Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo

Cordula Schulz and Diethard Tautz
Zoologisches Institut der Universität München, Luisenstrasse 14, 80333 München, Germany

SUMMARY

The subdivision of the anterior-posterior axis in Drosophila is achieved by a cascade of spatially regulated transcription factors which form short-range gradients at the syncytial blastoderm stage. These factors are assumed to have concentration-dependent regulatory effects on their target genes. However, there is so far little direct in vivo evidence that a single factor can autonomously activate and repress a given target gene. We have analysed here the regulatory capabilities of the gap gene hunchback by creating an artificial gradient of hunchback in the early embryo. This was achieved by providing the maternally expressed mRNA of hunchback with the anterior localization signal of the bicoid RNA. The effects of this artificial hunchback gradient were then studied in different types of mutant background. We show that under these conditions hb is autonomously capable of activating the target gene Krüppel at low concentrations and repressing it at high concentrations. In addition, we show that the artificially created hunchback gradient can organize a large part of the segment pattern, although it is expressed at a different position and in a different shape than the wild-type gradient of hunchback.

Key words: Drosophila segmentation, morphogen, gene regulation, gap genes, hunchback, transcription factor

INTRODUCTION

The gap gene hunchback (hb) is one of the key regulatory genes in the early Drosophila embryo. It was shown that it can formally act as a morphogen in the sense that it has a concentration-dependent effect on pattern formation (Hülskamp et al., 1990; Struhl et al., 1992). However, there are a number of problems that complicate the full understanding of the hb function. First, hb shows both a maternal and a zygotic expression, which can at least partially replace each other (Lehmann and Nüsslein-Volhard, 1987). Second, some of the regulatory functions of hb are also provided by other gene products. The regulation of Krüppel (Kr), in particular, is controlled by a number of different genes. While giant (gt) and the maternal terminal system act as negative regulators of Kr, bicoid (bcd) and hb act formally both as positive regulators at low concentrations and as repressors at high concentration (reviewed in Hülskamp and Tautz, 1991).

The third complication in separating the different regulatory inputs arises from the fact that bcd is itself required for the zygotic activation of hb (Tautz, 1988). Therefore, in the absence of bcd one gets only the low concentration of maternal hb in the anterior region, but not the high concentration of hb that would be expected to act as a repressor of Kr expression. In other words, bcd− embryos are effectively double mutant embryos, lacking both the BCD protein and high concentrations of HB protein.

To overcome all these problems, we have sought to provide high concentrations of HB protein in the anterior region by a source that is independent of the bcd function and to study the effects of this in the absence of the interference from other genes. This was achieved by placing the 3′UTR of the bcd gene, which acts as an anterior localization signal for maternally expressed RNAs (Macdonald and Struhl, 1988; Macdonald et al., 1993), behind the hb gene. We show here that this construct provides relatively high concentrations of HB protein in the anterior region of the embryo and allows the study of its effects on the regulation of Kr. We find that hb alone is capable of regulating the Kr expression such that a functional Kr domain is generated. Thus, HB protein acts as an autonomous concentration-dependent morphogen which activates Kr at low concentrations and represses it at high concentrations. Furthermore, we show that hb alone can organize a large part of the segment pattern under these conditions, independent of the anterior organizer bcd.

MATERIALS AND METHODS

Construction of the P-element

The hb-bcd3′UTR-construct was constructed from a full-length cDNA of the maternal 3.2 kb hb transcript and includes approximately 1 kb of sequence upstream of the maternal P1 promotor as well as a part of the bcd3′UTR directly behind the stop codon of the hb coding region. To construct this, a 1.25 kb genomic BamHI-EcoRI fragment was taken from pE8-B100A (Tautz et al., 1987) and cloned into the BamHI-EcoRI site of Bluescript (Stratagene). This fragment extends from about 1 kb upstream of the P1 promotor into the leader of the 3.2 kb transcript. Next a 2.1 kb EcoRI-XhoI fragment from a hb cDNA
was cloned into this vector. The EcoRI site is identical to the one from the pE8-B100A clone, thus recreating the full leader sequence. The XhoI site is located within the coding region of hb, approx. 500 bp before the stop codon. For generating the region further downstream, we started from a 500 bp XhoI fragment of the hb gene that was in vitro mutagenized such that a BamHI site was created directly behind the stop codon (Hülskamp, 1991). A 1.5 kb MluI-EcoRI fragment of the bcd 3′ untranslated region (Berleth et al., 1988) was cloned into this BamHI site and the whole XhoI fragment was cloned into the XhoI site of the above construct. The whole construct was then cloned into a modified Carnegie 20 vector (Rubin and Spradling, 1983) as a NotI-SalI fragment.

P-element transformation and fly stocks

P-element transformations were basically done as described in Rubin and Spradling (1983), using the delta 2,3 P-element helper plasmid P-element transformations were basically done as described in Rubin and Spradling (1983) using the delta 2,3 P-element helper plasmid and Spradling (1983), using the delta 2,3 P-element helper plasmid. The recipient flies for the construct were and Spradling (1983), using the delta 2,3 P-element helper plasmid and Spradling (1983), using the delta 2,3 P-element helper plasmid. P-element transformation and fly stocks

SalI a modified Carnegie 20 vector (Rubin and Spradling, 1983) as a site of the above construct. The whole construct was then cloned into this vector. The presence of the RNA and protein from the hb-bcd3′UTR construct has a rescue activity for the zygotic hb mutant phenotype (hb¹⁵²). Amorphic hb²⁵² mutant larvae lack in the anterior region the three thoracic segments and show an enlarged first abdominal segment. In addition, they lack the labium and show as an indirect consequence of this an incomplete involution of the more anterior head segments (Fig. 2A) (Lehmann and Nüsslein-Volhard, 1987). This mutant phenotype is partially rescued by the hb-

EXPERIMENTAL DESIGN

It was previously shown that it is possible to localize a maternal transcript to the anterior end of the embryo by providing it with the 3′UTR of the bcd gene (Macdonald and Struhl, 1988; Gavis and Lehmann, 1992; Ephrussi and Lehmann, 1992; Macdonald et al., 1993). hb is maternally expressed and we have identified the enhancer element that is specifically required for this maternal expression (Lukowitz et al., 1994). It was therefore possible to produce a minimal hb construct that contains the maternal promoter and enhancer, the coding region and the bcd 3′UTR (called the hb-bcd3′UTR construct in the following). In addition, we have devised the construct such that its translation would not be under the control of the posterior morphogen nanos (nos), by excluding from the construct the ‘nanos response elements’ (NREs) that are also known to be located in the bcd3′UTR (Wharton and Struhl, 1991). The genetic effects and regulatory capabilities of this construct were then tested in wild-type flies and in different types of mutant background which will be discussed in turn.

Expression of the hb-bcd3′UTR-construct

To show that the RNA becomes localized in the expected way, we have done whole-mount in situ hybridization and antibody staining of embryos derived from mothers carrying the hb-bcd3′UTR construct. Fig. 1A shows that the RNA is indeed localized at the anterior end of the embryo. The HB protein that is produced from this RNA forms a concentration gradient from anterior to posterior (Fig. 1B). Interestingly, this gradient resembles much more the long-range BCD protein gradient (Driever and Nüsslein-Volhard, 1988) than the short-range zygotic HB protein gradient. Thus, the behaviour of the HB protein is similar to that of the BCD protein at these early stages. This observation suggests that either the diffusion coefficient, or the stability of the HB protein is higher during preblastoderm development.

The presence of the RNAs and protein from the hb-bcd3′UTR construct does not interfere with normal development of the embryos, at least not in the anterior region. However, we have observed a variable degree of abdominal defects caused by the construct, which might be due to leakage of the hybrid RNA towards posterior. Ectopic expression of HB protein in the posterior region is known to lead to this type of defects (Hülskamp et al., 1989; Struhl, 1989). Unfortunately, this effect precludes the possibility of putting more than two copies of the hybrid construct into an embryo and thus to increase further the amount of HB protein in the anterior region, since the degree of abdominal defects becomes lethal under these conditions.

Rescue activity for hb

The hb-bcd3′UTR construct has a rescue activity for the zygotic hb mutant phenotype (hb¹⁵²). Amorphic hb²⁵² mutant larvae lack in the anterior region the three thoracic segments and show an enlarged first abdominal segment. In addition, they lack the labium and show as an indirect consequence of this an incomplete involution of the more anterior head segments (Fig. 2A) (Lehmann and Nüsslein-Volhard, 1987). This mutant phenotype is partially rescued by the hb-
bcd3′ UTR construct. Embryos carrying this construct in the hbtreg mutant background, the effects seen in embryos coming from bcd mutant mothers (called bcd mutant embryos in the following) are unexpected. Instead of showing a partial rescue, the mutant phenotype is enhanced when the hbt-bcd3′ UTR construct is brought into bcd mutant embryos (Fig. 3C,D). We found that this effect is due to an ectopic activation of gt by the hbt-bcd3′ UTR construct. Although there is normally no anterior gt expression in bcd mutant embryos (Fig. 3A), an ectopic gt domain can be seen in the presence of the hbt-bcd3′ UTR construct (Fig. 3B). To show that this ectopic gt expression is responsible for the unexpected enhancement of the bcd phenotype, we genetically removed gt from this background. Under these conditions, a rescue effect of the hbt-bcd3′ UTR construct becomes apparent. In the embryo with only one dose of gt, the abdominal segments up to A1 are seen (Fig. 3E). Similarly, in the embryo lacking gt completely (Fig. 3F), only the typical gt phenotype in the posterior region is evident, while the anterior segments are rescued.

Effects in bcd-

In view of the rescue effects of the hbt-bcd3′ UTR construct in hbt mutant background, the effects seen in embryos coming from bcd mutant mothers (called bcd mutant embryos in the following) are unexpected. Instead of showing a partial rescue, the mutant phenotype is enhanced when the hbt-bcd3′ UTR construct is brought into bcd mutant embryos (Fig. 3C,D). We found that this effect is due to an ectopic activation of gt by the hbt-bcd3′ UTR construct. Although there is normally no anterior gt expression in bcd mutant embryos (Fig. 3A), an ectopic gt domain can be seen in the presence of the hbt-bcd3′ UTR construct (Fig. 3B). To show that this ectopic gt expression is responsible for the unexpected enhancement of the bcd phenotype, we genetically removed gt from this background. Under these conditions, a rescue effect of the hbt-bcd3′ UTR construct becomes apparent. In the embryo with only one dose of gt, the abdominal segments up to A1 are seen (Fig. 3E). Similarly, in the embryo lacking gt completely (Fig. 3F), only the typical gt phenotype in the posterior region is evident, while the anterior segments are rescued.

Effects in bcd,tsl embryos

Embryos coming from mothers double mutant for bcd and tsl (called bcd,tsl mutant embryos in the following) lack all terminally derived structures, the head segments and the first abdominal segment (Fig. 2C). Placing the hbt-bcd3′ UTR construct into this background leads to a partial rescue of this phenotype. The anterior abdominal segments now look normal and one thoracic denticle belt can be seen (Fig. 2D). In these embryos, it is possible to directly study the regulatory capabilities of hb on Kr. Kr is normally expressed in the whole anterior half of bcd,tsl mutant embryos (Fig. 2B), since all anterior repressing factors are excluded. Putting the hbt-bcd3′ UTR construct into this background leads to a repression...
of the \textit{Kr} domain at the anterior end of the embryo (Fig. 4C). This experiment shows clearly that elevated levels of \textit{hb} act as a repressor of \textit{Kr} expression. To rule out the possibility that this repression effect is mediated via \textit{gt}, we have performed a double staining with the \textit{gt} and the \textit{Kr} probes. Fig. 4 shows a comparison between embryos stained for \textit{Kr} only with those stained for \textit{gt} and \textit{Kr}. It is evident that the anterior region remains free of \textit{gt} (Fig. 4d), indicating that the repression effect of \textit{hb} on \textit{Kr} is likely to be direct.

Effects in ‘Bicaudal like’ embryos

Genetic removal of both maternal \textit{hb} and \textit{bcd} activity leads to the formation of ‘Bicaudal like’ embryos, i.e. embryos with two mirror image symmetric sets of posterior abdominal segments (Hülskamp et al., 1990; Struhl et al. 1992). The same phenotype is seen when \textit{nos} is ectopically localized to the anterior end of the embryo via the \textit{bcd3'UTR} (the \textit{nos-bcd3'UTR} construct, Gavis and Lehmann, 1992) (Fig 2E), since \textit{nos} inhibits the translation of both \textit{bcd} and \textit{hb} (Wharton and Struhl, 1991). We have tested the effects of the \textit{hb-bcd3'UTR} construct in the \textit{nos-bcd3'UTR} background, since these embryos are genetically easier to handle than embryos double mutant for \textit{hb\textsubscript{mat}} and \textit{bcd}. The presence of the \textit{hb-bcd3'UTR} construct leads to a suppression of the double abdomen phenotype, restores anterior-posterior polarity and rescues all abdominal segments (Fig. 2F). Again, this genetic background allows one to study the effects of \textit{hb} on the \textit{Kr} regulation directly. Embryos carrying the \textit{nos-bcd} 3'UTR construct do not express \textit{Kr} in the central domain (Gavis and Lehmann, 1992) (Fig. 4E). Addition of the \textit{hb-bcd3'UTR} construct restores a central \textit{Kr} domain (Fig. 4F). Thus, the appearance of the \textit{Kr} domain shows that there is a direct activation effect of the \textit{hb-bcd3'UTR} construct on \textit{Kr} expression. To prove that \textit{hb} can also act as a repressor of \textit{Kr} in these embryos, we have in addition removed \textit{tsl}. We find that \textit{Kr} is indeed repressed from the anterior end of the embryo, as in \textit{bcd,tsl} mutant embryos (Fig. 4G). This result shows most clearly that \textit{hb} acts as an autonomous repressor and activator on \textit{Kr}, since these embryos are devoid of any other known factors that are involved in anterior-posterior pattern formation.
DISCUSSION

The segmentation of the Drosophila embryo requires the generation of more and more refined internal boundaries. The first boundaries to be established are those of the gap gene and primary pair-rule gene expression domains and stripes. One way to create a domain or a stripe within the embryo is to put it under the control of a morphogen which acts as a repressor at high concentrations and as an activator at low concentrations. However, there has so far been little direct evidence that a single transcription factor can achieve this autonomously in the Drosophila embryo. It is frequently assumed that bcd can act in this way, but in those cases where this has been analysed more closely, this inference was not supported. The formally inferred repression effect of bcd on Kr was found to be mediated by gt (Kraut and Levine, 1991; Eldon and Pirotta, 1991) and the secondary repression effect of bcd on the zygotic hb expression was found to be mediated via differential phosphorylation (Ronchi et al., 1993), rather than by differential concentrations of bcd. Thus, for bcd it has yet to be shown that it can act as a threshold-dependent activator and repressor on the same target gene.

Another well-studied case is Kr. Using co-transfection experiments in cell cultures, Sauer and Jäckle (1991) were able to show that Kr can mediate concentration-dependent activation and repression via a single consensus DNA-binding site. However, it is not yet clear whether Kr also plays such a role in the embryo. Though Kr is directly involved in the regulation of neighbouring gap gene domains as well as pair-rule expression stripes (reviewed in Pankratz and Jäckle, 1990), all of these interactions are controlled by multiple factors and an autonomous effect of Kr on the formation of such a domain was not yet shown.

Fig. 4. Regulation of the central Krüppel domain by the hb-bcd3'UTR construct in bcd.tsl mutant background and in embryos carrying the nos-bcd3'UTR construct. Whole-mount in situ hybridizations are shown. (A) Kr wild-type expression. Note that Kr shows, in addition to the central domain, an anterior and a posterior expression domain at blastoderm stage which are regulated by different means. (B) bcd.tsl mutant embryo. Note that the normally central Kr expression domain extends to the anterior tip of the embryo. (C) bcd.tsl mutant embryo carrying the hb-bcd3'UTR construct. Note that the Kr expression domain is retracted from the anterior tip. (D) Embryo as in C, but double stained with the Kr and gt probes (see text). (E) Embryo carrying the nos-bcd3'UTR construct. Kr expression in the central domain is absent, while the posterior domain has become duplicated at the anterior end. (F) Embryo as in E, but carrying in addition the hb-bcd3'UTR construct. A central Kr expression domain is restored, albeit at a more anterior position. This is to be expected in view of the more anterior position of the artificial hb gradient. (G) Embryo as in F, but in addition mutant for tsl. The artificial anterior hb gradient is in this situation the sole regulator of the Kr expression domain, proving its effects as an autonomous morphogen (see text).
Similar cell culture co-transfection experiments were also performed with *hb* acting on a promoter fragment of the *engrailed* gene (Zuo et al., 1991). In these experiments, it was found that an increase of the *hb* dose led to an increase of the transcriptional response of the target gene. However, this effect was only seen up to a certain threshold. A further increase in *hb* dose beyond this concentration led then to a decrease of the transcriptional response. Thus, the results of these cell culture experiments are similar to the effects that we have observed with the regulation of *Kr* by *hb* in vivo.

The enhancer elements that drive the *Kr* expression in the central domain have been identified with the help of reporter gene constructs. Two such elements were found (CD1 and CD2, Hoch et al., 1990) and one of them (CD1) has been studied in detail. This element was shown to contain multiple binding sites for *bcd*, *hb* (Hoch et al., 1991) and *gt* (Capovilla et al., 1992). The CD1 element alone can drive the expression of a reporter gene in a manner reminiscent of the *Kr* expression, but does not fully mimic all wild-type regulatory effects. In particular, a repression effect of *hb* was seen at much lower concentrations than would normally have been expected and the activating effect of *hb* on this element was very poor (Hoch et al., 1991). It seems therefore likely that both elements contribute to the full regulatory effects of *hb* on *Kr*.

Judged from the above results, the autonomous effects of *hb* on *Kr* that are revealed by our experiments are likely to be direct, since we have excluded a potential interference of all other known early genes that could play a role. This does not, of course, exclude the remote possibility that there might be an as yet unknown gene that is differentially activated by *hb* and that could then act on *Kr*. Furthermore, our experiments do not exclude the possibility that regulatory co-factors may play a role. It is known that the Polycomb group genes are required for the maintenance of the regulatory effects of *hb* on *gt* and *kni* (Pelegri and Lehmann, 1994) and it is possible that they may also play a role in the *Kr* regulation.

Struhl et al. (1992) have also performed experiments with an elevated level of maternal HB protein in the embryo, though they did this simply by providing additional copies of the normal *hb* gene in the maternal background, rather than by creating an ectopic gradient. Interestingly, they also found a rescue of thoracic structures in a *bcd*,*tsl* mutant background. However, these authors did not observe a repression effect on *Kr* expression under these conditions. Thus, the fact that we could observe a repression of *Kr* in the equivalent experiment with the *hb-bcd*3*UTR construct suggests that this effect depends on the artificial gradient that we have provided.

The morphogenetic effect of the artificial *hb* gradient becomes most apparent in the situation where all endogenous *bcd* and *hb* activities are lacking. This is the case in the experiments with the combination of the *nos-bcd*3*UTR* and the *hb-bcd*3*UTR* constructs. While embryos carrying the *nos-bcd*3*UTR* construct alone show a mirror-image symmetry around abdominal segment A6, the addition of the *hb-bcd*3*UTR* construct restores anterior-posterior polarity, as well as the whole abdominal segment pattern. It should be made clear that in these embryos the ectopic anterior presence of the NOS protein results in an inactivation of both the anterior and the posterior maternal organizing system. The anterior system is removed because the *bcd* mRNA is directly repressed in its translation. The posterior system is rendered ineffective, because its function depends on the differential posterior inhibition of the translation of the maternal *hb* RNA (Hülskamp et al., 1989; Irish et al., 1989; Struhl, 1989), which is not possible when NOS protein is present at both ends of the embryo (Gavis and Lehmann, 1992). Thus, the rescue seen when the *hb-bcd*3*UTR* construct is added to these embryos is exclusively due to the artificial *hb* gradient and does not depend on any other maternal positional information. Most interestingly, this gradient has a different shape and a different location than the normal *hb* gradient (Tautz, 1988). Yet the abdominal segment pattern looks rather normal in the larvae, indicating that their formation depends more on the correct relative order of the activation and repression of target genes, rather than on the expression of these genes at a defined location within the embryo. Thus, in this respect, the artificial *hb* gradient acts very similar as it was noted for the *bcd* gradient (Driever and Nüsslein-Volhard, 1988).

We thank R. Lehmann for providing the flies carrying the *nos-bcd*3*UTR* construct and the *hb* cDNA clone, as well as D. Ferrandon for providing the *bcd* clone. We are furthermore indebted to I. Rambold for technical assistance as well as M. Klingler, W. Lukowitz and Robert Wheeler for support and helpful comments on the manuscript.

REFERENCES

Krüppel regulation by hunchback

(Received 25 July 1994)