Sex-determining genes in the homosporous fern *Ceratopteris*

Jo Ann Banks
Department of Botany and Plant Pathology, Lilly Hall, Purdue University, West Lafayette, IN 47907, USA

SUMMARY

Haploid *Ceratopteris* gametophytes are either hermaphroditic or male. The determinate of sex type is the pheromone antheridiogen (A\textsubscript{CE}) which is secreted by the meristic hermaphroditic and promotes ameristic male development of sexually undetermined gametophytes. Several mutations affecting the sex of the haploid gametophyte have been isolated and are described. The hermaphroditic (her) mutants are insensitive to A\textsubscript{CE} and develop as meristic hermaphrodites. These mutations effect ameristic male development in the presence of A\textsubscript{CE} but have no effect on hermaphroditic development. While most her mutations also have no effect on diploid sporophyte development, some partially A\textsubscript{CE}-insensitive her mutations have profound effects on sporophyte development. The transformer (tra) mutation effects both meristem and archegonia formation and causes the gametophyte to be an ameristic male under conditions that promote hermaphroditic development. The feminization (fem) mutation effects antheridia development in both male and hermaphroditic gametophytes and causes the gametophyte to develop as a meristic female in the absence or presence of the pheromone. The *her1 tra1* double mutant is male in the absence or presence of A\textsubscript{CE}, indicating that *tra1* is epistatic to *her1*. The phenotypes of *her1, tra1* and *fem1* single gene mutant phenotypes and the *her1 tra1* double mutant phenotype are used to deduce a model suggesting how the products of these genes might interact in a regulatory pathway to control sex determination.

Key words: sex-determination; sexual dimorphism; *Ceratopteris*; antheridiogen; pheromone

INTRODUCTION

Haploid gametophytes of many homosporous ferns, including *Ceratopteris richardii*, develop as males or hermaphrodites. The choice between these alternative developmental fates is determined by the pheromone antheridiogen (Döpp, 1950; Näf, 1979; Näf et al., 1975). In the absence of antheridiogen, single spores germinate and develop as hermaphroditic gametophytes, which produce egg-forming archegonia, sperm-forming antheridia and a well-defined meristem (are meristic). Hermaphrodites produce and secrete antheridiogen into their surroundings when they are no longer competent to respond to it. Spores that germinate and develop in the presence of antheridiogen become males lacking a defined meristem (are ameristic). Thus, in a population, spores that germinate and develop rapidly become hermaphrodites which secrete antheridiogen, while those that develop more slowly become males under the influence of the pheromone.

Physiological studies (Banks et al., 1993) have shown that the *Ceratopteris* gametophyte is competent to respond to its own antheridiogen (A\textsubscript{CE}) for only a brief period early in development (three to four days after spore inoculation, stage 2) when the spore wall cracks and the gametophyte is between one and four cells in size. Exposure to A\textsubscript{CE} during this and subsequent stages of gametophyte development is required for male development. If A\textsubscript{CE} is removed from the supporting medium, sexually undetermined or undifferentiated cells of the male gametophyte revert to the hermaphroditic form. Thus, the male program of expression is reversible indicating that antheridiogen is necessary for both initiating and maintaining the male program of expression. In contrast, the hermaphroditic program of expression is stable in that, once established by the absence of A\textsubscript{CE} during the critical early stage of development, it cannot be reversed by the addition of A\textsubscript{CE} at any time thereafter.

Although the structure of A\textsubscript{CE} is unknown, antheridiogens of other ferns are gibberellins (GAs) (Corey et al., 1987; Yamane et al., 1987; Furber et al., 1988; Takeno et al., 1989). The effectiveness of the GA biosynthesis inhibitors AMO-1618, CCC and ancymidol in blocking the biological response to A\textsubscript{CE} suggests that the biosynthesis of A\textsubscript{CE} may have steps in common with the biosynthesis of GA (Warne and Hickok, 1989). Abscisic acid (ABA), a known antagonist of GA responses in flowering plants (Walton, 1980), also blocks the antheridiogen response in *Ceratopteris* (Hickok, 1983).

Homosporous ferns are well suited for the study of sex determination in plants primarily because the determinant of sex type is known, as is when and where during development sex determination takes place. Of the homosporous ferns, *Ceratopteris* was chosen for study because it has many features of a model genetic organism (Chasen, 1992; Hickok et al., 1987). Given that each genetically identical *Ceratopteris* spore has the potential to develop as either a hermaphroditic or male gametophyte, the sex of the gametophyte is determined by an epigenetic, hormonally regulated mechanism that acts after sporogenesis and during the gametophyte generation. In order to
MATERIALS AND METHODS

Plants and growth conditions

The origin of the diploid (n=39) wild-type inbred strain of Ceratopteris richardii (Hnn) is described in Scott and Hickok (1987). The antheridiogen-insensitive mutation HtC23-12, designated here as her1, was selected from X-irradiated Hnn spores of C. richardii (Warne et al., 1988). Procedures for sterilization of spores, gametophyte culture and obtaining antheridiogen are described in Banks et al. (1993). Sporophyte plants were transferred to soil (3:1 mix of Promix:perlite) three weeks after fertilization, covered with plastic misting system delivering deionized water and fertilized each week with 5 g/l Peter’s Poinsettia Finisher 15-20-25 (Hummert International). After 8 weeks in the greenhouse, spores begin to shed. Spores were collected by harvesting mature leaves in glassine bags. Spores release inside the bag as the leaf dries out and germinate at frequencies sufficiently high for genetic analysis one month after leaves are harvested.

Isolation of mutants and genetic analysis

Wild-type or her1 spores were mutagenized with EMS at concentrations that resulted in approximately 50% spore germination and further gametophyte growth. EMS (Sigma Chemical Company) was dissolved in 0.2 M phosphate buffer (pH 6.5) to final concentrations of 0.0 M, 0.85 M, 1.70 M and 2.55 M then added individually to 10 5 drops of water were added to each well to promote self-fertilization of the gametophyte. If no embryo formed after two weeks, wild-type sperm were added to each gametophyte. In some cases, gametophytes may have been fertilized by other members of the mutagenized population. The trail mutant gametophyte was selected from EMS-treated her1 spores. Males from this population were isolated and grown in microtiter wells on media lacking ACE. Sperm from gametophytes that continued to produce antheridia and no meristem were added to her1 hermaphrodites to produce a sporophyte heterozygous for trail and homozygous for her1. In performing crosses, sperm were obtained by adding room temperature water to a plate of 10-day-old wild-type male gametophytes cultured at 28°C with ACE. The water and the drop in temperature cause the sperm to release. Sperm were then added dropwise to each female in a microtiter well. Immediate swarming of sperm around the archegonia and swelling of the egg 48 hours after adding sperm were indications that the desired fertilization event had occurred. Sperm swarm to the archegonia only if all eggs of the gametophyte are unfertilized.

RESULTS

Wild-type morphology

The wild-type male and hermaphroditic gametophytes can be morphologically distinguished by size and shape as well as type of sex organ produced. Hermaphroditic gametophytes (Fig. 1) are much larger than males due to the development of a lateral meristem that generates the two-dimensional sheet of cells that makes up most of the hermaphrodite thallus. Egg-bearing archegonia develop only adjacent to the meristem notch (Fig. 1). In hermaphrodites, antheridia develop distal to the meristem notch and archegonia. Male gametophytes have no organized meristem (are amestic) and are smaller than hermaphrodites (Fig. 1). Most cells of the male thallus differentiate as antheridia with distinctive ring cells, cap cells and helical sperm cells (Fig. 1). The antheridia and archegonia are the only structures of the gametophyte that result from cell divisions and growth in three dimensions. A description of Ceratopteris richardii sporophyte morphology is provided elsewhere (Lloyd, 1974).

The completely ACE-insensitive her mutations

Hermaphroditic (her) mutant gametophytes are insensitive to ACE and are hermaphroditic in the presence of the male-inducing pheromone. These mutations were screened by plating mutagenized wild-type spores on medium containing ACE. Potential her mutants are meristic hermaphrodites on this medium and are easily distinguished from the smaller amestic wild-type males that develop in the presence of ACE. From the mutagenized population, 531 hermaphrodites were selected and either selfed or backcrossed by wild-type sperm. Among these, 15 M1 gametophytes produced F1 progeny that formed higher frequencies (>20%) of hermaphrodites than wild-type gametophytes when grown on medium containing ACE. Further genetic analysis of the mutant lines showed that, in 10 of the 15 lines (her5, 7, 9, 10, 11, 13, 14, 15, 17 and 19), the her phenotype resulted from a single gene mutation (Table 1). Pairwise crosses to determine allelism by complementation is not possible since the gametophyte is haploid. However, linkage analysis to determine whether two different her mutants are genetically unlinked and non-allelic is currently in progress.

Phenotypically, all ten of the completely ACE-insensitive her mutant lines appear identical to each other at the gametophyte
Fig. 1. Phenotypes of wild-type and mutant gametophytes. (A) A 15-day-old wild-type meristic hermaphrodite. (B) A 15-day-old wild-type ameristic male. (C) A 20-day-old her8 gametophyte that began development as an ameristic male then switched to the meristic hermaphroditic form of development. (D) A 15-day-old fem1 gametophyte. (E) A magnified view of the archegonia that form adjacent to the meristem notch of wild-type, her and fem mutant gametophytes. The neck of one archegonium has spread open and attracted several sperm which appear as squiggly lines at the entry of the archegonium. (F) A magnification of the tip of a male gametophyte showing multiple antheridia, each consisting of a cap cell and a ring cell. Abbreviations: an, antheridia; ar, archegonia; mn, meristem notch; rc, ring cell; cc, cap cell; s, sperm. Bar A-D, 200 µm; E and F, 50 µm.
level, i.e. are exclusively hermaphrodites with a normal-sized and -shaped meristem and normal numbers of antheridia and archegonia. Andridiogenesis is secreted from populations of each of these mutant lines in quantities sufficient to induce >90% male development of wild-type gametophytes grown in isolation (data not shown). Sporophytes homozygous or heterozygous for each of these ten mutations are phenotypically indistinguishable from wild type and are fully fertile.

The partially ACE-insensitive her mutations

In the remaining five her lines, the her phenotype did not segregate as a single Mendelian trait but was heritable through at least two generations of backcrossing by wild-type sperm. Hermaphrodites from each of these mutant lines, when crossed by wild-type sperm or self-fertilized, produced greater numbers of hermaphroditic F2 progeny when grown on medium containing ACE compared to wild type but did not produce hermaphrodites to males in a 1:1 or 1:0 ratio, respectively (Table 1). Among these partially ACE-insensitive her lines, considerable phenotypic variation was observed, particularly in the sporophyte. Normal sporophytic development was observed in only two lines. Plant homozygous for her6 and her16 were indistinguishable from wild-type sporophytes. The remaining mutant lines (her8, her12 and her20) each resulted in a unique phenotype in the gametophyte and/or sporophyte generation. These phenotypes were evident in all homozygous sporophytes analyzed after two generations of backcrossing ACE-insensitive hermaphrodites by wild-type sperm. This indicates that the her gametophytic and associated sporophytic phenotypes are due to either a mutation of a single gene or mutations of two different but closely linked genes.

The progeny gametophytes of a heterozygous her8 HER8 sporophyte parent were of three types when grown on medium containing ACE: meristic hermaphrodites (genotypically her8); amestic males (genotypically HER8 and/or her8); and gametophytes that began development as amestic males which then initiated development of the meristic, hermaphroditic form from undifferentiated cells of the male gametophyte (genotypically her8; Fig. 1). Although undifferentiated cells of the wild-type amestic male gametophytes can also initiate the hermaphroditic program of development, the switch requires that the male gametophytes be removed from medium containing ACE for a period of at least one week (data not shown). The her8 gametophytes are unusual in that the switch from male to hermaphrodite can occur in the presence of ACE. Hermaphroditic and 'switching' her8 gametophytes, when self-fertilized, produce homozygous sporophytes that are abnormal in many ways. They are short-lived, weak and small, producing up to six deformed leaves before dying (Fig. 2). After self-fertilization of her8 gametes, gametophyte growth does not cease as it does in wild type (Fig. 2). Polyembryony is rarely observed in wild type yet is common in self-fertilized her8 plants. Sporangia, if formed in these plants, do not contain viable spores. Heterozygous her8 HER8 sporophytes are phenotypically indistinguishable from wild-type sporophytes, indicating that in the sporophyte, her8 is a recessive lethal mutation.

The her12 mutation also results in partial insensitivity to ACE as less than one-half of the progeny of a her12 HER12 sporophyte parent are hermaphroditic after two generations of backcrossing her12 ACE-insensitive hermaphrodites by wild-type sperm (Table 1). Mutant her12 males and hermaphrodites that develop in the presence of ACE are indistinguishable from wild-type males and hermaphrodites. In the sporophyte, the her12 mutation effects both plant size and structure. Homozygous her12 plants generated by self-fertilizing ACE-insensitive hermaphrodites are of two distinct types, either dwarf and bushy or diminutive in size relative to wild type (Fig. 3). The leaf length of dwarf plants does not exceed 6 cm, averaging only 4.1 cm (Table 2). The mature leaves of the diminutive form of the her12 homoygote average 11.1 cm in length, larger than the dwarf form yet smaller than wild-type leaves of comparable developmental ages (Table 2). The extent of froud dissection is also reduced in all her12 sporophytes relative to wild-type plants (Table 2).

The her12 mutation also affects sporangial development in the sporophyte. In wild-type sporophytes, spore-bearing sporangia develop on the abaxial surface of the leaf (Fig. 4). Marginal leaf tissue curls over the developing sporangia giving the dissected leaf blade a horned appearance and the plant its name (Cerato=horn). The sporangia of the dwarf plants are frequently replaced by adventitious bud initials. These bud initials develop as plantlets that appear to line each margin of the

<table>
<thead>
<tr>
<th>Observed ratio of herm: male (summed)</th>
<th>n</th>
<th>Homogeneity chi square</th>
<th>Summed data chi square</th>
<th>Observed ratio of herm: male (summed)</th>
<th>n</th>
<th>Homogeneity chi square</th>
<th>Summed data chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>her5</td>
<td>11</td>
<td>2.29; P>0.95</td>
<td>0.09; P>0.90</td>
<td>1500.0</td>
<td>6</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her6</td>
<td>11</td>
<td>2.74; P>0.95</td>
<td>0; P>0.99</td>
<td>2616.282</td>
<td>10</td>
<td>13.6; P<0.10</td>
<td>54.88; P<0.05</td>
</tr>
<tr>
<td>her7</td>
<td>12</td>
<td>2.20; P>0.90</td>
<td>0.35; P>0.70</td>
<td>3400.0</td>
<td>14</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her8</td>
<td>6</td>
<td>79.4; P=0</td>
<td>31.4; P=0</td>
<td>3600.0</td>
<td>10</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her9</td>
<td>7</td>
<td>0.74; P>0.95</td>
<td>0.71; P>0.30</td>
<td>2400.0</td>
<td>8</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her10</td>
<td>10</td>
<td>7.41; P>0.95</td>
<td>0.00; P>0.95</td>
<td>3000.0</td>
<td>10</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her11</td>
<td>8</td>
<td>1.79; P>0.90</td>
<td>0.17; P>0.70</td>
<td>1289.1425</td>
<td>4</td>
<td>>500; P=0</td>
<td>>500; P=0</td>
</tr>
<tr>
<td>her12</td>
<td>9</td>
<td>3.24; P>0.90</td>
<td>0.39; P>0.50</td>
<td>3300.0</td>
<td>11</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her13</td>
<td>13</td>
<td>6.04; P>0.90</td>
<td>2.71; P=0.10</td>
<td>1500.0</td>
<td>5</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her14</td>
<td>12</td>
<td>4.69; P>0.95</td>
<td>0.66; P>0.30</td>
<td>2700.0</td>
<td>9</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her15</td>
<td>19</td>
<td>86.5; P=0</td>
<td>157.0; P=0</td>
<td>1162.490</td>
<td>8</td>
<td>26.0; P=0</td>
<td>290.0; P=0</td>
</tr>
<tr>
<td>her16</td>
<td>14</td>
<td>8.74; P>0.70</td>
<td>0.00; P>0.95</td>
<td>3600.0</td>
<td>12</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her17</td>
<td>6</td>
<td>3.02; P>0.90</td>
<td>1.12; P=0.50</td>
<td>2400.0</td>
<td>8</td>
<td>0; P=1.0</td>
<td>0; P=1.0</td>
</tr>
<tr>
<td>her20</td>
<td>7</td>
<td>>500; P=0</td>
<td>>500; P=0</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Segregation of the her phenotype among progeny grown on medium containing ACE

The progeny of sporophytes heterozygous for mutation (1:1 expected ratio of hermaphrodites:males)

The progeny of sporophytes homzygous for mutation (1.0 expected ratio of hermaphrodites: males)
Sex-determining genes in fern _Ceratopteris_ 1953

Table 2. Phenotypes of homozygous _her_ sporophytes.

<table>
<thead>
<tr>
<th>Leaf length</th>
<th>Sporangial development</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>8-40 cm (x=25, n=20) normal (16 spores/sporangium)</td>
</tr>
<tr>
<td>her12 dwarf</td>
<td>2.0-5.4 cm (x=4.1, n=17) spores replaced with adventitious buds</td>
</tr>
<tr>
<td>her12 dimunitive</td>
<td>8.4-15.3 (x=11.1, n=19) spores aborted or replaced with adventitious buds</td>
</tr>
</tbody>
</table>

Blade:total leaf length

| wild type | .51:1-.78:1 (x=0.68:1, n=14) |
| _her18_ | .27:1-.43:1 (x=0.36:1, n=14) spores aborted |

Frond dissection

wild type	simple, pinnate, bipinate or tripinate
her8	simple or rarely pinate
her12	simple or rarely pinate
her18	simple or pinate, rarely bipinate
her20	rarely simple, pinate, bipinate or tripinate.

Fig. 2. Phenotypes of young wild-type and homozygous _her8_ sporophytes. (A). A wild-type sporophyte 10 days after fertilization showing the first three embryonic leaves that are completely round; the remnant gametophyte remains attached to the growing sporophyte. (B). Homozygous _her8_ sporophyte 10 days after fertilization. The embryo produced from this gametophyte has one irregularly shaped embryonic leaf. The attached gametophyte continues to grow in the direction indicated by the arrow. Abbreviations: g, gametophyte; s, sporophyte. Bar, 1mm.

_mature sporophyte leaf and contribute to the bushy appearance of the plant (Fig. 4). Adventitious bud initials frequently occur in wild-type leaves but are restricted to the point where a leaf or leaflet diverges from the stem axis and usually form only on the adaxial face of the leaf (Fig. 4). The diminutive form of the _her12_ homozygote produces sporangia that contain either no spores, aborted or nonviable spores, although adventitious buds like those observed in the dwarf plants occasionally form adjacent to sporangia. Heterozygous _her12_ _HER12_ sporophytes are indistinguishable from wild type, indicating that _her12_ is a recessive sterile mutation in the sporophyte. Since all homozygous _her12_ sporophytes are sterile, the phenotypes and genotypes of their progeny cannot be tested._

Gametophytes derived from heterozygous or homozygous _her20_ sporophytes are also only partially insensitive to _ACE_. (Table 1). Hermaphroditic _her20_ gametophytes, when selfed, produce sporophytes with an exaggerated horned appearance. In wild-type plants, the transition from sterile to fertile, sporangia-producing leaves is gradual such that the leaves closest to the base of the plant are broad, less dissected and are sterile (Fig. 5), while younger, more distal leaves are more dissected and furled (horned) to support the development of sporangia. In homozygous _her20_ sporophytes, the transition from vegetative to reproductive development occurs earlier than in wild type such that almost all leaves have a horned appearance (Fig. 5). Heterozygous plants are phenotypically indistinguishable from homozygous plants, indicating that in the sporophyte, the _her20_ mutation is dominant.

The _transformer_ mutation.

The _transformer_ (tra) mutation causes the transformation of hermaphrodites into males under conditions that normally promote hermaphroditic development. Phenotypically, these mutants develop as males in both the absence and presence of _ACE_. _Transformer_ mutations are difficult to select from a population of wild-type gametophytes since in the absence of exogenous _ACE_, between 40% and 70% of the gametophytes develop as males as a result of the endogenous _ACE_ secreted from hermaphroditic members of the population. The approach used to identify _tra_ mutations was to mutagenize a population of _ACE_-insensitive HrC23-12 spores (referred to here as _her1_, see methods) and select ameristic male gametophytes (suppressors of _her1_) on media containing _ACE_. In a single mutagenesis of _her1_ spores, ten male gametophytes were found and transferred to medium lacking _ACE_. Five produced a meristem after three weeks of culture on media lacking _ACE_. Two of these, when backcrossed to a _her1_ hermaphrodite, produced sporophytes. One sporophyte produced no viable spores. Progeny spores of the second fertile sporophyte plant (regenerants of the putative _her1 her1; tra1 TRA1_ sporophyte) were plated on media with and without _ACE_ in isolation. If _tra1_ is a true _transformer_ mutation and _her1_ and _tra1_ are
unlinked, the expected ratio of males to hermaphrodites on media with or without ACÉ would be 1:1; this was the ratio observed (Table 3). Sperm from males of this backcrossed population of gametophytes were crossed to wild-type hermaphrodites to determine the phenotype of tral HER1 gametophytes. In this cross (tral her1 x TRA1 HER1), a 3:1 ratio of males to hermaphrodites on media containing ACÉ is expected assuming that the tral HER1 gametophyte is male and tral and her1 segregate independently. Three hundred progeny gametophytes from each of six independent crosses of this type were analyzed. An average of 71% of the gametophytes were male, indicating that the male phenotype was not quite segregating 3:1 (Table 3). The lack of 3:1 segregation is likely due to differences in the germination rates among spores of various genotypes. To test the possibility that either TRA1 HER1, tral HER1 or tral her1 males are underrepresented in the population of gametophytes, thus skewing the segregation ratios, males previously grown on medium containing ACÉ were transferred to medium lacking ACÉ. If TRA1 HER1, tral HER1 and tral her1 males are equally represented in the population, one-third of the males (i.e. TRA1 HER1 males) should switch to the hermaphroditic form of growth while two-thirds should remain male. Of the 24 male gametophytes transferred to media lacking ACÉ, 8 developed a meristem and 16 did not. Together, these results indicate that the tral gametophytic phenotype is male. The tral her1 double mutant gametophyte generated in these crosses is male, indicating that tral is epistatic to her1. Sporophytes heterozygous for tral are phenotypically indistinguishable from wild-type sporophytes.

The feminization mutations
Feminization (fem) mutations are female, i.e. produce archegonia and a meristem but no antheridia, in either the presence or absence of ACÉ (Fig. 1). One fem mutant (fem1) was isolated during the screen for her mutations previously described. While her mutations are ACÉ-insensitive and self-fertile, fem mutations are ACÉ-insensitive and self-infertile but are capable of being fertilized by wild-type sperm. The fem females, when crossed by wild-type sperm, produce heterozygous sporophytes which segregate female:male progeny gametophytes in a 1:1 ratio when grown on media containing ACÉ (Table 3), and a 1:1 ratio of female:hermaphrodite when grown on media lacking ACÉ (data not shown), indicating that fem1 segregates as a single Mendelian trait. Sporophytes heterozygous for fem1 are indistinguishable from wild type.
alter, but do not abolish, the ability of the gametophyte antheridia in the meristic gametophyte. Wild-type roditic development, indicating that wild-type that mutation of any of the genes involved in the A CE signal these mutations. There are likely to be several not know how many different gene loci are represented by mutations likely define genes whose wild-type gene products include the cellular receptor of A CE or components of the A CE signal transduction pathway. If the secreted form of A CE is converted or modified to an active form by the gametophyte in biosynthesis or secretion of ACE. Loss-of-function her mutations likely define genes whose wild-type gene products include the cellular receptor of ACE or components of the ACE signal transduction pathway. If the secreted form of ACE is converted or modified to an active form by the gametophyte in order to be effective in directing male development, her mutations may also affect this processing. Although many independent her mutations have been identified thus far, we do not know how many different gene loci are represented by these mutations. There are likely to be several her loci given that mutation of any of the genes involved in the ACE signal transduction pathway(s) will yield a her phenotype. Complementation analysis of two mutants is not possible in the gametophyte since it is haploid. Through a process referred to as apospory, it is possible to generate diploid gametophytes from diploid sporophytic tissue. By crossing two diploid gametes, tetraploid Ceratopteris sporophytes can be generated (Eberle, personal communication) which should produce diploid progeny spores. The ability of two mutations to complement each other in diploid gametophytes can be analysed by exploiting this process.

Sporophytes homozygous for all completely ACE-insensitive her mutations have wild-type phenotypes. This indicates that the antheridiogen response, or at least those aspects of the response affected by these mutations, is not essential nor involved in sporophyte growth and development. Since the ACE response is not essential for viability, it lends itself to the study of genes involved in hormone reception/perception in plants.

Several other her mutant lines identified in this study are partially insensitive to ACE. These mutations (her6, 8, 12, 16 and 20) alter, but do not abolish, the ability of the gametophyte to respond to ACE to develop as males. With the exception of her6 and her16, these mutations also have a profound effect on sporophyte growth and development. The dwarf, bushy phenotype of some homozygous her12 sporophytes is typical of GA-sensitive and GA-insensitive dwarf mutants of Arabidopsis (Koornneef and van der Veen, 1980; Koornneef et al., 1985), maize (Phinney, 1956; Harberd and Freeling, 1989) and Brassica (Zanewich et al., 1991). If the phenotypes of her8, 12 and 20 homozygous sporophytes are due to defects in the ability to synthesize or respond to GA or some other hormone, it would suggest that hormones in addition to ACE are directly or indirectly involved in sex determination. Assuming that a single gene mutation is responsible for the gametophytic and sporophytic mutant phenotypes observed in her8, 12 or her20 plants, the pleiotropic effect on both gametophytic and sporophytic development could also be explained by the inappropriate expression of gametophytic genes in the sporophyte, which could alter sporophytic development. To illustrate, unlike wild-type gametophytes, the ACE-insensitive her8 gametophyte continues meristematic and sex organ growth after fertilization. This mutation thus appears to affect the repression of gametophytic genes, including sex-determining genes, that is mediated by the fertilization event. Expression of normally repressed gametophytic genes in the homozygous her8 sporophyte could hypothetically affect its development. Further genetic analysis will be required to determine whether the mutant gametophytic and sporophytic phenotypes are due to one or more closely linked mutations before a clear causal relationship between mutant gametophytic and sporophytic development can be made.

The tral mutant is also insensitive to ACE; however, unlike the her mutants, a meristem and archegonia fail to form under otherwise permissive conditions. Wild-type TRAI activity is thus required for meristem and archegonia formation in the gametophyte. Not surprisingly, the stability of the male phenotype is also affected in tral mutants. Sexually undetermined or undifferentiated cells of the wild-type male gametophyte switch to the meristic, hermaphroditic form when ACE is removed from the supporting medium. The male program of expression in tral males, however, is stable and insensitive to fluctuations in ACE levels. This indicates that, in the wild-type male gametophyte, TRAI activity can be activated or dere-
pressed if A_{CE} is withdrawn from its environment. The ability to activate or derepress TRA1 activity in response to withdrawal of A_{CE} is eliminated in the tra1 mutant gametophyte.

The phenotypes of her and tra mutants of Ceratopteris resemble those found in Caenorhabditis elegans. In C. elegans, the tra-1 gene is a major switch gene controlling its sexual phenotype (Hodgkin, 1987). Recessive loss-of-function tra-1 alleles cause XX animals (normally hermaphroditic) to develop into fertile males. Dominant gain-of-function tra-1 alleles cause XO animals (normally male) to develop into fertile females. By analogy, some gain-of-function tra mutations in Ceratopteris are expected to have a her phenotype and may be present among the collection of her mutant lines. Epistatic suppression of her1 by the tra1 mutation in Ceratopteris is also similar to interactions between tra and her genes in Caenorhabditis (Hodgkin, 1980).

The fem1 mutant gametophyte produces a meristem, multiple archegonia and no antheridia in either the absence or presence of A_{CE}. This phenotype indicates that wild-type FEM1 activity is required for antheridial development in both meristic hermaphroditic and ameistic male gametophytes. Genetic screens for mutations that prevent antheridial development in the meristic hermaphrodite but not in the ameistic male are currently in progress. Such mutants, if they exist, would define genes that are required for antheridial development only in the hermaphrodite.

The fourth class of sex-determining genes in Ceratopteris is defined by mutations that render the gametophyte insensitive to ABA. Hickok (1983) first demonstrated that ABA blocks the effects of A_{CE} such that wild-type spores cultured with A_{CE} and ABA ($>10^5$ M) develop exclusively as small, meristic, archegoniate gametophytes with no or few antheridia. Hickok (1985) isolated two abscisic acid resistant (abr) mutant gametophytes by selecting large hermaphroditic gametophytes from a mutagenized population of spores grown on media containing ABA. Both abr mutant gametophytes are insensitive to ABA ($>10^5$ M) and develop as males in the presence of A_{CE} and ABA or as normal hermaphrodites in the presence of only ABA. The wild-type ABR gene is thus required to block the effect of A_{CE} in promoting male development when exogenous ABA is present. However, there is no evidence or indication that ABA, like A_{CE}, is secreted to act exogenously as a pheromone. Endogenous levels of ABA in populations of gametophytes are highest in ungerminated spores and drop as the spore walls crack and gametophyte growth begins (Warne and Hickok, 1989). High levels of endogenous ABA correspond to the stage of development when the wild-type gametophyte is not competent to respond to A_{CE} (stage 1; Banks et al., 1993). Mutant abr gametophytes are more competent to respond to A_{CE} during the first stage of development than wild-type gametophytes; i.e., produce more males when exposed to A_{CE} during stage one than wild-type gametophytes (Eberle and Banks, unpublished data). These observations indicate that one possible role of endogenous ABA in sexual development is to block the A_{CE} response during this stage of development.

Fig. 4. Adventitious bud and sporangial development in wild-type and homozygous her12 sporophytes. (A) The adaxial surface of a wild-type sterile leaf showing the position of adventitious bud initiation and growth. (B) The abaxial surface of a wild-type fertile leaf showing the placement of sporangia along the margins of the leaf. Some of the lower leaf margin has been removed to reveal the sporangia. (C) The abaxial surface of a mature leaf of a homozygous her12 sporophyte (diminutive form) showing sporangia and adventitious bud initiation and growth where sporangia normally develop. (D) The abaxial leaf surface of a dwarf her12 sporophyte. Abbreviations: ab, adventitious bud; s, sporangium; sp, spores. Bar, 1 mm
A simple model for the control of sex determination in *Ceratopteris*

A preliminary and simple model explaining how some of the key regulatory sex-determining genes interact to specify male or hermaphroditic development of the *Ceratopteris* gametophyte is illustrated in Fig. 6. This model is based on physiological studies of the antheridiogen response (Banks et al., 1993) and the phenotypes of *her1*, *tra1* and *fem1* single mutants and the *her1 tra1* double mutant gametophytes. The nature of the regulatory steps in this model are unknown and cannot be predicted at this time.

The *tra1 her1* double mutant gametophyte is phenotypically male, indicating that *tra1* is epistatic to *her1*. One interpretation of this result is that *HER1*, when active, functions (directly or indirectly) to repress the *TRA1* gene or its gene product. Because of this interaction, the sex-determining signal *ACE* is probably required only to activate *HER1*. This interpretation is most consistent with the observations that mutation of *HER1* and/or absence of *ACE* leads to hermaphroditic development, while mutation of *TRA1* and/or presence of *ACE* leads to androecial male development. Therefore, when a wild-type gametophyte that is competent to respond to *ACE* is exposed to *ACE*, *HER1* is activated. Because *HER1* is a repressor of *TRA1* activity, *TRA1* is not active. Since *TRA1* activity is required for archegonia and meristem formation, neither structure forms in the gametophyte. The *FEM1* gene, which is active in the absence or presence of *ACE*, promotes the expression of genes required for antheridia development. The gametophyte is thus an androecial male in the presence of *ACE*.

In the absence of *ACE*, *HER1* is not active, *TRA1* and *FEM1* are both expressed, and the gametophyte develops archegonia, antheridia and a meristem (is hermaphroditic). The *FEM1* gene, which is required for antheridia development, is thought to be constitutively active (in the sense that it is not regulated by *ACE*) because antheridia develop in both the hermaphroditic and male gametophyte and in the absence or presence of *ACE*.

It is unknown at this time why antheridia do not form in the region of the hermaphroditic gametophyte occupied by the meristem and archegonia.

The *fem1* gametophyte is meristic and produces archegonia even in the presence of *ACE*, indicating that *TRA1* is expressed in the *fem1* gametophyte even though its repressor, *HER1*, is active. This observation suggests that the active *HER1* and *FEM1* gene products are both necessary for the repression of *TRA1*. If *FEM1* were not involved in repressing *TRA1* activity, the *fem1* gametophyte should develop as an androecial, asexual gametophyte in the presence of *ACE* since under these conditions neither the *TRA1* gene (required for meristem and archegonia development) nor the *FEM1* gene (required for antheridial development) would be active. A genetic analysis of
double and triple mutant gametophytes will be used to test and develop this model further.

The general organization of the sex-determination gene network in *Ceratopteris richardii* thus far appears similar in some aspects to that found in *Drosophila melanogaster* and, in particular, *Caenorhabditis elegans* (reviewed by Hodgkin, 1990). However, there are at least two major differences between *Ceratopteris* and these two animal species in the biology of sex determination that will likely be reflected in their underlying genetic and molecular mechanisms of sex determination. First, the primary sex-determining signal in *Ceratopteris* is a pheromone. In *Drosophila* and *Caenorhabditis*, the signal is the ratio of X chromosomes to autosomes. Second, *Drosophila* and *Caenorhabditis* have documented or proposed mechanisms to insure that once the sex is initially set by the X:A ratio during embryonic development, the organism maintains a single sexual fate throughout development without having to respond continuously to the primary sex-determining signal (reviewed by Hodgkin, 1990; Kuwabara and Kimble, 1992; Cline, 1993). While the same is true for the *Ceratopteris* hermaphroditic gametophyte, the male gametophyte adopts the meristic, hermaphroditic program of expression if the primary signal is removed. The underlying mechanism controlling male sex determination must, therefore, be able continually to monitor and respond to the sex-determining signal and regulate sex-determining genes appropriately. Given that sex determination is a vital developmental process in both plants and animals, it will be interesting to understand at a mechanistic and molecular level how such disparate organisms achieve the common goal of generating sexual dimorphism.

I wish to thank Jill Nemacheck and Corey Linkel for their assistance in scoring gametophytes and harvesting spores, James Eberle, Chi-Kuang Wen, Mitsuyasu Hasabe, George Rutherford and Les Hickok for helpful discussion and reading of the manuscript. This work is supported by a grant from the National Science Foundation. This is journal paper no. 14103 of the Purdue University Agricultural Experiment Station.

REFERENCES

(Accepted 2 April 1994)