 1st and 2nd instar larvae of the genotypic: w^118; mwh lamA^3^/M;3^/67C P[w^+]/B122, were irradiated with X rays to a total dose of 1000 rads. The mutation M;3^/67C maps at 67 C1-10 and the insertion P[w^+]/B122 at 68 C1-4 on polytene chromosomes. Clones of cells homozygous for lamA^3^ were recognized by the presence of the w marker in the eye and mwh in other cuticular regions. From several dozen clones induced in the eye, 22 were sectioned and stained with toluidine blue for study. We also analyzed seven large Minute^+^ lamA^7^- clones in the wing that were induced in 1st instar larvae (32-48 hours AEL); these seven clones were found in 263 wings examined.

RESULTS
Cloning and characterization of the laminin A subunit in Drosophila
A short cDNA corresponding to part of the laminin A subunit was previously isolated (Montell and Goodman, 1988) and was used in this study as the starting point to isolate cDNA clones covering the entire lamA gene. We have determined the sequence of the entire open reading frame and part of the flanking non-translated region from a series of overlapping cDNA clones isolated from cDNA libraries constructed from 9-12 hours Drosophila embryos (Zinn et al., 1988). The deduced protein sequence is shown in Fig. 1. The putative translational start site is followed by a stretch of hydrophobic amino acid residues which together with flanking sequences code for an apparent signal sequence (von Heijne, 1986), likely to be cleaved from the mature protein. Following the signal sequence, there is more than one potential site for cleavage by peptidases; as a result we have numbered the amino acids starting with the initiation methionine. The total open reading frame is 3712 amino acids; this is 628 amino acids longer than the mouse laminin A, LRE is present in mouse which as a RGD sequence is present: this is a cell recognition sequence which binds to integrin receptors (Ruoslahti and Pierschbacher, 1987). This sequence is not present at any position in the Drosophila sequence. Thus Drosophila laminin has no RGD sequence in any known chain and must adhere to cell surfaces through other active sites. A candidate for such a site is the peptide IKVAV (amino acids 2100-2104 at the C-terminal end of domain I/II) in mouse which as a peptide interferes with cell attachment and spreading, migration, and neurite outgrowth in tissue culture (Tashiro et al., 1989). The sequence LRE has been defined as a component of an attachment site for motoneurons to vertebrate S-laminin, a B1 laminin-like molecule (Hunter et al., 1989). In S-laminin, the LRE motif is present in domain I, in mouse laminin A, it is found in domains I/II and, in human laminin A, the sequence is found twice in domains I/II and once in the G domain. In Drosophila laminin A, LRE is found in domain IVa (position 1627). Since the position is not conserved it is unclear whether this represents an active site in Drosophila laminin A.

Generation of mutations in the laminin A gene
The lamA gene maps cytologically to 65A10-11 on the left arm of the third chromosome (Montell and Goodman, 1988). There is a P element insert line, AS249, with a
pUCHneo P element conferring neomycin resistance (Steller and Pirotta, 1985) inserted at 65A10-11. Southern blot analysis was used to show that this P element is inserted 2.5 kb upstream of the translational start site of the laminin A subunit (Fig. 3). The presence of the P element in this chromosome does not alter laminin A expression.

Fig. 1. Open reading frame encoded by the laminin A gene. Overlapping cDNA clones were isolated from the Zinn λgt11 library constructed from 9-12 hour Drosophila embryos (Zinn et al., 1988) and sequenced, giving a 11.136 bp open reading frame, which encodes the 3712 amino acids shown here. The complete nucleotide sequence can be found in the GenBank database. The predicted initiation codon is 48 nt from the 5' end of our analyzed nucleotide sequence. Preceding this codon is the nucleotide sequence CACA, which is in agreement with the consensus sequence (C/A A A/A/C) at translation initiation sites in Drosophila genes (Cavener, 1987). At the end of the open reading frame are two stop codons and we find multiple potential sequences in agreement with the consensus sequence for poly(A) addition (Proudfoot and Brownlee, 1976) within the 347 nt of 3' non-translated sequence that follow (data not shown). The putative signal sequence is double-underlined. The first amino acid for each domain (VI, V, IVb, IVa, IIIb, IIIa, I/II and G) is delimited by vertical arrows and named in bold type. EGF-like repeats within domains V, IIIb and IIIa are similarly marked and named (eg V-1, V-2, etc.) in plain type. Potential sites for N-linked glycosylation are underlined. Five differences in nucleotide sequence, presumed to be polymorphic, were found between our complete sequence and the partial sequence published by Garrison et al. (1991). Four of these changes are silent (at nucleotides 5940, 6008, 9722 and 10906). One difference results in a substitution: amino acid number 1912, E (ours) to Q (theirs). While our paper was in review, Kusche-Gullberg et al. (1992) published the rest of the sequence. The N-terminal portion of their sequence differs from ours with four additional amino acid substitutions: a.a. 45, Q (ours) to P (theirs); a.a. 1032, R to L; a.a. 1407, A to R; and a.a. 1598, Q to H.
Genetic analysis of *Drosophila* laminin A throughout embryogenesis as determined by antibody staining. Moreover, we have observed no phenotype that can be attributed to the presence of this P element insert.

To generate mutations in the *lamA* gene, we mobilized the pUCHsneo element in the AS249 stock by genetically introducing a source of transposase. In such a cross, the majority of P element excision events are precise, but a small proportion of such excisions are imprecise, removing flanking genomic sequences and leading to small deletions ranging from several hundred to several thousand nucleotides. Thus, deletions spanning part or all of a neighboring gene can be isolated. Of 939 total lines generated after P element mobilization, 11 independent recessive lethal mutations have been obtained which fall into a single complementation group. These alleles fail to complement a deficiency, *Df(3L)Vn-2* (Budnik and White, 1987), which deletes the *lamA* gene. Southern blot analysis of the genomic DNA of each lethal allele was undertaken using fragments within a 6 kb EcoRI genomic fragment (comprising 370 bp translated sequence plus upstream flanking DNA, Fig. 3) as probes. All 11 alleles show rearrangements in genomic DNA upstream of the *lamA* gene.

One of the lines with the largest deletion, *lamA*9-32, has been mapped in more detail and shows that the deletion has one breakpoint 2.5 kb upstream of the translational start site and the second breakpoint between an EcoRI site at nt 370 and a PstI site at nt 806 (Fig. 3). This deletion therefore removes at least 370 bp of translated sequence at the N terminus of the protein. By probing northern blots of embryonic poly(A)+ RNA with probes within the 6 kb EcoRI restriction fragment, no transcription unit other than that for laminin A could be detected (data not shown), suggesting that the lethal phenotype is due to lack of laminin A function.

In order to isolate a range of different alleles at this locus, we undertook a screen for EMS-induced mutations in the *lamA* gene. From 2400 chromosomes screened in F2, we isolated nine new alleles, all of which were lethal in the initial screen in combination with one of the excision alleles, *lamA*7-5. These EMS-induced alleles also fail to complement the deficiency *Df(3L)Vn-2*. Embryos of all alleles were examined by immunohistochemical techniques, using antisera specific to laminin A to test for expression of this subunit in each mutant (data not shown). No laminin A protein could be detected above background in any allele obtained by P element excision. Of the nine EMS-induced alleles, five showed wild-type levels of laminin A expression and four had reduced levels. These data are summarized in Table 1 for the alleles used in phenotypic analysis.

Abnormal adult phenotype of *lamA* alleles

To examine the effect that altering or removing laminin A

Table 1. *lamA* mutant alleles used in phenotypic analysis

<table>
<thead>
<tr>
<th>Mutant abbreviation</th>
<th>Origin</th>
<th>Expression of laminin A protein‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamA9-32</td>
<td>P element excision*</td>
<td>Not detected</td>
</tr>
<tr>
<td>lamA36</td>
<td>P element excision*</td>
<td>Not detected</td>
</tr>
<tr>
<td>lamA16</td>
<td>EMS†</td>
<td>Wild-type</td>
</tr>
<tr>
<td>lamA56</td>
<td>EMS†</td>
<td>Wild-type</td>
</tr>
<tr>
<td>lamA25L</td>
<td>EMS†</td>
<td>Reduced</td>
</tr>
<tr>
<td>lamA25</td>
<td>EMS†</td>
<td>Reduced</td>
</tr>
</tbody>
</table>

*Isolated as imprecise excisions of AS249 with recessive lethal phenotype.
†Isolated as failing to complement *lamA* P element imprecise excision alleles.
‡As detected during embryogenesis of mutants with rat polyclonal antiserum specific to laminin A isolated from S2 cell conditioned medium (C. H., C. S. G., unpublished results).
Plasmid-derived sequences are labeled pUC8, containing a gene for ampicillin resistance (amp).

function has on the development of the fly, we examined progeny from crosses of almost all possible combinations of the lamA alleles obtained. All combinations of excision alleles with the deficiency Df(3L)Ivr-2 or each other produced embryos that developed until stage 17 of embryogenesis but failed to hatch (these embryos can, however, move within the egg case). At the light microscopic level, we have been unable to detect any dramatic morphological abnormality in these mutant embryos. This analysis involved the use of the following monoclonal antibodies, which recognize different subsets of PNS and CNS neurons: mAb BP102, BP104, 22C10 and 1D4. In addition, we examined muscle development in dissected preparations and the cuticle including the head, mouth parts and denticle bands. In summary, the CNS, PNS, motoneurons and muscles, and the head, mouth parts and denticle bands appear normal in these mutant embryos. We do not detect the presence of laminin A protein in these embryos using immunohistochemical methods (Table 1).

All heteroallelic combinations of EMS-induced alleles tested with other EMS-induced alleles or with excision alleles were lethal, except in the case of four alleles: lamA25, lamA81L, lamA160 and lamA216 which in the crosses shown in Table 2 resulted in a number of escaper adults. We have characterized the phenotypes of these adults with respect to frequencies of survival as compared to balancer carrying sibs. All combinations of lamA alleles giving rise to escaper adults do so at a frequency that differs between heteroallelic combinations (Table 2). The reduced viability measured for these mutants is due to death during several phases of development, varying between genotypes. For example, 20% of lamA160/lamA25 pupae compared to 80% of lamA25/lamA160 pupae fail to eclose. Of the escaper adults that eclose, many are lethargic and unable to jump or fly, and a large number die within one or two days after hatching.

Examination of the escaper lamA adults revealed the presence of morphological malformations of their eyes, legs and wings (Table 3) (described in more detail below). Defects have also been seen in other parts of the cuticle (the antennae, ocelli, post-vertical and ocellar bristles) at a lower penetrance. A striking feature of the phenotypes of the adult escapers in these different combinations of lamA alleles is their variability: progeny from any one cross range from wild type to strong phenotype. Moreover, within a single structure, for example the compound eye of a particular individual, variability is seen between different regions of that eye. This variability is not surprising, since these escapers represent hypomorphic conditions of the gene. Moreover, presumably, those few individuals that survive to adulthood represent the least severe phenotypes within a given genotype.

Table 2. Dependence of lamA mutant adult escapers on the specific allelic combinations

<table>
<thead>
<tr>
<th>lamA mutant alleles</th>
<th>lamA25</th>
<th>lamA216</th>
<th>lamA160</th>
<th>lamA81L</th>
<th>lamA25</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamA25</td>
<td>0</td>
<td>32</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lamA216</td>
<td>–</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lamA160</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>lamA81L</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lamA25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>

*Expected number calculated from number of sibling progeny. Results are based on 1000-2000 adults scored from crosses at 25°C.
tion in different ways or to different extents. This agrees with results of immunohistochemical localization of laminin A in embryos of the EMS-induced alleles (Table 1), which demonstrates that, although each expresses laminin A protein in a spatial and temporal patterns that are similar to wild type, lamA160 and lamA210 have apparently wild-type levels and lamA25 and lamA61 have reduced levels.

Laminin A functions during development of the compound eye

The compound eye of *Drosophila* develops from the eye imaginal disc and is made up of a precise array of several hundred ommatidia, each comprising a stereotyped array of photoreceptor cells, pigment cells, cone cells and mechanosensory bristles (reviewed by Ready et al., 1976; Tomlinson, 1988; Cagan and Ready, 1989). The scanning electron micrograph in Fig. 4A shows the surface of the wild-type eye with straight rows of hexagonal lenses, each of which has bristles positioned at alternate vertices. Fig. 4B-F show examples of lamA mutant eyes which have abnormal overall shape and a rough appearance at the surface of the eye resulting from changes in the array of hexagonal facets and bristles. Changes in eye shape are most often associated with a reduction in the number of lens facets leading to a narrowing of the eye (Fig. 4C), but often a local indentation is seen where a number of facets appear to be missing (typically at the equatorial region; Fig. 4B). The roughness observed is associated with several factors (Fig. 4D-F): disruption of the normal array of lenses, misplaced and extra bristles, differences in lens shape and occasional fusion of lenses. The phenotypes shown are not specific to any one genotype, but rather are found in lamA escapers of all genotypes.

To examine the arrangement of cells in the retina, we cut plastic sections (transverse relative to the ommatidia of adult eyes) and stained them with toluidine blue. Wild-type ommatidia are precisely arrayed in rows. In each ommatidium, seven of the eight photoreceptor cells, pigment cells, cone cells and mechanosensory bristles (reviewed by Ready et al., 1976; Tomlinson, 1988; Cagan and Ready, 1989). The scanning electron micrograph in Fig. 4A shows the surface of the wild-type eye with straight rows of hexagonal lenses, each of which has bristles positioned at alternate vertices. Fig. 4B-F show examples of lamA mutant eyes which have abnormal overall shape and a rough appearance at the surface of the eye resulting from changes in the array of hexagonal facets and bristles. Changes in eye shape are most often associated with a reduction in the number of lens facets leading to a narrowing of the eye (Fig. 4C), but often a local indentation is seen where a number of facets appear to be missing (typically at the equatorial region; Fig. 4B). The roughness observed is associated with several factors (Fig. 4D-F): disruption of the normal array of lenses, misplaced and extra bristles, differences in lens shape and occasional fusion of lenses. The phenotypes shown are not specific to any one genotype, but rather are found in lamA escapers of all genotypes.

To examine the arrangement of cells in the retina, we cut plastic sections (transverse relative to the ommatidia of adult eyes) and stained them with toluidine blue. Wild-type ommatidia are precisely arrayed in rows. In each ommatidium, seven of the eight photoreceptor cells, pigment cells, cone cells and mechanosensory bristles (reviewed by Ready et al., 1976; Tomlinson, 1988; Cagan and Ready, 1989). The scanning electron micrograph in Fig. 4A shows the surface of the wild-type eye with straight rows of hexagonal lenses, each of which has bristles positioned at alternate vertices. Fig. 4B-F show examples of lamA mutant eyes which have abnormal overall shape and a rough appearance at the surface of the eye resulting from changes in the array of hexagonal facets and bristles. Changes in eye shape are most often associated with a reduction in the number of lens facets leading to a narrowing of the eye (Fig. 4C), but often a local indentation is seen where a number of facets appear to be missing (typically at the equatorial region; Fig. 4B). The roughness observed is associated with several factors (Fig. 4D-F): disruption of the normal array of lenses, misplaced and extra bristles, differences in lens shape and occasional fusion of lenses. The phenotypes shown are not specific to any one genotype, but rather are found in lamA escapers of all genotypes.

To examine the arrangement of cells in the retina, we cut plastic sections (transverse relative to the ommatidia of adult eyes) and stained them with toluidine blue. Wild-type ommatidia are precisely arrayed in rows. In each ommatidium, seven of the eight photoreceptor cells, pigment cells, cone cells and mechanosensory bristles (reviewed by Ready et al., 1976; Tomlinson, 1988; Cagan and Ready, 1989). The scanning electron micrograph in Fig. 4A shows the surface of the wild-type eye with straight rows of hexagonal lenses, each of which has bristles positioned at alternate vertices. Fig. 4B-F show examples of lamA mutant eyes which have abnormal overall shape and a rough appearance at the surface of the eye resulting from changes in the array of hexagonal facets and bristles. Changes in eye shape are most often associated with a reduction in the number of lens facets leading to a narrowing of the eye (Fig. 4C), but often a local indentation is seen where a number of facets appear to be missing (typically at the equatorial region; Fig. 4B). The roughness observed is associated with several factors (Fig. 4D-F): disruption of the normal array of lenses, misplaced and extra bristles, differences in lens shape and occasional fusion of lenses. The phenotypes shown are not specific to any one genotype, but rather are found in lamA escapers of all genotypes.

To examine the arrangement of cells in the retina, we cut plastic sections (transverse relative to the ommatidia of adult eyes) and stained them with toluidine blue. Wild-type ommatidia are precisely arrayed in rows. In each ommatidium, seven of the eight photoreceptor cells, pigment cells, cone cells and mechanosensory bristles (reviewed by Ready et al., 1976; Tomlinson, 1988; Cagan and Ready, 1989). The scanning electron micrograph in Fig. 4A shows the surface of the wild-type eye with straight rows of hexagonal lenses, each of which has bristles positioned at alternate vertices. Fig. 4B-F show examples of lamA mutant eyes which have abnormal overall shape and a rough appearance at the surface of the eye resulting from changes in the array of hexagonal facets and bristles. Changes in eye shape are most often associated with a reduction in the number of lens facets leading to a narrowing of the eye (Fig. 4C), but often a local indentation is seen where a number of facets appear to be missing (typically at the equatorial region; Fig. 4B). The roughness observed is associated with several factors (Fig. 4D-F): disruption of the normal array of lenses, misplaced and extra bristles, differences in lens shape and occasional fusion of lenses. The phenotypes shown are not specific to any one genotype, but rather are found in lamA escapers of all genotypes.

Table 3. Dependence of lamA mutant phenotypes on the specific allelic combinations

<table>
<thead>
<tr>
<th>lamA allelic combinations</th>
<th>Number of mutant animals/expected no.×<100(%)</th>
<th>Penetration of phenotypes† Number of animals showing defect/total number mutant×100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamA160</td>
<td>30</td>
<td>Rough and/or misshapen eyes 82/77</td>
</tr>
<tr>
<td>lamA210</td>
<td>32</td>
<td>Rough and/or misshapen eyes 90/33</td>
</tr>
<tr>
<td>lamA25</td>
<td>9</td>
<td>Rough and/or misshapen eyes 91/95</td>
</tr>
<tr>
<td>lamA61</td>
<td>1</td>
<td>Rough and/or misshapen eyes 1/10</td>
</tr>
</tbody>
</table>

*Expected number calculated from number of sibling progeny. Results are based on 1000-2000 adults scored from crosses at 25°C.
†Mutant phenotypes were scored for 70-100 animals. A mutant phenotype was counted where present in at least one single structure (for example an individual with a defect in one leg out of six is counted as showing the mutant defect).
A gous Minute mutation in the background enables the lamA mutant cells to span a large portion of the eye (Morata and Ripoll, 1975). Plastic sections stained with toluidine blue were analyzed for adult eyes containing clones homozygous for lamA7-5. Within these clones, all ommatidia possess the wild-type complement of photoreceptor cells. The arrangement of ommatidia within the eye is usually normal, although some large clones show a loose packing (data not shown). A phenotype comparable to that described for escaper adults from different combinations of hypomorphic lamA mutant alleles is not seen. The lamA mutant phenotype is therefore non-cell autonomous as expected for a secreted molecule that is a component of the extracellular matrix.

Laminin A has diverse functions during adult development

In addition to its role during the development of the compound eye, laminin A also has a role in the development of other imaginal disc derivatives: lamA mutant adults have defects in structures of the legs and the wings (Table 3). In the wings, these defects are in the form of minor changes in wing venation and occasional separation (blistering) of the two surfaces of the wing. Malformations in lamA mutant adult legs occur at a high frequency. In Drosophila, the leg forms by evagination and elongation of a monolayer of undifferentiated epithelial cells which forms the imaginal disc (described in Fristrom and Rickoll, 1982), a process involving cell shape changes (Condic et al., 1991). Fig. 6A shows a wild-type leg with four tarsal segments, metatarsus, tibia and femur, separated by joints formed from infoldings of the epithelium. A set of thickened specialized bristles form the sex comb, present only in the male first leg. A wide range of structural defects are seen in lamA mutant adults and representative phenotypes are shown in Fig. 6B-D. The least severe phenotypes are bending within the normally straight segments (Fig. 6B). Individual segments, although present in the normal number, may be short
Genetic analysis of Drosophila laminin A

A genetic analysis of Drosophila laminin A reveals its involvement in the development of adult and pupal retinas, as well as in the structure of legs. The major findings include the following:

1. **Adult Retina Phenotypes:**
 - **lamA** mutants display a variety of phenotypes in the adult retina. These include:
 - **Cell Clustering Defects:** Many cell clusters are fused, leading to a disrupted organization of cell clusters and mispositioned bristles.
 - **Cone Cell Abnormalities:** Clusters may have an abnormal number of cone cells, marked by arrows in the images.
 - **Pigment Cell Absence:** Occasionally, fusion of cell clusters is seen where a number of pigment cells are absent.

2. **Leg Phenotypes:**
 - **Wild-Type Legs:** Typically consist of multiple segments.
 - **Mutant Legs:** Many mutant adult legs have a normal number of segments, but others have fused or deleted metatarsus and tarsi. Occasional mutants have completely malformed legs with fusion of segments and duplication of recognizable structures such as the sex comb.
 - A significant number of each heteroallelic combination have fused or deleted metatarsus and tarsi.
 - Occasionally, mutants have fused or deleted metatarsus and tarsi.
 - mutants display weaker phenotypes than escaper wings entirely mutant for any one of a number of different hypomorphic **lamA** alleles, further supporting the conclusion from the eye clones that the gene functions in a non-cell autonomous fashion. In seven large Minute+ clones examined in the wing, only one clone showed a weak phenotype in which the two surfaces of the wing were not together as normal.

3. **Potential Interactions:**
 - To investigate potential interactions between **lamA** and the β subunit of the integrin lethal myospheroid, we examined wings in adults that were homozygous for **mys** (same
as nj42, a viable allele in which nonjumper adults show defects in certain muscles) and heterozygous for the lamA null allele lamA^{7-5}. Moreover, to investigate potential interactions of lamA with the α subunit of the integrin inflated, we examined wings in adults homozygous for if^{1} and heterozygous for the same lamA null allele. We detected no significant enhancement of either integrin wing blistering phenotype.

DISCUSSION

To begin a genetic analysis of the roles of laminin during development, we have exploited the ability to manipulate Drosophila genetically and study the developmental consequences, particularly in light of the extensive homology between Drosophila laminin and vertebrate laminin (Montell and Goodman, 1988, 1989; Chi and Hui, 1989). Here we report on the molecular and genetic characterization of the laminin A subunit (lamA), which demonstrates diverse functions for laminin during morphogenesis.

The deduced amino acid sequence of Drosophila laminin A presented here predicts a multidomain structure similar to mouse and human homologs. Three of these domains, IIIa, IIIb and V, are cysteine-rich and are formed of EGF-like repeats. In contrast to the B1 and B2 subunits (Montell and Goodman, 1988, 1989; Chi and Hui, 1989), the number and arrangement of EGF-like repeats is not conserved between Drosophila and mouse laminin A subunits.

It is known that different EGF-like repeats in the Notch protein have unique functions (see for example Rebay et al., 1991), and thus it is possible that these structural differences between species might reflect differences in function.

The structure of vertebrate laminin was initially determined to be composed of three subunits: A, B1 and B2. Recently, however, laminin complexes have been isolated that replace individual subunits in the heterotrimer (see Engvall et al., 1990, for a description of their distribution). These include S-laminin (Hunter et al., 1989), which is a laminin B1-like subunit found specifically enriched at synaptic junctions, and merosin (Ehrig et al., 1990), which is a laminin A-like subunit isolated from the trophoblast basement membrane of human placenta and present in striated muscle and peripheral nerve. The existence of such related genes in vertebrates leads to the question of whether alternative subunits exist in Drosophila and whether the laminin A subunit studied in this paper is a true homolog of the vertebrate laminin A chain or merosin. We compared the sequence of Drosophila laminin A with the available sequence for merosin (which comprises part of the domains I and II and the entire G domain). In terms of both amino acid identity and arrangement of subdomains within domain G, human laminin A and merosin are more similar to each other than either are to Drosophila laminin A. This suggests that laminin A and merosin may have arisen by a gene duplication after the evolutionary split leading to the arthropods and the chordates.
We have generated a series of mutant alleles in the lamA locus. Recessive lethal mutations were first obtained as imprecise P element excisions. We then used one of these P element excision alleles (lamA⁷⁻⁵) to conduct an EMS mutagenesis (to generate lamA point mutations) in which we isolated nine additional lamA alleles. Although all lamA alleles were isolated due to their recessive lethal phenotype, certain heteroallelic combinations gave rise to adult progeny with reduced viability.

The phenotypes observed for the lamA mutant adults demonstrate pleiotropic effects of laminin A on differentiation and morphogenetic events occurring during the development of the imaginal discs to form adult structures. The compound eye of Drosophila, with its stereotyped array of defined cell types, presents an ideal system for analysis of laminin A requirements during cell interactions and differentiation. Laminin A is present in the basement membrane surrounding the eye disc in the larva, and cells of the retinal epithelial monolayer are in direct contact with this basement membrane during a wave of differentiation passing through the disc associated with the morphogenetic furrow (described in Cagan and Ready 1989).

Examination of the neurons of the retina of escaper adults (from combinations of hypomorphic mutant alleles) shows that, although most individual ommatidia contain the wild-type complement of photoreceptors, the arrangement of the cell clusters often does not form a precise array as in wild type. In eyes with a severe phenotype, smaller ommatidia are occasionally seen, possessing fewer photoreceptor cells. In some instances, cell clusters are found in which twice or almost twice the number of photoreceptor cells are present. These are probably due to fusion of ommatidia in which the secondary and tertiary pigment cells normally separating the ommatidia are absent (or misplaced). We examined the pupal retina for defects in development of cone cells and pigment cells. As in the adult eyes examined, the arrangement of cell clusters is frequently disturbed and changes in both the number and arrangement of each cell type are seen. Interestingly, often ommatidia are found with five cone cells, rather than the normal four, suggesting that a change in cell fate has occurred. Defects are also seen as a lack of cells, but in contrast to a gain of cells, such abnormalities could result from either a change in cell fate or a failure of a cell to differentiate along a particular pathway. These effects on cell fate seen in lamA mutants (e.g. extra cone cells) may arise as a consequence of inappropriate cell-cell contacts during the sequential series of inductive interactions (Tomlinson, 1988).

To examine the effect of total lack of function on development of the compound eye, we produced clones of cells homozygous for the null allele lamA¹²⁷ in a wild-type background. However, even in clones covering almost the entire retina, the external appearance of the eye and the arrangement of neurons appears wild type. The lamA mutation is therefore non-cell autonomous (this conclusion is also supported by the results of clones in the wing). Since many of the clones observed covered the majority of the retina, laminin A function in these regions of the developing eye must derive either from laminin A already synthesized which persists in the tissue, or from laminin A synthesized by other tissues or cell types (e.g., hemocytes or fat cells; Kusche-Gullberg et al., 1992).

The leg disc also undergoes major structural changes during metamorphosis and it appears that at least some of these processes require laminin function. Phenotypes seen at high penetrance in lamA mutants are bent and malformed (often bulbous) segments. At a lower frequency, segments are shortened and fused. This suggests that reduced laminin A function affects changes in cell morphology and rearrangements required to produce the final conformation of the epithelium. Adult lamA mutants also have defects in other cuticle structures, including wings, ocelli, antennae and bristles (notably ocellar and post-vertical bristles).

All of the defects studied in the adult are visible in the external cuticle. However, it is likely that the defects extend to the internal tissues since laminin A appears to affect a wide range of developmental processes. This is supported by the observation that many of the mutants die as pharate adults or as young adults unable to jump or fly. This lethargy may be due to structural defects in the muscles or inappropriate or absent motor innervation or sensory projections into the CNS.

Although the cellular receptors for laminin in Drosophila have not yet been defined, integrins have been isolated in this organism which are similar in structure to vertebrate integrins (of which a subclass bind laminin). Genetic loci have been identified corresponding to two Drosophila integrins: <i>inflated</i> (if), an α subunit and <i>l(1)mysopheroid</i> (l(1)mys), a β subunit (Leptin et al., 1989). However, comparison of the phenotypes of mutations in these integrin genes (with the phenotypes of the mutations in lamA described here) suggests that these integrins and laminin A might be involved in different mechanisms. For example, <i>l(1)mys</i> embryos suffer defects in dorsal closure, disruption of muscle attachment to the body wall and herniation of brain tissue (Newman and Wright, 1981), none of which are seen in lamA null alleles. Although mosaic analysis of <i>l(1)mys</i> has demonstrated a requirement for this integrin in development of the adult eye and legs (Zusman et al., 1990), details of the observed phenotypes are quite different to those described here for lamA. In <i>l(1)mys</i> clones in the eye, the surface of the lens is normal, in contrast to lamA mutants in which the array of lenses is disrupted and extra and mispositioned bristles arise. Within the retina, although mutant lamA eyes show the array of ommatidia to be disrupted, each ommatidium has a normal structure and attachment to the fenestrated membrane when viewed in sections cut perpendicular to the eye surface. This too is in contrast with <i>l(1)mys</i> clones where disorganization of rhabdomeres is evident, particularly at basal positions, i.e. close to the fenestrated membrane (Zusman et al., 1990).

In support of this conclusion that lamA does not appear to interact with either <i>l(1)mys</i> or <i>inflated</i>, we have observed no significant enhancement of wing blistering phenotypes in adult wings homozygous for either the viable <i>mys⁵</i> or the viable <i>if</i> allele and heterozygous for a null lamA allele.

It is difficult to reconcile the observations of diverse effects of laminin A upon adult development with the lack of obvious morphological abnormalities in mutant embryos. One potential explanation for such a difference would be a
maternal contribution of the gene product (Kusche-Gullberg et al., 1992), although other Northern and in situ hybridization studies have seen no evidence for this (Montell and Goodman, 1988, 1989). Alternatively, it is possible that a number of different extracellular matrix components (either other molecules, or laminin complexes without the A subunit) can fulfil some of the normal functions of laminin in the embryo and thus that removal of the laminin A subunit may be compensated by others present.

The mutant lama alleles described here provide an opportunity to use the approaches of Drosophila genetics to elucidate further the developmental and cellular mechanisms of action of laminin A. Furthermore, it may be possible to look for interacting loci and thus to study genes whose products are involved in these events. In this way, genetics could be used to begin to dissect the signalling pathways that transmit information from the extracellular matrix, across the cell surface, to ultimately effect changes in cell behavior. For example, although several integrins (1987). Genetic dissection of dopamine and Budnik, V. and White, K. Bogaert, T., Brown, N. and Wilcox, M. (1987). The laminin B2 chain and comparison with human, mouse and laminin B1 and B2 chains. J. Biol. Chem. 264, 1543-1550.

Genetic analysis of Drosophila laminin A

(Accepted 5 March 1993)