Molecular characterization of the lethal of scute genetic function

Maria D. Martín-Bermudo†, Francisco González, Maria Domínguez, Isabel Rodríguez, Mar Ruiz-Gómez‡, Susana Romani§, Juan Modolell and Fernando Jiménez*
Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain

*Author for correspondence
†Present address: Wellcome/CRC Institute, Cambridge CB2 1QR, UK
‡Present address: Department of Zoology, University of Cambridge, Cambridge CB2 3E, UK
§Present address: Max-Planck Institut für Biophysikalische Chemie, D-3400 Göttingen, Germany

SUMMARY

The lethal of scute (l’sc) genetic function, which plays an essential role in the early development of the central nervous system of the Drosophila embryo, is localized within the achaete-scute complex (AS-C). Several lines of evidence have suggested that the AS-C T3 transcription unit corresponds to the l’sc function. We demonstrate that short fragments of DNA, containing the T3 transcribed region and a few kilobases of flanking sequences, rescue, albeit partially, the lethality and neural phenotype of l’sc deletions. Still, the complex wild-type pattern of expression of T3 is not reproduced by the transduced genes. This depends on cis-control elements scattered within the entire AS-C DNA and intermingled with regulatory elements specific for other AS-C transcription units. These elements are necessary for the initial activation of T3 in the neuroectoderm, probably mediated by axis-patterning genes. The presence of a cluster of E-boxes, upstream of the T3 transcribed region, suggests another level of control of T3 expression by basic-helix-loop-helix proteins, among them its own gene product.

Key words: Drosophila, lethal of scute gene, cis-regulatory elements, central nervous system, neurogenesis

INTRODUCTION

Subdivision 1B of the X chromosome of Drosophila melanogaster contains at least six genetic functions involved in the development of the central (CNS) and peripheral (PNS) nervous systems. Three of these functions affect major aspects of CNS development (Jiménez and Campos-Ortega, 1979, 1987; White, 1980). One of them is lethal of scute (l’sc), which has been localized within the achaete-scute complex (AS-C) (García-Bellido, 1979).

Developmental studies and mosaic analysis had suggested that the l’sc function is required for CNS development (García-Bellido and Santamaria, 1978). More precisely, a deletion of the l’sc region of the AS-C causes slight defects in neuroblast (NB) segregation and cell death in the developing embryonic CNS, which lead to the loss of neurons, gross anatomical malformation of the ventral cord and embryonic lethality (Jiménez and Campos-Ortega, 1979, 1987; Martín-Bermudo et al., 1991). Other genes of the AS-C, namely achaete (ac), scute (sc) and asense (ase), were shown to be mainly involved in PNS development, both in the embryo and in the adult (García-Bellido, 1979; Dambly-Chaudière and Ghysen, 1987; Mari-Beffa et al., 1991; Domínguez and Campuzano, 1993), although their deletion also affects CNS development, when l’sc is simultaneously absent (Jiménez and Campos-Ortega, 1987).

Genetically, the l’sc function is defined by the breakpoints of In(1)scd and In(1)scg (see Fig. 5 and Muller, 1955; García-Bellido, 1979), for it is uncovered by the synthetic chromosomal deletion obtained after recombination of both inversions. However, an extensive search for EMS-induced lethal mutations at the distal region of the X chromosome failed to demonstrate a lethal function within the AS-C (J. Lim and K. White, personal communication). This negative result may indicate that l’sc is a relatively small target for mutagenesis or that l’sc is, in itself, a complex locus.

The molecular cloning of the AS-C has shown that the breakpoints of In(1)scd and In(1)scg are separated by 20 kb. Within this stretch of DNA, one transcription unit has been detected (Campuzano et al., 1985); it gives rise to the T3 RNA which, similarly to other genes of the AS-C, encodes a basic-helix-loop-helix protein (bHLH) (Villares and Cabrera, 1987; Alonso and Cabrera, 1988; González et al., 1989; and the present work). This RNA has been assumed to correspond to the l’sc function (Campuzano et al., 1985). Thus, the T3 RNA accumulates in all known neurogenic regions of the embryo (Cabrera et al., 1987; Romani et al., 1987), and the corresponding protein is found in proneural clusters of the neuroectoderm and in the segregating NBs (Cabrera, 1990; Martín-Bermudo et al., 1991). However, conclusive evidence for T3 RNA involvement in the l’sc function is still lacking. It is also unknown how much of the T3 gene flanking regions, or of more distant regions of the AS-C, are necessary for this function.
To resolve the above issues, we have first improved on the molecular characterization of the T3 transcription unit, by defining its transcriptional origin and termination and by sequencing both a near to full-length cDNA and a genomic fragment with nearly one kilobase of upstream sequences. Secondly, we have shown, by P-mediated transformation experiments, that short fragments of DNA containing the T3 transcribed sequences rescue, although in only a fraction of the mutant embryos, the lethality and the CNS mutant phenotype associated with \(l'sc \) deletions. However, these transgenes, in a \(f'a\) background, are expressed in a simpler pattern and at lower levels than the wild-type T3 gene, suggesting that additional sequences are necessary for wild-type expression. Indeed, the analysis of T3 expression in a series of AS-C mutations has revealed the existence of multiple \(cis\)-regulatory regions, distributed along the entire complex, required for the proper activation of T3 in specific proneural clusters of the embryonic neuroectoderm. These results unambiguously define the T3 transcription unit as the main, or exclusive, component of the \(l'sc \) function, and demonstrate that this gene, like the \(ac \) and \(sc \) genes, has highly complex \(cis\)-regulatory regions.

MATERIALS AND METHODS

DNA sequencing

Subclones of the 3.2 kb \(EcoRI \) fragment (coordinates +18.1 to +21.3 of the AS-C physical map Campuzano et al., 1985) that contains the T3 structural gene and of a near to full-length cDNA (Campuzano et al., 1985) were obtained in M13 (Messing et al., 1977) and pBluescript KS(+) (Stratagene) vectors. Progressive deletions of these clones were prepared by exonuclease III treatment (Henikoff, 1984). Either single- or double-stranded templates were sequenced by the dideoxy chain termination method (Sanger et al., 1977). Part of the sequence was obtained using the modification of Tabor and Richardson (1987) to use chemically modified T7 DNA polymerase. Synthetic oligonucleotides of defined sequence were used to extend sequences and fill in gaps. Consensus sequences were assembled and analyzed with the help of the Staden (1980) and University of Wisconsin GCG software packages (Devereux et al., 1984). Sequences were determined in both strands.

RNAase protection and primer extension analysis

An RNAase protection experiment was performed, as described in Melton et al. (1984) and Campuzano et al. (1986), with a single-stranded RNA probe, homologous to the DNA contained between the HindIII and \(PstI \) sites located at positions 307 and 1189 of the T3 sequence (Fig. 1). This indicated that the T3 RNA and the probe were complementary for approximately 221 nucleotides towards the left of the \(PstI \) site and suggested that the origin of transcription was in the vicinity of \(T973 \). This was confirmed with primer extension experiments, which showed that transcription starts on \(A972 \). These experiments were performed according to Bensi et al. (1985). A synthetic oligonucleotide complementary to the sequence extending from \(T999 \) to \(C1019 \) was labeled with T4 polynucleotide kinase and \([\gamma-32P]ATP \) (3000 Ci/mmol) and hybridized at 60°C for 30 minutes in 25 mM Tris, pH 7.7, 75 mM KCl, 3 mM MgCl2 and 5 mM dithiothreitol with 50 mg of poly(A)* RNA from 0-12 hour old embryos. The hybridized primer was extended with 10 units of AMV reverse transcriptase and deoxynucleotide triphosphates by incubation at 42°C for 1 hour. The length of the synthesized DNA was 48 nucleotides.

Plasmid constructions

p3.2T3 contains a genomic DNA fragment of 3.2 kb \(EcoRI-EcoRI \), (coordinates +21.3 and +18.1 from the AS-C molecular map, Campuzano et al., 1985). It was inserted in the \(EcoRI \) cloning site of the transformation vector pPSXD1AAdh*.

p5.9T3 contains a genomic fragment of 5.9 kb \(XbaI-EcoRI \) (coordinates +23.3 to +18.1). It comprises 2.7 additional kilobases in the 5′ region of the former construct. The genomic fragment was cloned into the \(XbaI \) site of the transformation vector pC20.1ry*.

Drosophila transformation

P-element-mediated transformation into \(Adh^{666} \) cm; \(r_{y}^{306} \) and \(r_{y}^{306} \) embryos was performed according to Rubin and Spradling (1982), using 0.5 mg/ml of either p3.2T3 or p5.9T3 plasmid DNA and 0.15 mg/ml of p\(\pi_{25.7} \)w DNA, to provide for transposase (Karess and Rubin, 1984).

Drosophila strains

All AS-C mutant strains used in this work are from the collection of A. García-Bellido and are described in Lindsley and Zimm (1992). The \(Df(1)sc^{4L} \), labelled with \(y \) and \(w \), was synthesized anew, by recombination of viable \(In(1)sc^{6} \) and \(In(1)sc^{5} \) chromosomes, to avoid modifiers that might have accumulated in older stocks of the deficiency. In spite of this precaution, the viability of \(Df(1)sc^{4L}sc^{36}Y^{61} \) males was only 7%, as compared to that of \(+sc^{36}Y^{61} \) males, even though the duplication \(Y^{61} \) covers the entire AS-C and completely rescues the lethality of \(Df(1)sc^{19} \) (\(ac^{-},sc^{-},l'sc^{-} \) flies (data not shown). The impaired viability of \(Df(1)sc^{4L}sc^{36}Y^{61} \) flies should, therefore, be attributed to deleterious factors mapping outside of the deficiency, most probably to the proximal breakpoints of the two inversions used to synthesize the deficiency. For this reason, the estimated percentage of adult viability of \(Df(1)sc^{4L}sc^{36} \) flies rescued with T3 transgenes (Table 1) has been corrected by a factor that takes into consideration the reduced viability of the \(Df(1)sc^{4L}sc^{36}Y^{61} \) control flies.

Immunocytochemistry

Dechorionated embryos were fixed for 20 minutes in heptane saturated with 4% formaldehyde in PBS, and vitelline membranes were removed by methanol treatment. All subsequent incubations were performed in PBS, 0.1% Tween 20, 0.1% bovine serum albumin. For the analysis of CNS phenotypes in AS-C deficiencies rescued with T3 transgenes, embryos were first treated with a rabbit anti-\(l'sc \) antibody (Martín-Bermudo et al., 1991), followed by a biotin-labelled secondary antibody and the Vectastain Elite ABC kit (Vectorlabs). Before the staining reaction, the embryos were incubated with 1% glutaraldehyde in PBS for 5 minutes and washed for 20 minutes, treatment that substantially reduces the background. DAB staining was performed in the presence of Ni and Co ions.

Other procedures

Plasmid DNA, fly RNA and single-stranded RNA probe preparations were performed as described (Maniatis et al., 1982; Melton et al., 1984; Campuzano et al., 1985).

RESULTS

The T3 transcription unit

The T3 gene gives rise to a 1.1 kb RNA (Campuzano et al., 1985; and Fig. 5). The sequence of a genomic fragment of
The lethal of scute gene

The lethal of scute gene previously been reported (Alonso and Cabrera, 1988). We have further characterized the T3 transcription unit by independently sequencing a larger segment of genomic DNA and a near full-length cDNA, and by determining its origin of transcription. The results are shown in Fig. 1. RNAse protection and primer extension experiments, show that the T3 transcription unit, similarly to those of the other AS-C proneural genes, does not have introns. A polyadenylation signal (underlined) is found 25 nucleotides before the 3' end of the cDNA (at A2084) and a TG motif (underlined) (Birnstiel et al., 1985) is located 8 nucleotides after its end. Most likely, transcription termination occurs very near this nucleotide. In a previous report (Alonso and Cabrera, 1988), the colinearity region for this same cDNA clone was mistakenly considered to be 1183 nucleotides long, starting at the same point as in our sequence (T1018) but ending at C2201, the end of our genomic sequence. Other differences between that report and ours are: an extra G is included following T935; G1033 is changed to an A; and A1637 is changed to a G, which changes a histidine into an arginine in the deduced T3 protein sequence. We think it most unlikely that these differences are due to polymorphisms since, to our knowledge, both sequencing projects have been conducted on the same genomic subclone. Putative GC and TATA boxes are underlined. Similar GC-rich stretches are found in comparable locations of the upstream regions of the other three AS-C proneural genes (ac, sc and ase) (Alonso and Cabrera, 1988; González et al., 1989; Villares and Cabrera, 1987). In the upstream nontranscribed region, putative binding sites for bHLH proteins (E-boxes) are indicated in bold letters.

T3 DNA that comprises an open reading frame has previously been reported (Alonso and Cabrera, 1988). We have further characterized the T3 transcription unit by independently sequencing a larger segment of genomic DNA and a near to full-length cDNA, and by determining its origin of transcription. The results are shown in Fig. 1. RNAse protection and primer extension experiments, show that the T3 transcription unit, similarly to those of the other AS-C proneural genes, does not have introns. A polyadenylation signal (underlined) is found 25 nucleotides before the 3' end of the cDNA (at A2084) and a TG motif (underlined) (Birnstiel et al., 1985) is located 8 nucleotides after its end. Most likely, transcription termination occurs very near this nucleotide. In a previous report (Alonso and Cabrera, 1988), the colinearity region for this same cDNA clone was mistakenly considered to be 1183 nucleotides long, starting at the same point as in our sequence (T1018) but ending at C2201, the end of our genomic sequence. Other differences between that report and ours are: an extra G is included following T935; G1033 is changed to an A; and A1637 is changed to a G, which changes a histidine into an arginine in the deduced T3 protein sequence. We think it most unlikely that these differences are due to polymorphisms since, to our knowledge, both sequencing projects have been conducted on the same genomic subclone. Putative GC and TATA boxes are underlined. Similar GC-rich stretches are found in comparable locations of the upstream regions of the other three AS-C proneural genes (ac, sc and ase) (Alonso and Cabrera, 1988; González et al., 1989; Villares and Cabrera, 1987). In the upstream nontranscribed region, putative binding sites for bHLH proteins (E-boxes) are indicated in bold letters.

Fig. 1. Sequences of the T3 transcription unit and its deduced protein product. The nucleotide sequence corresponds to the genomic DNA. Vertical arrows preceding T1018 and following A2084 mark the start and end of the colinearity region (1067 nucleotides long) between genomic and cDNA clones. The only difference between the two sequences was at the 5' end of the cDNA. This contained 16 nucleotides with a sequence identical to that contained between T1890 and G1905 and should correspond to a cloning artifact. The long region of colinearity, which starts 46 nucleotides 3' from the origin of transcription (marked with an asterisk) together with RNAse protection and primer extension experiments, show that the T3 transcription unit, similarly to those of the other AS-C proneural genes, does not have introns. A polyadenylation signal (underlined) is found 25 nucleotides before the 3' end of the cDNA (at A2084) and a TG motif (underlined) (Birnstiel et al., 1985) is located 8 nucleotides after its end. Most likely, transcription termination occurs very near this nucleotide. In a previous report (Alonso and Cabrera, 1988), the colinearity region for this same cDNA clone was mistakenly considered to be 1183 nucleotides long, starting at the same point as in our sequence (T1018) but ending at C2201, the end of our genomic sequence. Other differences between that report and ours are: an extra G is included following T935; G1033 is changed to an A; and A1637 is changed to a G, which changes a histidine into an arginine in the deduced T3 protein sequence. We think it most unlikely that these differences are due to polymorphisms since, to our knowledge, both sequencing projects have been conducted on the same genomic subclone. Putative GC and TATA boxes are underlined. Similar GC-rich stretches are found in comparable locations of the upstream regions of the other three AS-C proneural genes (ac, sc and ase) (Alonso and Cabrera, 1988; González et al., 1989; Villares and Cabrera, 1987). In the upstream nontranscribed region, putative binding sites for bHLH proteins (E-boxes) are indicated in bold letters.

Rescue of the lethal of scute phenotype by transduced T3 genes

Genetic and molecular data suggest that the T3 transcription unit, the only one detected within the 20 kb of DNA uncovered by the synthetic chromosomal deletion Df(1)sc109R, is responsible for the l'sc function (García-Bellido, 1979; Campuzano et al., 1985; Jiménez and Campos-Ortega, 1987). This is the smallest available deficient of the l'sc gene for which no point mutations have yet been isolated. To obtain more conclusive evidence for
the identity between the T3 and the l’sc genes, we prepared, by P-element-mediated transformation, Drosophila lines carrying a 3.2 kb DNA fragment that contains the T3 transcribed region, 0.9 kb of the upstream region and 1.2 kb of the downstream region. Four of such transformants (lines 3.2T3.1-4) were tested for their ability to rescue the embryonic lethality associated with the Df(1)sc4Lsc9R. One copy of any of the transgenes rescued the embryonic lethality of a fraction of the l’sc embryos, up to 26% with line 3.2T3.1 (not shown). Two to four copies improved rescuing to 48% (Table 1, cross 1). However, only a few of the l’sc larvae reached adulthood, being the adult viability 8% when compared to the viability of Df(1)sc4Lsc9R/y2Y61l control flies (see Materials and Methods). The rescue of the embryonic lethality of the larger deletion Df(1)sc19 (ac-, sc-, l’sc-) with two to four copies of the transgene (Table 1, cross 2) was 47%. In this case, all larvae died before the third instar, probably because of the absence of the ac and sc genes, which should aggravate the effects of the inefficient rescue of l’sc.

To attempt improving the rescue achieved with the 3.2T3 transformants, we prepared fifteen new transformant lines (5.9T3.1-15) with a fragment that provided 2.7 kb more DNA in the T3 upstream region, that is, a total of 3.6 kb. One copy of any of the transgenes rescued the embryonic lethality of a fraction of the l’sc embryos, up to 26% with line 3.2T3.1 (not shown). Two to four copies improved rescuing to 48% (Table 1, cross 1). However, only a few of the l’sc larvae reached adulthood, being the adult viability 8% when compared to the viability of Df(1)sc4Lsc9R/y2Y61l control flies (see Materials and Methods). The rescue of the

Table 1. Rescue of the lethal of scute lethality by transduced T3 genes

<table>
<thead>
<tr>
<th>Cross*</th>
<th>Hatched larvae†</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>1</td>
<td>Df(1)sc4Lsc9R/+; 3.2T3.1/+; 3.2T3.2/+</td>
<td>3.2T3.1; 3.2T3.2</td>
</tr>
<tr>
<td>2</td>
<td>Df(1)sc4Lsc9R/+; 3.2T3.1/+; 3.2T3.2/+</td>
<td>3.2T3.1; 3.2T3.2</td>
</tr>
<tr>
<td>3</td>
<td>Df(1)sc4Lsc9R/+; 5.9T3.1/+</td>
<td>5.9T3.1</td>
</tr>
</tbody>
</table>

*The 3.2T3.1 transduced gene is inserted in the 2nd chromosome and 3.2T3.2 and 5.9T3.1 in the 3rd chromosome.
†Larvae with a wild-type first chromosome are y+ and those with a mutant chromosome are y-.
‡In parenthesis, the number of y- larvae corresponding to 100% viability, that is one third of the number of hatched y+ larvae.
§These viability values have been corrected by a factor that takes into consideration the low viability of Df(1)sc4Lsc9R/y2Y61l control flies, where the y2Y61l chromosome carries a duplication that contains the entire ASC (see Materials and methods).

Fig. 2. Rescue of the neural phenotype of AS-C deficiencies by a transduced T3 gene. The panels show ventral views of different late embryos stained with anti-HRP antibodies. (A) Wild-type embryo with the characteristic morphology of the condensed ventral cord and the ladder-like organization of the axonal tracts. (B) Df(1)sc19 embryo. Note the incomplete condensation and interruptions of the ventral cord, as well as the alterations in the pattern of connectives and comissures. (C) A Df(1)sc19 embryo, progeny from cross 2 (Table 1), bearing between two and four copies of the 3.2T3 gene. The ventral cord is essentially normal, except for the interruption of a connective at the level of one abdominal neuromere (arrow). (D) Df(1)260.1 embryo. The severe hypoplasy of the CNS has reduced the ventral cord to a series of isolated clusters of neurons. (E) A Df(1)260.1 embryo, progeny from a cross similar to crosses 1 and 2 (Table 1). The mutant phenotype has been substantially rescued, and the ventral cord is very similar to that of the wild type. Still, some defects in the axonal pattern are evident. It should be noted that the absence of labeled chromosomes hindered the unambiguous identification of all mutant embryos. Therefore, it might well be that some wild-type-looking embryos were in fact mutant embryos that had been phenotypically rescued to an extent larger than those shown in C and E. Scale bar in A: 50 μm.
reached adulthood, the adult viability being nearly 20% when compared to that of Df(1)sc4Lsc9R/Y61I control flies. This indicates that, although the 5.9T3.1 insertion rescues l’sc lethality more efficiently than any of the 3.2T3 insertions, its rescuing capacity is still far from complete.

We also investigated the capacity of the 3.2T3 transgene to rescue the neural phenotype of l’sc deletions. Since a fraction of the rescued Df(1)sc4Lsc9R embryos reached adulthood, we assumed that the gross CNS morphology of at least that fraction of embryos should be fairly normal. Therefore, they were not further analyzed. Df(1)sc19 embryos show a partial hypoplasia of the CNS (compare Fig. 2A and B), which is largely due to the lack of l’sc (Jiménez and Campos-Ortega, 1987). Two to four doses of the 3.2T3 gene substantially improved this mutant phenotype (Fig. 2C). Similarly, the severe neural hypoplasia of Df(1)260.1 embryos (Fig. 2D), which lack the entire AS-C, was also considerably rescued (Fig. 2E).

We also analyzed the expression of the 3.2T3 and 5.9T3 transgenes in Df(1)sc4Lsc9R embryos. In the wild type, T3 starts to be expressed in the blastoderm (stage 5), in a pattern that changes during gastrulation (Cabrera, 1990; Martin-Bermudo et al., 1991). By the end of stage 8, a well-defined pattern of groups of ectodermal cells (proneural clusters) and the S1 NBs that delaminate from them, express T3. Later, in stage 9, T3 expression occurs in new proneural clusters that give rise to the S2 NBs. In contrast, during these stages, the transgenes were apparently not expressed (not shown). T3 protein accumulation from the transgenes was first detectable in stage 9, both in NBs and, to a lesser extent, in the overlying neuroectoderm (Fig. 3A,B,D). Moreover, this late expression was much weaker than that of the wild-type gene and it was difficult to appreciate its characteristically defined spatial pattern (Fig. 3C,E).

In summary, we believe that the rescue of the lethality and of the neural phenotype (although incomplete, most likely because of the imperfect expression of the transduced genes), together with previous genetic and molecular evidence, unequivocally confirm that the T3 gene is responsible for the l’sc function. Accordingly, we shall refer from now on to the AS-C T3 gene as the l’sc gene.

Mapping of cis-regulatory regions of the l’sc gene within the AS-C

The low level and simplified patterns of expression of the l’sc transgenes suggest that they do not contain all the regulatory elements necessary for wild-type expression. These elements should lie somewhere else within the 90 kb that spans the AS-C. In fact, expression of the sc gene in imaginal discs appears to be driven by discrete cis-regulatory elements, scattered through a length of 50 kb (Ruiz-Gómez and Modolell, 1987). Similar cis-regulatory sites have been proposed to direct embryonic ac expression both in the CNS (Sketh et al., 1992) and in the CNS (Pruin-Gómez and Ghysen, 1993). To test for the presence of regulatory elements for l’sc, we analyzed its expression in AS-C mutants. Most of the mutations studied are small deletions or chromosomal rearrangements (inversions or translocations) that either remove portions of the AS-C or physically separate them from the l’sc coding region, thus uncoupling presumptive cis-regulatory elements from the basal

Fig. 3. Expression of transduced T3 genes in Df(1)sc4Lsc9R embryos. Embryos from crosses 1 and 3 (Table 1) were stained with a l’sc antibody. (A) Lateral view of a Df(1)sc4Lsc9R embryo bearing between two and four copies of the 3.2T3 transduced gene. (B) A Df(1)sc4Lsc9R embryo bearing one to two copies of the 5.9T3 transduced gene. Accumulation of the L’SCL protein is mainly observed in NBs, and also in the neuroectoderm. Both kind of embryos show comparable levels of staining, but these are significantly lower than in a wild-type embryo (C). This latter embryo is a sibling of that shown in B. (D,E) Lateral views, at higher magnification, of embryos similar to those shown in B and C, respectively. Vertical arrows point to some of the NBs and horizontal arrows indicate the position of the neuroectoderm. In all cases, anterior is to the left and dorsal to the top. Scale bars in A and D, 50 µm.
promoter (Fig. 5A). For the sake of simplicity, we have only examined L’S’C protein accumulation in the NBs that delaminate during the first two waves of segregation and in their corresponding proneural clusters. All these NBs, except one, accumulate L’S’C to different extents in the wild type (Martín-Bermudo et al., 1991; and Fig. 4A). Fig. 4B-D shows L’S’C accumulation in a few of the cases analyzed. In most mutants, l’sc expression is abolished in a particular subset of proneural clusters and corresponding NBs. Some light staining in these NBs and overlying ectoderm is first detected by late stage 9, but always at much lower levels than in the wild type. This late expression is similar to that found in Df(1)sc4Lsc9R embryos carrying l’sc transgenes (Fig. 3A-B). Table 2 summarizes the analysis of 22 AS-C mutations. Two main features stand out: first, mutations that map proximal or distal to the l’sc structural gene suppress its expression in different subsets of NBs; and second, NBs affected by any given breakpoint are also affected by all other breakpoints that map between it and the structural gene. These results strongly suggest the presence, at both sides of the transcribed sequence, of discrete cis-regulatory regions that activate l’sc in specific proneural clusters and, as a consequence, in their corresponding NBs.

The data allow definition of at least five regions containing cis-regulatory elements that drive l’sc expression in twelve proneural clusters (Fig. 5). Three l’sc-expressing NBs, NBs 3-5, 7-1 and 7-4, also express ac and sc (Martín-Bermudo et al., 1991; Skeath et al., 1992; Ruiz-Gómez and Ghysen, 1993). Interestingly, control regions A and B, required for wild-type expression of l’sc in these NBs, also seem to contain enhancer elements for ac (and probably sc) expression in the same NBs (Skeath et al., 1992, for region A; and Ruiz-Gómez, unpublished observations, for region B). The possibility thus arises that, in these NBs, either l’sc activates ac and/or sc, or vice versa. In fact, in imaginal discs, ac and sc can self-activate and cross-activate each other (Martínez and Modolell, 1991; Skeath and Carroll, 1991). Df(1)sc4Lsc9R, which removes l’sc, still allows ac/sc expression in these NBs, demonstrating that their initial activation is l’sc-independent, although l’sc appears to enhance the level of ac expression in NBs 7-1 and 7-4 (Skeath et al., 1992; and our own observations). Moreover, NBs 7-1 and

Fig. 4. Expression of l’sc in the NBs of AS-C mutants. (A) wt; (B) T(1;2)sc19; (C) In(1)sc4; (D) T(1;4)scH. For each genotype, the corresponding photograph shows a ventral view of a portion of the NB layer, after segregation of S1 and S2 NBs, stained with a l’sc antibody. Thick arrows indicate the limits of one segment. A thin arrow marks the position of the midline. The right of each photograph, a diagram of circles represents the S1 and S2 NBs. For the wild type, the upper part of each circle shows the number of the corresponding NB, named according to Doe (1992) after their approximate NB in grasshopper. The lower part indicates whether the NB expresses (full) or not (empty) l’sc, disregarding the level of expression, which is actually different and somewhat variable for each particular NB (Martín-Bermudo et al., 1991). All NBs, except MP2, express l’sc. For the mutants, empty circles indicate those NBs that do not express l’sc, except for an occasional faint staining first detected at stage 9 (see text). All other NBs (full circles) show approximate normal levels of L’S’C accumulation. The identification of NBs, particularly those of the intermediate row whose position is somewhat variable, has been aided in several instances by simultaneously staining with engrailed antibodies that labels NBs 6-2, 7-1, 7-2 and 7-4 (Doe, 1992). Anterior is to the top. ml, midline; m, i, l, medial, intermediate and lateral rows of NBs, respectively. Scale bar in A, 20 µm.
Table 2. Expression of lethal of scute in neuroblasts of ASC mutations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Neuroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(1)sc^P</td>
<td>3-5</td>
</tr>
<tr>
<td>In(1)sc^{V2, 10.1}</td>
<td>4-2, 7-1, 7-4</td>
</tr>
<tr>
<td>ac^{+3}</td>
<td>2-2, 2-5, 5-3, 6-2</td>
</tr>
<tr>
<td>Df(1)sc</td>
<td>2-2, 5-6</td>
</tr>
<tr>
<td>In(1)sc^{10.1}</td>
<td>3-2, 7-2</td>
</tr>
<tr>
<td>In(1)sc^{8}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3P, 19}</td>
<td>+</td>
</tr>
<tr>
<td>In(1)sc^{8}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>+</td>
</tr>
<tr>
<td>In(1)sc^{L8}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>+</td>
</tr>
<tr>
<td>In(1)sc^{L5}</td>
<td>+</td>
</tr>
<tr>
<td>T(1;3)sc^{20.15}</td>
<td>−</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>−</td>
</tr>
<tr>
<td>In(1)sc^{19}</td>
<td>−</td>
</tr>
<tr>
<td>T(1;3)sc^{20.15}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>+</td>
</tr>
<tr>
<td>In(1)sc^{19}</td>
<td>+</td>
</tr>
<tr>
<td>T(1;3)sc^{20.15}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>+</td>
</tr>
<tr>
<td>In(1)sc^{22}</td>
<td>+</td>
</tr>
<tr>
<td>T(1;3)sc^{20.15}</td>
<td>+</td>
</tr>
<tr>
<td>Df(1)sc^{3PL, 48}</td>
<td>+</td>
</tr>
</tbody>
</table>

Summary of the analysis of l’sc expression in NBs, and corresponding proneural clusters, in different ASC mutations. The molecular mapping of the mutations is shown in Fig. 5. Mutants that display the same pattern of expression are grouped together.

7-4 express l’sc, but not ac, in In(1)sc^{S1} mutants (Table 2 and data not shown), indicating that l’sc expression in these two NBs is at least ac independent. The same can be suggested for NB 3-5, for, in In(1)sc^{V2}, it expresses l’sc normally (Table 2), but not ac (Skeath et al., 1992). Therefore, regions A and B may contain independent enhancers for ac/sc and l’sc, or, alternatively, the same enhancers act simultaneously on the promoters of the three genes.

DISCUSSION

We have shown that two transduced AS-C T3 genes, containing the transcribed region and relatively short flanking sequences, rescue the lethality of a l’sc deficiency, albeit with low penetrance. Likewise, we have shown that the smaller transgene rescues to a great extent the neural phenotype associated with larger deletions of the AS-C. These phenotypes are largely due to the lack of the l’sc function (Jiménez and Campos-Ortega, 1987). Therefore, our results unequivocally demonstrate, confirming previous indirect evidence (see Introduction), that the AS-C T3 gene and the genetically defined l’sc function are the same entity.

Remarkably, l’sc mutants can reach adulthood, even though the amounts of L’S’C protein provided by the transgenes are substantially lower than normal and its distribution does not conform to the wild-type pattern. This indicates that the deployment of specific quantities of L’S’C is not essential for its function. Moreover, in many AS-C mutations l’sc expression is practically abolished in specific NBs and flies are still viable. These data are consistent with the view that l’sc function is partially dispensable and that it can be largely replaced by that of other proneural genes (Martín-Bermudo et al., 1991). This in turn implies that the function of the different proneural genes is essentially the same, namely, to confer upon groups of ectodermal cells a capacity to become neural precursors. Only the extent of expression of each gene, as measured both by the number of proneural clusters that express it and by the level of its expression in each cluster, would establish its relative importance for the proneural function. On the other hand, if the l’sc function is to a great extent replaceable, this argues against its participation, together with other AS-C genes, in the specification of particular NB fates, according to a proposed model based in a combinatorial mechanism of action (Cabrera et al., 1987; Cabrera, 1992).

cis-control of l’sc

The wild-type expression of l’sc undergoes dynamic changes during embryonic development, suggesting that its control is complex (Cabrera, 1990; Martín-Bermudo et al., 1991). Indeed, the analysis of l’sc expression in AS-C mutations has revealed at least five cis-controlling regions scattered throughout the gene complex. These regions contain the presumptive enhancers that activate l’sc in twelve proneural clusters that give rise to S1 and S2 NBs. Presumably, other enhancers exist to drive l’sc expression in the proneural clusters that give rise to later segregating NBs and to sensory mother cells (SMCs) of the peripheral nervous system, where l’sc is also expressed (Romani et al., 1987; and our observations). What is the need for so many cis-regulatory elements acting on the l’sc promoter? The reason may be the positional and temporal accuracy with which neural precursors delaminate from the neuroectoderm. Each precursor arises from a small, proneural group of cells defined by the activation, in response to positional cues, of one or more proneural genes. These positional cues should be different, at least in part, for every particular cluster. As l’sc expression helps define most of the proneural clusters within the neuroectoderm, its promoter should respond to a large variety of cues and, hence, the need for a substantial number of enhancer elements.

It seems paradoxical that, despite such complex regulation, most NBs can still segregate in the absence of l’sc (Martín-Bermudo et al., 1991). A most likely explanation is the expression of other proneural genes in the same proneural clusters. For example, ac and sc may partially substitute for the absence of l’sc in the proneural clusters of NBs 3-5, 7-1 and 7-4, where these three genes are normally coexpressed. However, there is no correspondence between the frequency with which a particular NB is absent in a l’sc deficiency and the extent of AS-C gene expression in that NB. Again as an example, NB 7-1 is the one most commonly absent in Df(1)sc^{3P, 19} embryos (Martín-Bermudo et al., 1991), even though it coexpresses ac/sc, whereas NB 5-2, which expresses l’sc, but neither ac nor sc, segregates normally in the same mutant embryos. This indicates that the requirement for l’sc is not necessarily higher in those NBs where ac and sc are not expressed. It further suggests,
as previously noted (Jiménez and Campos-Ortega, 1990), that the AS-C genes do not account for all the proneural activity in the CNS. If \(l'sc \) can be replaced in many sites by other proneural genes, why is it still expressed in most proneural clusters? We suggest that the phenotypic criteria so far used to characterize AS-C mutations, namely, neuroblast segregation and viability, probably do not reveal the full extent of the \(l'sc \) function. It has been shown for the imaginal SMCs that the levels of proneural products and, in some cases, the specific combination of these proteins can be critical for the correct implementation of the neural differentiation programme (Domínguez and Campuzano, 1993). Proneural insufficiency may be compatible with SMC emergence, but it can cause malformations of the resulting sensory organ. Similarly, \(l'sc \) insufficiency may subtly damage the NBs progeny and still be compatible with fly viability.

On the other hand, there may be sites where \(l'sc \) expression is truly redundant. Expression in these sites could be evolutionarily maintained by constraints imposed by the specificity and organization of the enhancers within the AS-C. If an enhancer directs expression in more than one site or if it interacts with other enhancers, so that the final expression is not merely the sum of the individual expressions, it may be impossible to delete expression in sites where \(l'sc \) is entirely redundant without removing it from places where it is necessary. Thus, these enhancers and the patterns of expression they direct would have been conserved in evolution despite the true redundant character of the expression at some sites.

It is likely that the same positional cues activate different genes in the same proneural cluster. In agreement with this, the cis-acting elements that control \(ac \) and \(l'sc \) expression in NBs 3-5, 7-1 and 7-4 are found in the same AS-C regions and most probably are the same for both genes. It is interesting that other \(l'sc \)-expressing NBs (for example, NBs 5-2 and 5-6), whose corresponding enhancers are located proximal to the \(l'sc \) transcription unit, do not express \(sc \) (Skeath et al., 1992), although this gene is activated, in the wing disc, by enhancers located in the same region. And, conversely, \(l'sc \) is not activated in the proneural clusters of the wing disc by those \(sc \)-specific enhancers (S. Romani, unpublished observations). This indicates that the \(sc \) and \(l'sc \) promoters have different responsiveness to the set of enhancers that are intermingled within the proximal region of the AS-C, or that the same enhancers alternatively activate one or the other promoter depending on the tissue. Strong candidates to activate the cis-regulatory elements that drive expression of AS-C genes are the axis-patterning genes that operate early in embryonic development. Thus, the pattern of \(l'sc \) expression in the neuroectoderm undergoes specific modifications in mutants for the pair-rule genes (Martín-Bermudo et al., 1991) and that of \(ac \) is set up by these and the dorsoventral coordinate genes (Skeath et al., 1992).

Another level of regulation of \(l'sc \) expression is suggested by the presence, upstream from the origin of transcription,
of a cluster of E-boxes, putative binding sites for bHLH transcription factors. In the wild type, the initial l^{sc} expression, most likely mediated by the enhancers referred to above, is followed by a progressive accumulation of the protein in the proneural clusters and in the delaminating NBs (Martín-Bermudo et al., 1991). Such accumulation could be explained by a positive feedback regulation of the L'SC protein on its own promoter or by cross-activation by other bHLH proteins. Indeed, E-boxes participate in the ac self-stimulation and its activation by sc that occur in the imaginal discs (Martínez and Modolell, 1991; Van Doren et al., 1992; Martínez et al., 1993). The late and weak L'SC accumulation in NBs and in neuroectodermal cells observed in l^{sc}-embryos carrying a transgene, or in NBs of AS-C mutants, might also be explained by similar positive regulation involving the E-boxes that would amplify a basal l^{sc} expression.

We thank our laboratory colleagues for constructive criticism of the manuscript and to A. González-Reyes for help in computer drawing of Fig. 5. MDMB, FG and MD were predoctoral fellows from the Ministerio de Educación y Ciencia, SR was a predoctoral fellow of Instituto de Cooperación Iberoamericana and MRG was a postdoctoral fellow of the Consejo Superior de Investigaciones Científicas. This work was supported by grants from Dirección General de Investigación Científica y Técnica (PB90-0082 to FJ, and PR84-0212 and PB90-0085 to JM), Comunidad Autónoma of Madrid to JM, and an institutional grant from Fundación Ramón Areces to the Centro de Biología Molecular.

REFERENCES

(Accepted 6 April 1993)