Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc

Jose F. de Celis¹, Antonio Garcia-Bellido² and Sarah J. Bray³,*

¹Department of Genetics and ³Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK
²Centro de Biologia Molecular, Universidad Autonoma de Madrid, Cantoblanco, Madrid, Spain

*Author for correspondence (e-mail: sjb32@mole.bio.cam.ac.uk)

SUMMARY

The cells along the dorsoventral boundary of the Drosophila wing imaginal disc have distinctive properties and their specification requires Notch activity. Later in development, these cells will form the wing margin, where sensory organs and specialised trichomes appear in a characteristic pattern. We find that Notch is locally activated in these cells, as demonstrated by the restricted expression of the Enhancer of split proteins in dorsal and ventral cells abutting the D/V boundary throughout the third larval instar. Furthermore other genes identified by their involvement in Notch signaling during neurogenesis, such as Delta and Suppressor of Hairless, also participate in Notch function at the dorsoventral boundary. In addition, Serrate, a similar transmembrane protein to Delta, behaves as a ligand required in dorsal cells to activate Notch at the boundary. Notch gain-of-function alleles in which Notch activity is not restricted to the dorsoventral boundary cause miss-expression of cut and wingless and overgrowth of the disc, illustrating the importance of localised Notch activation for wing development.

Key words: Drosophila, Notch, Dorsal-ventral boundary, Wing, Imaginal disc

INTRODUCTION

The transmembrane protein encoded by Notch participates in many cell-fate decisions and morphogenetic events during development, both in Drosophila and in other organisms where homologues have now been found (Artavanis-Tsakonas et al., 1995). Most analyses of Notch have focused on its role in neurogenesis, where it appears to function as the receptor in a signaling event that leads to a cell being inhibited from adopting the neural fate (Campos-Ortega and Knust, 1990). Other components required for this decision include Delta, another transmembrane protein which is the putative ligand for Notch (Artavanis-Tsakonas et al., 1995), and the Enhancer of split proteins, which are transcription factors (Delidakis and Artavanis-Tsakonas, 1992; Knust et al., 1992) expressed in cells where Notch is active (Jennings et al., 1994). In addition, the Suppressor of Hairless [Su(H)] protein has been implicated as a link between the cell-surface Notch receptor and the nucleus (Fortini and Artavanis-Tsakonas, 1994) at least during peripheral nervous system development in Drosophila (Schweisguth and Posakony, 1994). However, the pleitropic actions of Notch (Shellenger and Mohler, 1978) raise the question of whether the same components are involved in all processes where Notch is required.

The Notch gene was first identified through its effect on the wing margin, loss of one dose of Notch results in nicked wings. Subsequent studies have revealed several roles for Notch in wing morphogenesis, where it is needed for cell growth and vein differentiation as well as for wing margin formation (Shellenburger and Mohler, 1978; de Celis and Garcia-Bellido, 1994b). The wing develops from an anlage of a few embryonic cells that proliferate during the larval instars (Cohen, 1993). The wing anlage is subdivided into lineage units called compartments (Garcia-Bellido et al., 1973), and the borders between these compartments have a major influence on the growth and patterning of the disc (Diaz-Benjumea and Cohen, 1993; Basler and Struhl, 1994). The division into dorsal and ventral compartments occurs during the second larval instar through the activity of the Apterous homeodomain protein, which is expressed throughout the dorsal compartment (Cohen et al., 1992). The dorsal/ventral (D/V) boundary forms at the edge of the apterous-expressing cells, and organizes proliferation of both dorsal and ventral cells (Diaz-Benjumea and Cohen, 1993; Williams et al., 1993; Blair et al., 1994), in a process mediated at least in part by the secreted protein Fringe (Irvine and Wieschaus, 1994). The boundary cells acquire a number of specialised characteristics during the third larval instar including expression of several genes required for wing formation, such as wingless, vestigial and scalloped (Williams et al., 1993). Ultimately these cells organise the development of distinctive wing margin structures, including sensory elements and trichomes. The analyses of Notch temperature-sensitive alleles (Shellenger and Mohler, 1978) and of clones of Notch mutant cells (de Celis and Garcia-Bellido, 1994b) indicate that Notch is required at the D/V boundary from late second larval instar until pupariation, initially to...
allow wing growth and later to allow normal wing margin formation.

To what extent are the pathways involving Notch during wing development the same as during neurogenesis? The Enhancer of split complex [E(spl)-C], for example, is required downstream of Notch during neurogenesis (Lieber et al., 1993; Jennings et al., 1994), but there is no evidence to link these genes with wing morphogenesis, as no wing scalloping phenotype is observed when the dose of the complex is reduced. Here we have examined whether the genetic components required for Notch activity during neurogenesis also operate in wing morphogenesis. Using clonal analysis and molecular markers we find that Notch is locally activated in dorsal and ventral cells at the D/V boundary through the action of two ligands, Delta and Serrate. Both Su(H) and E(spl)-C genes are required to mediate the actions of Notch in these cells. Notch activity at the D/V boundary is critical for wing growth and margin development and it is necessary to restrict and maintain the expression of genes such as wingless and cut to the cells at this boundary.

MATERIALS AND METHODS

Genetic strains

We have used the loss-of-function alleles l(1)N\(^b\), l(1)N\(^d\) (a gift from M. Young), nd\(^3\), Ser\(^{RX106}\), Ser\(^{RX107}\) (Thomas et al., 1991), Ser\(^{2-11}\) (Fleming et al., 1990). D\(^{IM1}\), D\(^{IM3}\) (de Celis and Garcia-Bellido, 1994a). D\(^{RFE}\), D\(^{RFB}\) (Parody and Muskavitch, 1993). Df[3R]E(spl)\(^{RA7.1}\) (Schroen et al., 1992). Su(H)\(^{AR9}\) and Su(H)\(^{A}\) (Schweisguth and Posakony, 1992), and the Notch gain-of-function alleles Ax\(^{M1}\), Ax\(^{59d}\), Ax\(^{16172}\) (Lindsley and Zimm, 1992). The cell markers used for clonal analyses were forked (f\(^{boe}\)) and bald (b\(^{dl}\)) (Lindsley and Zimm, 1992). We used two transgenes carrying the f\(^+\) wild-type allele inserted in 32A and 87F (designated P\(f\)^{32A} and P\(f\)^{87F}, respectively (A. García-Bellido, unpublished). The Minute alleles to generate M\(^+\) clones were M\(^{1}\)5D, M\(^{2}\)24F and M\(^{3}\)95A (Lindsley and Zimm, 1992). The lacZ reporter lines used were: cH\(z\)^{1} (Jack et al., 1991), aperteur-LacZ (Cohen et al., 1992) and wg-LacZ (Perrimon et al., 1991).

Generation of mitotic recombination clones

Mitotic recombination was induced by X-rays (dose 1000 R; 300 R/minute, 100 kV, 15 mA, 2 mm aluminium filter). Irradiated larvae were timed in hours after egg laying (AEL). Clones were induced at the intervals 48-72 and 72-96 hours AEL. Mutant clones in the X chromosome were generated in flies of genotype \(N\)^{P\(f\)/M\(1\)15D}, where \(N\) represent l(1)N\(^b\), l(1)N\(^d\) or Ax\(^{M1}\) Notch alleles. Mutant clones in the 3R chromosomal arm were generated in males of genotypes f\(^{boe}\), mvh bld P\(f\)^{87F}M\(^{3}\)95A/Notch (twins clones) and f\(^{boe}\)mvh mvh M\(^{3}\)95A P\(f\)^{87F}M\(^{3}\)95A/Notch (M\(^+\) clones, where Mutant represent Ser\(^{RX2}\) Ser\(^{RX106}\), Ser\(^{RX107}\), D\(^{IM1}\), D\(^{IM3}\) or Df[3R]E(spl)\(^{RA7.1}\) alleles. Su(H)\(^{AR9}\) clones were induced in flies of genotype f\(^{boe}\); M\(^{2}\)24F P\(f\)^{87F}M\(^{3}\)95A. Mitotic recombination proximal to the f\(^+\) insertion produces homozygous mutant clones labeled with the cell marker f.

In the twin experiments to evaluate the proliferative abilities of mutant cells, the ratio between mutant (f) and wild-type (bld) cells in clones induced at 48-72 h AEL were: Ser\(^{RX2}\): 1.06 (43 clones), D\(^{IM3}\); 0.76 (8 clones), Df[3R]E(spl)\(^{RA7.1}\); 0.56 (24 clones). The ratio between f and bld cells in twin clones induced at the same age in the control experiment f\(^{boe}\);bld P\(f\)^{87F}M\(^{3}\)95A was 1.17 (20 twin clones). In M\(^+\) experiments, the mean number of cells in clones induced at 72-96 hours AEL were: f M\(^{3}\)95A* E(spl)\(^{RA7.1}\): 260 cells (26 clones), f M\(3\)95A* D\(^{IM5}\): 433 cells (25 clones). The mean number of cells in control clones induced at the same time interval in flies of genotype f\(^{boe}\); P\(f\)^{87F}M\(^{3}\)95A/+ was 995 (39 clones).

Other methods

Immunocytochemistry was performed as described in Jennings et al. (1995). The following antibodies were used: mAb323 to detect E(spl)/bHLH expression (1/3, Jennings et al., 1994), rabbit polyclonal anti-β-galactosidase (1/2000, Cappel) and rabbit polyclonal anti-cut (1/2000, Blochinger et al., 1993). Secondary antibodies were from Jackson laboratories (used at 1/250).

In situ hybridizations to analyze wg and DI expression were carried out using digoxygenin-labeled DNA fragments following the protocol of Cubas et al. (1991). These fragments were a 0.8 kb EcoRI fragment from the wg cDNA clone wg14 (Baker, 1988b) and a 4 kb EcoRI fragment from Di c3.2 cDNA clone (Vassilin et al., 1987).

RESULTS

Phenotypes of Notch loss-of-function alleles indicate different requirements in dorsal and ventral cells

Clones of cells mutant for Notch null alleles result in dramatic scalloping phenotypes when they encompass the edge of the wing, or abut the edge of the wing dorsally or ventrally (de Celis and Garcia-Bellido, 1994b). This involves loss of the sensory organs and trichomes of the wing margin itself, as well as loss of adjacent tissue. Because absence of Notch has effects on cell viability and sensory organ development (de Celis and Garcia-Bellido, 1994b), we have extended the clonal analysis of Notch mutations using the hypomorphic alleles l(1)N\(^b\) and l(1)N\(^d\). These alleles have two characteristics that make them ideal for analyzing Notch function at the D/V boundary. First, they do not affect cell viability, since l(1)N\(^b\) and l(1)N\(^d\) cells grow to form clones of normal size in the thorax and wing (data not shown). Second they have little effect on differentiation of sensory elements and indeed we find mechanosensory bristles in clones of mutant cells at the wing margin under certain circum- stances (see below).

As with Notch null alleles, l(1)N\(^b\) and l(1)N\(^d\) clones abutting the margin cause extensive wing scalloping, demonstrating that these effects are not simply due to failures in cell proliferation. These phenotypes are extreme when the clones extend across the D/V boundary, i.e. in clones induced before segregation of dorsal and ventral compartments (26 clones, Fig. 1A,C,E). Surprisingly, clones restricted to either the dorsal (16 clones) or ventral (24 clones) compartment have quite different phenotypes. Ventral clones abutting the wing margin are always associated with strong scalloping (Fig. 1B,D), whereas clones in the dorsal compartment differentiate a normal wing margin (Fig. 1F). Since previous analyses using Notch null alleles showed that Notch is needed in both dorsal and ventral cells (de Celis and Garcia-Bellido, 1994b), our results demonstrate that Notch requirements must be different in the cells on either side of the boundary. In addition, in mosaic wings with l(1)N\(^b\) and l(1)N\(^d\) clones abutting the margin, the spacing between veins is altered (Fig. 1C-E). Since this is not seen even with large clones in internal regions of the wing (data not shown), it suggests that Notch activity specifically at the D/V boundary is also necessary for the normal patterning of the wing.
Asymmetrical requirements for two Notch ligands, Serrate and Delta at the D/V boundary during wing development

The clonal analysis using l(1)N^{B} and l(1)N^{S} suggests that there is a different requirement for Notch in dorsal and ventral cells at the D/V boundary. Two genes, Serrate (Ser) and Delta (Dl), encode transmembrane proteins (Vassé et al., 1987; Fleming et al., 1990; Thomas et al., 1991) that are able to interact with Notch molecularly (Rebay et al., 1991; Lieber et al., 1992). Both are candidate ligands for Notch at the D/V boundary since Dl and Ser mutations interact with Notch alleles (de la Concha et al., 1988; Xu et al., 1990; de Celis et al., 1993). Furthermore, since Ser is expressed in dorsal regions of the wing disc (Thomas et al., 1995), its function could relate to the different requirements for Notch in ventral cells. To explore the roles of Dl and Ser in Notch signaling at the D/V boundary, we have carried out mosaic analysis using Ser null alleles (Ser^{-}) and Dl lethal alleles (Dl^{l}) neither of which have a dominant scoloping phenotype. In some cases, these alleles have been analysed in Minute^{+} (M^{+}) conditions, to give the mutant cells a growth advantage (Morata and Ripoll, 1975).

There is no phenotype associated with clones of Ser^{-} cells away from the wing margin: Ser^{-} clones have similar size to their Ser^{+} twins (see Materials and methods), indicating that proliferation of Ser^{-} cells is normal. Ser^{-} and Ser^{+} M^{+} clones do not affect the differentiation of wing veins or of bristles in the thorax (data not shown). In contrast, Ser^{-} and Ser^{+} M^{+} clones which do contact the wing margin cause similar scoloping to Notch mutant clones (Speicher et al., 1994, Fig. 2). However, scoloping only occurs when clones are induced before dorsoventral lineage segregation (7 clones) or in clones restricted to the dorsal compartment (25 clones). In these cases, Ser^{-} clones cause the loss of large regions of the wing, and Ser^{+} mutant cells appear abutting the scoloped interface between the dorsal and ventral surfaces (Fig. 2A,D,E). No phenotype was seen with clones that extend to the wing margin in the ventral compartment (20 clones, Fig. 2B). Weaker scoloping phenotypes are observed in M^{+} dorsal clones induced at later stages (72-96 hours AEL), although some dorsal clones can contact the wing margin (differentiating wing margin bristles) without causing scoloping (5 clones). The behaviour of Ser^{-} mutant cells in the dorsal compartment contrasts with that of fringe mosaics in the same compartment (Irvine and Weischaus, 1994) as we never observe the formation of internal ectopic wing margins associated with the novel confrontation between Ser^{+} and Ser^{-} cells.

The phenotype of Dl lethal alleles (Dl^{l}) in clones indicates that Dl also is required at the D/V boundary. However, extensive scoloping occurred only when clones included both dorsal and ventral cells (7 clones, Fig. 2C,F). Dl^{l} clones in the ventral compartment give rise to small nicks (Fig. 2G, 7 clones) or loss of margin sensory elements (7 clones). However, dorsal Dl^{l} clones cause only loss of sensory elements without any associated nicking (8 clones). These results suggest either that Dl is required principally before D/V compartment separation or that Dl can be supplied by cells on either side of the boundary, its provision by ventral cells being more sensitive to reductions in levels.

Requirement for Su(H) and E(spl) proteins during wing development

Two intracellular components of the Notch signaling pathway during neurogenesis are Su(H) and E(spl)-C (Muskavitch, 1994). The Su(H) product has been proposed as a transducer of the Notch signal, since it interacts with the cytoplasmic domain of Notch (Fortini and Artavanis-Tsakonas, 1994). We find that dorsal (7 clones), ventral (6 clones) and dorsoventral (3 clones) M^{+} clones of a Su(H) lethal allele that extend to the wing margin produce extensive scoloping (Fig. 3A-D), with the most severe phenotypes produced when clones comprise both dorsal and ventral cells. These scoloping phenotypes are essentially indistinguishable from those seen with Notch null alleles, suggesting that Su(H) is required for all aspects of Notch function at the D/V boundary.

In order to analyse the role of E(spl)-C proteins we have used a deficiency, E(spl)^{RA7.1} which removes 4 of the 7 bHLH genes in the complex (m5, m3, m7 and m8) in addition to removing groucho (Schorns et al., 1992). When clones of E(spl)^{RA7.1} mutant cells extend to the margin on the posterior portion of the wing, loss of margin tissue occurs (8 clones), although only to a modest extent compared to the scoloping caused by Notch clones (Fig. 3E,F). Clones extending to the margin in the anterior compartment also cause margin loss (6 clones); however, this is accompanied by overgrowth and pattern duplication phenotypes which reflect a function of gro that may be independent of E(spl) bHLH and Notch function (de Celis and Ruiz-Gomez, 1995). Thus the phenotypes of Su(H)^{AR9} and E(spl)^{RA7.1} clones are consistent with these genes functioning in the Notch pathway in its role at the D/V boundary, with the caveat that the phenotype of E(spl) clones is weak.

E(spl)bHLH proteins are expressed at the D/V boundary in the wing disc

The expression of E(spl)bHLH proteins provides a cellular assay for Notch activity during neurogenesis (Jennings et al., 1994). Therefore we have analyzed the distribution of these proteins to define the extent of Notch activation associated with the D/V boundary. Using an antibody (mAb323), which recognises at least 5 of the bHLH proteins encoded by the complex (Jennings et al., 1994), we find that E(spl)bHLH proteins are restricted to a row of cells along the D/V boundary (Fig. 4). This line of E(spl)bHLH expression, which is 1-3 cells wide, is detected from late in the second instar (data not shown) and persists throughout the third instar. This expression appears to follow the entire D/V compartment boundary (Fig. 4A-D) and is distinct from E(spl)bHLH expression associated with developing sensory elements at the wing margin (Jennings et al., 1995). To confirm that the cells expressing E(spl)bHLH proteins do correlate with the D/V boundary, we used the expression of apterous as a marker of dorsal cells (Blair et al., 1994). We find that E(spl)bHLH proteins are present in the cells immediately on each side of the boundary being detected in both dorsal (Apterous^{+}) and ventral (Apterous^{+}) cells (Fig. 4E-G).

Genes of the Notch pathway are required for D/V boundary expression of E(spl)bHLH proteins

Certain viable alleles of Notch lead to dramatic effects on wing morphogenesis. For example, nd^{l}N^{55e11} flies have wings lacking much of the margin tissue (de Celis and Garcia-Bellido, 1994b). Consistent with E(spl) genes being a target of Notch, E(spl)bHLH protein expression is much reduced in wing discs from at least early third instar nd^{l}N^{55e11} larvae (Fig. 5B) and expression associated with the D/V boundary and
Fig. 1. Phenotype of $l(1)N^3$ mosaics in the wing margin reveal different requirements for Notch dorsally and ventrally. (A,B) Diagram depicting scalloping caused by dorsoventral (A) and ventral (B) $l(1)N^3 F^{56g}$ clones induced at 48-72 hours AEL. Colored lines represent the scalloped wing edge produced by independent clones abutting the margin: the tissue between the colored line and the normal wing margin is lost. The mutant cells extending from the edge of the wing within the wing blade are not represented. (C-F) Examples of different $l(1)N^3 F^{56g}$ clones abutting the wing margin: (C) anterior ventral and posterior dorsoventral clone; (D) anterior ventral clone; (E) anterior dorsoventral clone and (F) dorsal clone. The extent of the mutant territories are drawn by dashed lines in dorsal and dotted lines in ventral clones. Note the modifications in the spacing of veins caused by the presence of $l(1)N^3 F^{56g}$ clones in the wing margin (C-E) and the differentiation of normal wing margin in a dorsal clone (F).

Fig. 2. Asymmetrical requirements for Ser and Dl at the D/V boundary. (A,B) Diagram depicting Ser$^-$M$^+$ clones in the dorsal (A) or ventral (B) wing blade induced at 72-96 hours AEL. All clones are represented as colored domains bounded by solid lines. (A) Dorsal clones cause scalloped margins. The line closest to the wing margin represents the scalloped edge, the wing territory between this line and the normal margin is lost. (B) Ventral clones form a normal wing margin. (C) Plot of dorsoventral DmMI M* clones induced at 48-72 hours AEL with the scalloped edge of each mutant clone represented by a different colored line. (D,E) Examples of Ser M* dorsal clones induced at 48-72 hours AEL affecting the anterior (D) and posterior (E) wing margin. (F) Dorsoventral DmMI M* clone induced at 48-72 hours AEL. (G) Ventral DmMI M* clone induced at 72-96 hours AEL. Solid lines represent dorsal and dotted lines ventral internal borders of the clones.
Notch activation and function in Drosophila wing imaginal disc

Fig. 3. Su(H) and E(spl) complex are involved in Notch signaling at the D/V boundary. (A,B) Plot of dorsal (A) and ventral (B) Su(H)^AR9M^ clones induced at 72-96 hours AEL and abutting the wing margin. Colored areas surrounded by solid lines represent the extent of the mutant territories. The scalloped wing edge formed in these clones is shown by the colored lines that intersect the wing margin, the territory between the line and the wing margin is lost. (C,D) Examples of Su(H)^AR9M^ clones abutting the wing margin in the ventral compartment (C) or spanning both dorsal and ventral compartments (D). (E,F) Examples of dorsoventral E(spl)^RA7.1^ clones that reach the posterior wing margin, (F) Higher magnification picture of a dorsoventral E(spl)^RA7.1^ clone in which the reduced size of the region between the LV vein and the scalloped posterior wing margin can be seen along with mutant posterior hairs. The borders of clones are marked as in Fig. 1.

Fig. 4. E(spl)bHLH proteins are detected in two cells along the D/V boundary and Dl expression is up regulated at the D/V boundary. (A-D) Expression of E(spl)bHLH proteins was detected in wing imaginal discs of different ages using mAb323. (A,B) Early third instar, (C) mid third instar (D) late third instar. In all cases, mAb323 immunoreactivity is detected in a line of cells that extends along the edges of the notal region and across the wing pouch. All discs are at the same magnification except B which is 2x magnification of A. (E-G) Confocal images of the dorsal ventral boundary in the posterior region of a mid-third instar wing disc double labeled with mAb323 (green) and anti-β-galactosidase (red) antibodies in a apterus-lacZ line. In G, some nuclei contain both E(spl)bHLH and β-galactosidase (yellow) and others contain E(spl)bHLH only (green). (H,I) In situ hybridisation to detect Dl mRNA in wing discs of late second instar (H) and early third instar (I). Magnification in I is the same as in B and magnification in H is 2x that in I.
the wing margin is almost completely absent in discs from older

As clonal analyses implicate Ser, Su(H) and DI in Notch
signaling at the D/V boundary, mutations in these genes might
be expected to have similar effects on E(spl)bHLH expression.
Loss-of-function mutations in either Ser or Su(H) result in a
reduction in the size of the wing disc (Speicher et al., 1994;
Schweisguth and Posakony, 1992). E(spl)bHLH protein
expression along the D/V boundary is absent from Ser
[SerRX106/Serrev2-11] and Su(H) [Su(H)bHLH/Su(H)]
mutant discs of all stages, including early third instar when the discs
are still similar in size to wild type (Fig. 5C,D). In Su(H)
mutant discs, the loss of E(spl)bHLH expression extends to
other regions including positions where sensory organs
develop (Fig. 5G). Conversely, in Ser mutant discs, strong
expression associated with sensory precursor development is
still detected (Fig. 5F) indicating that, in other places where
Notch is functioning, Ser is not required in agreement with the
normal differentiation of sensory structures in clones of Ser
mutant cells.

In order to investigate the effects of DI on E(spl)bHLH
expression during wing development, we used a combination
of temperature-sensitive alleles, DI[R]/DI[b]. After transferring
third instar larvae to the non-permissive temperature, the levels
of E(spl)bHLH proteins are reduced overall and along the D/V
boundary the stripe of expression is incomplete (Fig. 5E).
These effects on E(spl)bHLH proteins are detected in third
instar discs after establishment of the D/V boundary, indicat-
ing that continuous DI function is required to maintain Notch
activity here. Consistent with this DI requirement, in early third
instar discs, we detect highest levels of DI mRNA in cells
around the D/V boundary (Fig. 4H,I).

Abruptex mutations lead to disc overgrowth,
aberrant wing margin structure and ectopic expression of E(spl)bHLH proteins

Since mutations which cause a reduction in Notch activity at
the D/V boundary result in scalloping and loss of E(spl)bHLH
expression, mutations that increase Notch activity might be
expected to have the converse effect. Abruptex alleles (Ax)
of Notch have characteristics of Notch gain of function (Palka
et al., 1990). Ax mutations result in complex phenotypes in the
wing margin, consisting of absence of sensory organs in
proximal regions and clusters of ectopic sensory elements in
its distal regions. The latter occur in the proximity of the
normal margin (Fig. 6B,C) and develop autonomously in
mosaics (Fig. 6D). Many of the Ax allelic combinations also
result in overgrowth of the wing disc (de Celis and Garcia-
Bellido, 1994a).

We have examined E(spl)bHLH expression in a series of Ax
alleles, ranging from weak homozygous viable (Ax28
and Ax16172) to pupal lethal (Ax59d and AxM1) and heteroallelic
combinations (Ax16172/Ax28) which show synergism, i.e. produce a
more severe phenotype than either allele alone. In almost allAx
allelic combinations tested, we detect ectopic expression of
E(spl)bHLH proteins from early in the third instar. The extent
of ectopic expression varies from low levels in weak alleles
(Ax28 and Ax16172, data not shown) to increasingly higher levels
in more severe alleles and allelic combinations (Ax59d, AxM1,
Ax28/Ax16172, Fig. 6F-J). The domain of ectopic expression is
more extensive in AxM1 and Ax28/Ax16172 than in Ax59d and
extends asymmetrically around the D/V boundary, with more
ectopic expression associated with the dorsal compartment (Fig.
6H-J). The degree of E(spl)bHLH ectopic expression in Ax
mutants correlates with the disc overgrowth defects. Further-
more, the effects of Ax mutations on growth are not associated
with abnormal separation of dorsal and ventral compartments
since the expression of apterous, detected using the apterous-
LacZ line, remains restricted to the dorsal region of Ax28/
Ax16172, Ax59d and AxM1 mutant discs (data not shown).

Consequences of altered Notch activity at the D/V
boundary: expression of cut and wingless

The alterations in E(spl)bHLH expression caused by different
Notch alleles indicate abnormal behavior of cells at the D/V boundary. Several genes including cut (ct) and wingless (wg) are expressed at the D/V boundary in third instar imaginal discs (Baker, 1988a; Blochinger et al., 1993; Phillips and Whittle, 1993; Couso et al., 1994). We therefore examined the expression of these genes in different Notch mutant backgrounds. Modifications in both wg and ct expression occur in mutant discs that correlate well with the level of Notch activity detected by E(spl)bHLH expression. In late third instar N^5^{s11}md^3 discs, ct and wg expression is lost in distal and posterior regions of the D/V boundary (Fig. 7B,E). Conversely, in Ax mutant discs (Ax^{28}/Ax^{16172}) at the same stage, cells expressing ct and wg expand in both dorsal and ventral regions around the D/V boundary (Fig. 7C,F). Ectopic expression of both ct and wg can be detected soon after they appear at the D/V boundary and continues to expand during later stages (Fig. 7H,J and data not shown). This expansion is most dramatic in the dorsal compartment extending as many as 20-30 cells away from the boundary in later third instar discs (Fig. 7L,M). Similar mis-expression has been detected in other Ax alleles, e.g. Ax^{M1} (Fig. 7J) indicating that this is a general effect of the aberrant Notch activation in Ax mutations.

DISCUSSION

The analysis of Notch function in a wide variety of different developmental processes has led to the hypothesis that activated Notch prevents cells from responding to different cell-fate-promoting signals (Muskavitch, 1994; Artavanis-Tsakonas et al., 1995). Here we find that Notch is locally activated in the cells at the D/V boundary where it is needed for these cells to co-ordinate wing growth and margin formation. The activity of Notch in maintaining a contiguous stripe of cells at the juxtaposition of the dorsal and ventral compartments does not relate simply to processes where Notch restricts the number of cells that follow a particular developmental pathway, as occurs during neurogenesis. Furthermore, in the cells at the D/V boundary, there is no indication of particular cell-fate promoting signals being antagonised by Notch. In spite of these apparent differences between Notch function in neurogenesis and at the D/V boundary, we find that many of the components of Notch action are common to both processes. Thus the phenotype in mosaics of Di, Su(H) and E(spl)-C are compatible with these genes being required for Notch signaling at the D/V boundary suggesting that the Notch
pathway functions as a cassette deployed in different cell fate decisions.

Mechanisms of Notch activation at the D/V boundary

Notch activation at the D/V boundary, as visualized by the pattern of expression of E(spl) proteins, is restricted to the cells immediately either side of the boundary and requires the coordinate activities of two ligands, Ser and Dl. Clonal analysis of Ser null alleles shows that Ser is only required in the dorsal cells, where it is presumably involved in interactions with Notch in adjacent ventral cells (Fig. 8A). The lack of similar Notch activation throughout the dorsal compartment, where Ser is expressed (Thomas et al., 1995), implies that these cells are unable to respond to the presence of Ser. Two observations suggest that high levels of Ser itself can prevent Notch activation. Ectopic expression of Ser across the D/V boundary causes a loss of margin and adjacent tissue (Thomas et al., 1995), indicating that Ser can suppress Notch activity even in cells that are normally responsive. In the ventral compartment, ectopic Ser expression induces the activation of wg and vg, but only in cells that contain low or no Ser protein themselves (Kim et al., 1995). This negative interaction between Ser and Notch is unlikely to be the only factor preventing Notch activation through the dorsal compartment; novel Ser+/Ser− interfaces generated by removal of Ser in dorsal clones do not form margin tissue, unlike similar mosaics with apterous− or fringe− cells (Diaz-Benjumea and Cohen, 1993; Irvine and Wieschaus, 1994). Thus it is probable that the restriction of Notch activation to cells at the D/V boundary also requires other functions activated by apterous in the dorsal compartment, for example the expression of the secreted protein encoded by fringe (Irvine and Wieschaus, 1994). Such a mechanism is similar to that operative in restricting Hedgehog signaling to anterior cells abutting the anteroposterior compartment boundary. Hedgehog is secreted in all posterior cells but only anterior cells are able to respond, the posterior cells are unable to do so as a conse-
sequence of expressing *engrailed* (Tabata and Kornberg, 1994; Sanicola et al., 1995).

The absence of E(spl)bHLH proteins from both dorsal and ventral cells in *Ser* mutant discs indicates that Notch activation in dorsal cells occurs as a secondary consequence of the action of *Ser*. In addition to *Ser*, DI is also involved in Notch activation at the D/V boundary, as shown by the scalloping phenotypes of *DI* mutant clones that include both dorsal and ventral cells or only ventral cells and by the observation that *DI* is required to maintain E(spl)bHLH expression during the third instar. Thus, the confrontation between *Ser*-expressing and non-expressing cells at the D/V boundary could have several consequences. First, the presence of *Ser* could participate in preventing Notch activation in dorsal cells. Second, it could trigger DI signalling, resulting in Notch activation in dorsal as well as ventral cells abutting the D/V interface (Fig. 8). In addition, the interaction of *Ser* with Notch in ventral cells could result in direct Notch activation although it is not clear that *Ser* protein has the capability to activate Notch (Fortini and Artavanis-Tsakonas, 1994) and it is possible that its role is primarily to trigger DI signalling. Ultimately, it appears that the localized Notch activation depends critically on the relative levels of *Ser*, DI and Notch, as genetic combinations where the doses of these genes are altered reveal antagonistic interactions (de la Concha et al., 1988). We have tried to integrate these antagonistic interactions as well as those that result in Notch activation into the model presented in Fig. 8.

The interaction of Notch in ventral cells with both *Ser* and DI is consistent with our finding that certain *Notch* hypomorphic alleles uncover a specific *Notch* requirement in ventral cells. Thus, either these mutant molecules are deficient in the interaction with *Ser* or the interaction with both ligands necessitates higher concentrations of Notch in ventral cells. Furthermore, the fact that particular Notch alleles and *Ser* show a restricted requirement in one compartment but affect the development of the D/V boundary as a whole, indicates that normal Notch function in one compartment is essential for the maintenance of Notch activity in the opposite one. This could occur if the potential for signalling to neighbouring cells is linked to Notch activity (Fig. 8). Such a positive feedback mechanism may be important in situations where high levels of Notch activity are maintained within neighbouring cells. This would contrast with sensory mother cell development, where differences in levels of Notch function between neighbouring cells are critical and where Notch activity and DI signalling appear to be inversely related (Heizler and Simpson, 1991). The localised Notch activity at the D/V boundary is accompanied by an increase in the levels of *DI* mRNA in this region and ultimately by the accumulation of Notch protein in the receiving dorsal and ventral cells (Muskavitch, 1994). The concentration of ligand and receptor at the D/V boundary may...
participate in the maintenance of Notch signalling within this domain.

Alterations in Notch activation caused by Ax mutations

The phenotype of Ax mutations suggest that these Notch mutant proteins have increased levels of activity (Palka et al., 1990). Here we find that Ax mutations cause Notch activation outside the normal domains, as indicated by the ectopic expression of E(spl)bHLH proteins, rather than further increasing the amount of Notch activity at its normal sites. Even though the ectopic Notch activation in Ax mutants is particularly dramatic along the D/V boundary, it also occurs in other regions of the disc, consistent with the effects of Ax mutations on the development of veins and bristles (de Celis and Garcia-Bellido, 1994a). The observation that point mutations in the Notch protein (Kelley et al., 1987) are sufficient to interfere with the mechanism limiting its activation to particular domains, indicates that Notch itself actively participates in this process and that Ax proteins are deficient in a function that prevents Notch activation, possibly through interactions with other proteins. These proteins could either be repressors that modulate Notch response to ligands or factors required for the inactivation of an activated Notch molecule (down-regulation).

Roles of Notch in growth and morphogenesis of the wing

Removal of Notch activity at the D/V boundary causes extensive scalloping along the wing margin, associated with modifications to the spacing between veins. Conversely, Ax mutations resulting in ectopic Notch activity cause overgrowth of the disc and the differentiation of ectopic margin sensory elements. Thus, high levels of Notch at the D/V boundary appear to maintain it as a reference boundary that coordinate the growth of the wing first and the differentiation of the wing margin later. The effects of Notch at the D/V boundary are downstream of apterous since expression of apterous is normal in Ax mutant discs. In addition, mutant Notch clones respect the D/V lineage restriction, indicating that Notch is not required for the clonal segregation between dorsal and ventral cells.

The overall significance of the D/V boundary in wing disc growth is evident from the failure of the wing to form when the boundary is eliminated in apterous mutant discs (Williams et al., 1993). The confrontation of apterous-expressing and non-expressing cells triggers the increased expression of various genes, such as wg, vg and sd in the D/V boundary in the transition between second and third larval instars (Williams et al., 1993). The localised expression of these genes may involve Notch activity since this is also the time when Notch function is required at the D/V boundary, based on the thermosensitive period of Ns1 (Shellenberger and Mohler, 1978) and the expression of E(spl)bHLH proteins. Consistent with this, we find that Notch alleles with reduced function precipitate a decrease in wg expression and conversely Ax alleles, which have ectopic Notch activity, result in an expansion of wg expression. These observations place wg downstream of Notch in these cells and suggest that some effects of Notch mutations on wing morphogenesis are mediated by misexpression of genes normally restricted to the D/V boundary.

This interpretation is compatible with the consequences of ectopic Ser expression in ventral cells, namely ectopic activation of wg and overgrowth of the ventral surface of the disc (Speicher et al., 1994; Kim et al., 1995).

Although the cellular consequences triggered by Notch signalling at the D/V boundary are not fully understood, it is clear that Notch mediates the maintenance of a particular state critical for the co-ordination of growth in the wing. Activation of Notch at this boundary involves the localisation of two ligands, one to the dorsal (Ser) and the other to dorsal and ventral sides of the boundary (DI). It is possible that the requirement for Notch in other developmental processes involves the establishment/maintenance of boundaries. For example the lack of Notch1 during mouse development results in somite defects (Conlon et al., 1995) which could reflect a role of Notch at the boundary between segments.

We thank Professor M. Ashburner in whose laboratory part of this work has been done. We also thank N. Brown, D. Gubb, M. Ruiz-Gomez, R. White and members of our laboratories for critical comments on the manuscript; Jesus de Celis for technical assistance and P. Martin, M. Young, M. Baylies, E. Knust, N. Baker and S. Artavanis-Tsakonas for flies and cDNA clones. J. F. d. C. is post-doctoral fellow of the Spanish CSIC. This work was supported in part by a project grant to S. J. B. from the MRC and by an EC Twinning grant.

REFERENCES

Notch activation and function in Drosophila wing imaginal disc

(Accepted 23 October 1995)