INTRODUCTION

Drosophila oogenesis has become a focus for cell biological analyses. The microtubule and microfilament rearrangements that occur during oogenesis have been described in detail and mutants that affect these processes have been identified and characterized. During the later stages of oogenesis, there are two movements that depend on the specialized cytoskeleton of the egg chamber (see for review Knowles and Cooley, 1994). At stage 11, the nurse cells dump their contents into the oocyte through cytoplasmic bridges termed ring canals. This process requires microfilaments since it is inhibitable by cytochalasins (Gutzeit, 1986). Microfilament bundles form in the nurse cells during this process and are apparently required to hold the nurse cell nuclei in place so that they do not obstruct the ring canals and allow the rapid flow of nurse cell cytoplasm into the oocyte. Mutants in *chickadee*, *quaill* and *singed* affect actin bundle formation. Profilin, encoded by *chickadee*, is presumably required for the polymerization of the actin filaments that compose the bundles (Cooley et al., 1992), while a villin-related protein encoded by *quaill* (Mahajan-Miklos and Cooley, 1994) and a fascin-related protein encoded by *singed* (Bryan et al., 1993; Cant et al., 1994) are thought to be required to cross-link the actin filaments to form the bundles. Two components of the actin-lined ring canals have also been identified – an adducin-like protein encoded by *hu-li tai shao* (Yue and Spradling, 1992) and a protein containing scruin repeats encoded by *kelch* (Xue and Cooley, 1993).

During the microfilament-dependent rapid transfer of cytoplasm from the nurse cells into the oocyte, microtubules bundle within the oocyte (Theurkauf et al., 1992) and microtubule-dependent cytoplasmic streaming, inhibitable by colcemid, occurs within the oocyte (Gutzeit, 1986). It is thought that this movement within the oocyte is necessary to mix the oocyte cytoplasm with the cytoplasm being rapidly added from the nurse cells.

cappuccino (*capu*) and *spire* (*spir*) are required to repress this microtubule-based ooplasmic streaming in the oocyte and to ensure the proper partitioning of molecular determinants within the oocyte. In mutants, the bundling of the microtubules at the cortex of the oocyte and streaming of the oocyte cytoplasm occurs prematurely, by stage 8 of oogenesis (Emmons et al., 1995; Theurkauf, 1994). *capu* and *spir* fail to accumulate components of the polar granules at the posterior pole (Bardsley et al., 1993; Ephrussi et al., 1991; Kim-Ha et al., 1991; Lasko and Ashburner, 1990; Manseau and Schüpbach, 1989; St Johnston et al., 1991; Wang and Lehmann, 1991) and *gurken* mRNA at the oocyte nucleus (Neuman-Silberberg and Schüpbach, 1993). The finding that *capu* and *spir* mutants exhibit premature cytoplasmic streaming within the oocyte led to two models to explain these patterning defects. The premature streaming could sweep away molecular determinants before they are properly anchored and/or the microtubules bundled at the cortex could prevent their proper function in the localization of determinants. Since the strength of the *capu* mutant allele does not correlate with either the speed or the timing of streaming in mutant oocytes, all of the patterning defects can not be explained by the streaming (Emmons et al., 1995). By inducing streaming prematurely in wild-type oocytes with cytochalasin D, we have seen the gradual elimination of STAUFEN from the posterior pole (Emmons et al., 1995). Under these same conditions, *gurken* mRNA remains localized in the dorsal anterior corner. This again suggests that the dorsal-ventral and posterior

SUMMARY

We have investigated the role of the actin cytoskeleton during mid-oogenesis and have found that disrupting the actin cytoskeleton with cytochalasin D induces microtubule bundling and microtubule-based cytoplasmic streaming within the oocyte, similar to that which occurs prematurely in *cappuccino* and *spire* mutant oocytes. After examining a number of mutants that affect the actin cytoskeleton, we have found that *chickadee*, which encodes the actin-binding protein, profilin, shares this phenotype. In addition to the microtubule misregulation, mutants in *chickadee* resemble *cappuccino* in that they fail to localize STAUFEN and *oskar* mRNA to the posterior pole of the developing oocyte. Also, a strong allele of *cappuccino* has multinucleate nurse cells, similar to those previously described in *chickadee*. In an independent line of experiments, we have identified profilin as a CAPPUCCINO interactor in a two-hybrid screen for proteins that bind to CAPPUCCINO. This, together with the similarity of mutant phenotypes, suggests that profilin and CAPPUCCINO may interact during development.

Key words: profilin, *cappuccino*, anterior-posterior, *Drosophila* oocyte

Profiling is required for posterior patterning of the *Drosophila* oocyte

Lynn Manseau*, John Calley and Huy Phan

Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA

*Author for correspondence (e-mail: lynn_manseau@tikal.biosci.arizona.edu)
patterning defects in capu and spir might be caused by distinct mechanisms.

Molecular analysis of capu indicates that the carboxy terminal half of the protein is closely related to that of formins, which are encoded by the mouse limb deformity (ld) locus (Emmons et al., 1995). Mutants in the mouse ld locus have truncations of the anterior-posterior limb axis resulting in fused digits (Zeller et al., 1989). In addition to these limb patterning defects, ld mutants often exhibit renal aplasia. Unfortunately, little is known about the cellular role that ld plays during development. Within the region of CAPU that is conserved with the formins is a proline-rich domain and, at a similar distance, a highly conserved domain, known as the FH2 domain, that is shared with a number of other proteins (Castrillon and Wasserman, 1994; Emmons et al., 1995). Although mutants in capu affect the distribution of microtubules, some proteins with FH2 and proline-rich domains affect processes that seem more likely to involve the actin cytoskeleton. The most compelling of these are the S. pombe gene CDC12, mutants in which do not undergo cytokinesis and fail to form the actin contractile ring (F. Chang, personal communication) and the Drosophila gene diaphanos (dia), mutants of which have defects in cytokinesis (Castrillon and Wasserman, 1994).

The observation that the actin cytoskeleton is defective in mutants in some of the FH2 domain-containing genes to which capu is related led us to investigate the role of the actin cytoskeleton during the time that capu and spir are thought to function. We found that treatment with cytochalasin D, a microfilament depolymerizing drug, during mid-oogenesis induces microtubule bundling at the cortex of the oocyte and premature microtubule-based cytoplasmic streaming. Further investigation revealed that mutants in profilin, an actin-binding protein thought to regulate actin polymerization, share these microtubule phenotypes, as well as patterning phenotypes, with capu and spir. An independent project to identify proteins that directly interact with CAPU via the yeast two-hybrid system yielded profilin as a frequent positive. Together, these results suggest that CAPU and profilin may physically interact during development.

MATERIALS AND METHODS

Time-lapse video microscopy

Time-lapse video microscopy was performed as described (Emmons et al., 1995). To show the effect of a drug on streaming, chambers were filmed for 20-30 minutes. Then the coverslip was lifted and drug was added and filming was resumed. Colchicine was initially dissolved in DMSO at 20 mg/ml. It was further diluted before use to 20 μg/ml in Robb’s Saline. Controls were performed by adding Robb’s Saline containing 0.1% DMSO. Cytochalasin D was dissolved in DMSO at 10 mg/ml and then diluted to 10 μg/ml in Robb’s Saline before use. The following genotypes were filmed: for chic-chic: chic-chic-ric7/ chic-ric7, chic-ric7/chic-ric7, chic-ric7, for quail-quail/ quail-quail, for singed-singed-singed.

Immunocytochemistry

Immunocytochemistry of egg chambers was as described in Emmons et al. (1995). Microtubules were stained using an anti-α-tubulin antibody (D1F4) at a 1:10 dilution. STAUHEN antibody (generously provided by Daniel St. Johnston) was used at a concentration of 1:1000. Confocal microscopy analysis was done using a Leica Confocal Microscope. All sections shown are 1 μm unless otherwise noted.

Morphological analyses

Chorions were prepared for analysis as described in Wieschaus and Nüsslein-Volhard (1986). Whole-mount tissue in situ hybridizations were performed basically as in Tautz and Pfeifle (1989) using digoxigenin-labeled RNA probes. The gurken probe was made from cDNA clone 1.7 (Neuman-Silberberg and Schüpbach, 1993). Egg chambers were stained with fluorescein-phalloidin and DAPI by dissecting in Robb’s saline, fixing in 8% formaldehyde in PBS for 1 hour, washing in PBS for 2×30 minutes and then incubating overnight in fluorescein-phalloidin dissolved in PBST (PBS, 0.1% Triton X-100) at 1 U per 100 ul. Excess phalloidin was removed by washing for 2× 30 minutes in PBST. DAPI was added to the last wash solution immediately prior to mounting in glycerol.

Interaction trap testing

The chic cDNA was amplified from a plasmid containing the DROHICKB transcript (generously provided by Lynn Cooley, accession # M84529; Cooley et al., 1992) by PCR using primers that added an EcoRI site at position –38 relative to the ATG and a XhoI site at position +101 relative to the stop codon. This fragment was then cloned into the interaction trap prey vector pJG4-5 (marked with TRP1+) and the bait vector pEG202 (marked with HIS3+). The capu cDNA between the BcI site at position 192 (Emmons et al., 1995) (accession # U34258) (about 200 bases 5’ to the start codon) and the NosI site 3’ to the cDNA in the carrier bluescript vector was cloned into the interaction trap bait vector pEG202 (marked with HIS3+) between the BamHI and NosI sites. The insert frames of pJG4-5-chic and pEG262-capu were checked by sequencing over the protein fusion boundaries. These plasmids were introduced into yeast strain EGY48 along with the lacZ reporter plasmid pSh18-34 (marked with URA3+). The transformants were selected on -ura -his -trp dextrose plates, a number of individual colonies were picked and replicated onto -ura -his -trp dextrose, -ura -his -trp -leu dextrose and -ura -his -trp -leu galactose plates along with yeast containing two separate bait constructs other than the CAPU bait described above. These were RFM1-1 (Golemis et al., 1994) and a fusion with the cytoskeletal domain of the Drosophila β integrin (Tom Bunch, personal communication). Subsequently, pEG202-capu was cut with XhoI to liberate an in frame fragment of capu containing the entire coding region. This was then cloned into pJG4-5, pEG202-chic and pJG4-5-capu were then co-transformed into EGY48 and tested for an interaction. The dynamin bait plasmid contains amino acids 15-821, including the first 85 amino acids of the 100 amino acid proline-rich region (Viswanathan Raghuram and Mani Ramaswami, personal communication). All interaction trap vectors (pJG4-5, pEG202 and pSH18-34) were handled in yeast strain EGY48 and yeast manipulations are as described in Finley and Brent (1995).

RESULTS

Treatment with cytochalasin D induces microtubule-based cytoplasmic streaming and bundling of the microtubules

To determine what effect disrupting the actin cytoskeleton would have during mid-oogenesis, we treated wild-type stage 8 egg chambers with cytochalasin D, a drug that inhibits microfilament function. Much to our surprise, treatment with cytochalasin D-induced cytoplasmic streaming in wild-type egg chambers at stage 8. The induction of streaming is rapid (less than 5 minutes) and exhibits characteristics of that seen
in capu: it is microtubule-based (inhibitable by colchicine) and has approximately the same speed (0.1 μm/sec) as the streaming in capu mutant oocytes (Emmons et al., 1995).

Since microtubule bundling at the cortex of the oocyte accompanies ooplasmic streaming in wild-type (Theurkauf et al., 1992) and premature streaming in capu and spir (Emmons et al., 1995; Theurkauf, 1994), we examined the microtubule distribution in cytochalasin D-treated egg chambers. In chambers that have been treated for 10 minutes with cytochalasin D, we observe abnormal microtubule distributions similar to those seen at the time of streaming in wild-type and during premature streaming in capu and spir mutant oocytes. In both cases, long and thick anti-tubulin-staining fibers are wrapped around the cortex of the oocyte (see Fig. 1).

Fig. 1. Disruption of the actin cytoskeleton induces abnormal microtubule distributions. Microtubule distribution in wild-type egg chambers of (A) a stage 8 oocyte and (B) a stage 10 oocyte. Microtubules are bundled at the cortex of stage 8 oocytes in (C) a capu mutant chamber (capuE/capuE), (D) a wild-type chamber treated with cytochalasin D for 15 minutes, (E) a chic mutant chamber (chic1320/chic1320) and (F) a chic1320/chic221 egg chamber. Note the bundling of the microtubules at the cortex of the oocyte in B-F. The microtubule distribution is more variable in chic, with long tubulin-staining fibers being found throughout the oocyte. The chic microtubule phenotype more closely resembles capu in the stronger allelic combination in F.

Mutants in profilin exhibit premature bundling of the microtubules and premature microtubule-based streaming

Because cytochalasin D treatment induces cytoplasmic streaming in the oocyte, it is possible that mutants affecting the actin cytoskeleton might also do so. For this reason, we used time-lapse video microscopy to examine stage 8 egg chambers from females mutant for chickadee, known to encode profilin (Cooley et al., 1992), for quail, known to encode villin (Mahajan-Miklos and Cooley, 1994), and for singed, known to encode fascin (Bryan et al., 1993; Cant et al., 1994). Stage 8 chickadee (chic) egg chambers exhibit premature cytoplasmic streaming, while quail and singed do not. The frequency of oocytes that display premature cytoplasmic streaming correlates with the strength of the chic mutant allele (see Table 1). This does not appear to be the case with capu, as even the weakest alleles exhibit a very high frequency of streaming (data not shown). The chic1320 allele has dramatically reduced expression of profilin in the germline, but expression in the follicle cells appears normal (Verheyen and Cooley, 1994). This allele shows a strong streaming phenotype, indicating that it is loss of profilin in the oocyte-nurse cell complex that is responsible for the premature cytoplasmic streaming. While the apparent higher sensitivity of the streaming phenotype to the dose of CAPU compared to the dose of profilin may be significant, it may simply be that weak alleles of capu have a less obvious mutant phenotype and thus are missed in mutant screens.

We examined the microtubule distribution in chic1320 mutant egg chambers and found abnormal microtubule distributions similar to those seen at the time of streaming in wild-type, in premature streaming in capu and spir mutant oocytes and in cytochalasin D-treated egg chambers. We see long and thick anti-tubulin-staining fibers. In contrast to what we have seen in capu and spir, this phenotype is somewhat variable, with longer than normal fibers sometimes being found in more central regions of the oocyte cytoplasm instead of being restricted to the oocyte cortex (see Fig. 1E). Similar to what we observed when examining the cytoplasmic streaming phenotype, we find that in stronger chic allelic combinations such as chic1320/chic221 (chic221 is a null mutation (Verheyen and Cooley, 1994)), the microtubule phenotype more closely resembles that of capu (see Fig. 1F).

chic mutants exhibit patterning defects similar to capu

Since chic shares the misorganization of the microtubules and the premature microtubule-based streaming phenotype with capu, we investigated whether chic mutant oocytes also exhibit

<table>
<thead>
<tr>
<th>Allelic combination</th>
<th>Alive but not streaming</th>
<th>Streaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>chic462/capuE</td>
<td>67% (n=6)</td>
<td>33% (3)</td>
</tr>
<tr>
<td>chic462/capuE</td>
<td>50% (5)</td>
<td>50% (5)</td>
</tr>
<tr>
<td>chic1320/chic1320</td>
<td>20% (2)</td>
<td>80% (8)</td>
</tr>
<tr>
<td>chic1320/chic221</td>
<td>20% (1)</td>
<td>80% (4)</td>
</tr>
</tbody>
</table>

chic462 is a weak allele, chic1320 is a strong, female sterile allele and chic221 is a lethal allele (Verheyen and Cooley, 1994; Cooley et al., 1992).
dorsal-ventral and anterior-posterior patterning defects. In the anterior-posterior axis, STAUFEN and oskar mRNA do not localize to the posterior pole in capu oocytes (Ephrussi et al., 1991; Kim-Ha et al., 1991; St Johnston et al., 1991). Using an anti-STAUFEN antibody, we examined the distribution of STAUFEN in chic mutant oocytes and found that STAUFEN staining is not tightly localized to the posterior pole, but is instead found distributed throughout the cytoplasm of the oocyte. Even at stage 8, when STAUFEN is first localized to the posterior pole in wild-type, there is no localized STAUFEN at the posterior pole in chic mutant oocytes. This distribution is similar to that found in capu (see Fig. 2A-C). Oskar mRNA is first localized to the posterior pole of the oocyte in stage 8. We examined the distribution of oskar mRNA in stage 8 chic mutant chambers and found that it resembles that seen in capu. In chic, oskar mRNA is found through the oocyte cytoplasm and is not found localized at the posterior pole (see Fig. 2D-F). Both oskar mRNA and STAUFEN localization appear normal before stage 8 (data not shown). We examined bicoid mRNA distribution in both capu and chic by whole-mount in situ hybridization and found that, in both cases, the pattern at stage 10 resembles that in wild-type (see Fig. 2G-I).

Gurken mRNA is normally found tightly localized to the dorsal-anterior corner of the oocyte, but in capu is found in a ring along the anterior end of the oocyte (Neuman-Silberberg and Schüpbach, 1993). This results in dorsalization of the egg and embryo (Manseau and Schüpbach, 1989). Eggs laid by chic mutant females are small (Schüpbach and Wieschaus, 1991), presumably because the actin filaments that are required to hold the nurse cell nuclei in place are absent, resulting in the nurse cell nuclei blocking the ring canals and preventing the rapid flow of nurse cell cytoplasm into the oocyte during stage 11 of oogenesis (Cooley et al., 1992). Examination of chic egg shells reveals that, in addition to being small, they sometimes have fused dorsal appendages (see Fig. 2L-N), suggestive of weak dorsal-ventral patterning defects (Manseau and Schüpbach, 1989; Schüpbach, 1987). Gurken mRNA distribution is not convincingly altered in chic egg chambers (see Fig. 2J,K), but this is not surprising for a subtle dorsal-ventral phenotype. Confirming that the chorion abnormalities in chic are the result of dorsal-ventral patterning defects, we found that chic enhances the dorsal-ventral phenotype of capu in two separate double mutant combinations. Approximately 6% of the eggs from capu⁶⁷/capu^{2F} and 30% of those from chic¹³²⁰/chic¹³²⁰ have fused dorsal appendages while approximately 76% of those from capu⁶⁷/chic¹³²⁰/capu^{2F}/chic¹³²⁰ have dorsal-ventral eggshell defects. Similarly, capu^{2F}/chic¹³²⁰/capu^{2F}/chic¹³²⁰ produce 70% eggs with dorsal-ventral type defects, while

Fig. 2. Patterning defects in chic mutant oocytes. (A-C) Confocal image of STAUFEN localization in stage 8 egg chambers. (A) Wild-type: STAUFEN is tightly localized to the posterior cortex of the oocyte. (B) chic¹³²⁰/chic¹³²⁰ and (C) capu^{EE}/capu^{EE} mutant oocytes: STAUFEN is found throughout the oocyte. (D-F) Similar to STAUFEN, oskar mRNA does not localize to the posterior pole in chic and capu. oskar mRNA distribution in stage 9 (D) wild-type, (E) chic¹³²⁰/chic¹³²⁰ and (F) capu^{EE}/capu^{EE}. (G-I) bicoid mRNA distribution resembles wild-type in chic and capu. bicoid mRNA distribution in stage 10 (G) wild-type, (H) chic¹³²⁰/chic¹³²⁰ and (I) capu^{EE}/capu^{EE}. (J, K) Gurken mRNA distribution is relatively normal in chic. (J, wild-type; K, chic¹³²⁰/chic¹³²⁰). (L-N) Eggshells from chic¹³²⁰ mutant mothers exhibit dorsal-ventral patterning defects. (L, wild-type egg; M and N, egg from chic¹³²⁰ mutant females). Note the two separate respiratory appendages typical of a wild-type dorsal-ventral pattern in L and M. (N) The chic egg has fused respiratory appendages characteristic of eggs with dorsal-ventral defects.
capuF by itself produces only 2%. In addition, a significant portion of the eggs laid by the capu chic females are considerably larger than those produced by chic. This allows us to separate the effects of small egg size from dorsal-ventral perturbations. Since these larger eggs often have dorsaled eggshells not seen in capuF/capuF or capuG7/capuF, but typical of stronger allelic combinations of capu, chic is enhancing the dorsal-ventral defects of capu and is likely, therefore, to affect dorsal-ventral patterning on its own.

Mislocalization of STAUFIN to the posterior pole correlates with abnormal microtubules
To more closely examine the correlation between microtubule bundling and mislocalization of posterior determinants, we stained egg chambers homozygous for a weak allele of chic, chic4612, with both anti-α-tubulin and anti-STAUFIN. In chic4612, many of the chambers have normal localization of STAUFIN to the posterior pole. We found that chambers with no STAUFIN at the posterior pole always had abnormal distributions of microtubules, while those with normal STAUFIN localization had relatively normal microtubules (see Fig. 3). We also noticed an interesting complementary pattern between the tubulin-staining regions and the STAUFIN-staining region. In the case of chic, the lack of localization of STAUFIN to the posterior pole correlates with abnormal microtubules.

Thus, in addition to the premature microtubule-based streaming and bundling of the microtubules at the cortex of the oocyte, mutants in chic also block localization to the posterior pole at the same point as capu and spir, upstream of STAUFIN and oskar mRNA localization. This similarity in mutant phenotypes suggests that chic is affecting the same process as capu and spir.

A strong capu allele exhibits cytokinesis defects similar to those seen in chic
Having noticed capu-like phenotypes in chic, we turned to examine capu for phenotypes previously observed in chic. Because chic egg chambers have multinucleate nurse cells indicative of cytokinesis defects, we have examined strong capu alleles to see if they also exhibit cytokinesis defects. Ovaries were stained with both fluorescein-phalloidin, which stains the actin cortex of the cells and DAPI to visualize the nuclei. We have found multinucleate nurse cells in 85% of capuG7/capuG7 egg chambers (see Fig. 4), but not in capuEE or capu3871 chambers. capuG7 is also unusual in that it is the only allele of capu that results in a ventralized phenotype – all other strong alleles result in dorsalization. To determine whether the multinucleate nurse cells result from a lesion in capu and not from a second site on the same chromosome, we have examined egg chambers from capuG7 combined with other capu alleles. We found that chambers from capuG7/Df do not have multinucleate nurse cells, but chambers from capuG7 in combination with the hypomorphic alleles capuHK and capuRK do. This confirms that mutants in capu can produce cytokinesis defects and suggests that, in capuG7, this mutant phenotype is a recessive gain of function since it is stronger in homzygotes and transheterozygotes than in hemizygotes. Whether the cytokinesis defects in capuG7 result from it interfering with a process in which CAPU normally participates or one in which it does not usually play a role is unknown.

Fig. 3. Lack of STAUFIN localization correlates with microtubule abnormalities in chic. Chambers are stained with both STAUFIN and α-tubulin. Confocal images of (A,C,E) STAUFIN distribution and (B,D,F) α-tubulin distribution in chic4612/chic4612. When STAUFIN is localized to the posterior pole as in A, the microtubules appear relatively normal (B). (C,E) When STAUFIN is not properly localized, the microtubules appear abnormal (D,F).

CAPU interacts directly with profilin
To identify proteins that interact with CAPU, we have used the yeast Interaction Trap system (Finley and Brent, 1995; Gyuris et al., 1993) to screen an ovarian cDNA ‘prey’ library with a CAPU ‘bait’ plasmid. The CAPU bait plasmid used consists of the entire capu coding region fused to a LexA DNA-binding domain. Profilin was a frequent positive identified in this screen. The induction of both the CAPU bait and the profilin prey reconstitutes a functional transcriptional activation activity and enables the transcription of two separate reporters. We have also seen this interaction using the CAPU bait plasmid and a profilin prey construct that we have made (see Fig. 5) and when the orientation of the bait and prey are reversed such that a profilin-LexA bait plasmid and CAPU prey construct are used. CAPU contains a 162 amino acid proline-rich region (Emmons et al., 1995) and profilin is known to bind poly-proline (Tanaka, 1985). To address whether this interaction is at all specific for CAPU, we tested and found that
a profilin prey plasmid would not activate transcription in the interaction trap system with a bait construct containing the proline-rich region of dynamin (van der Bliek and Meyerowitz, 1991) (data not shown). Together, these results suggest that CAPU and profilin are capable of direct protein-protein interaction. To ask whether CAPU and profilin form a stable complex, we have attempted but have not yet succeeded in co-immunoprecipitating CAPU and profilin from ovaries and from yeast carrying the two-hybrid fusions.

DISCUSSION

We have investigated the role of the actin cytoskeleton during mid-oogenesis and found that it plays a role in posterior localization of determinants. This effect of the actin cytoskeleton on posterior pattern seems to involve the microtubule cytoskeleton. Our finding that capu, known to regulate behavior of the microtubules during development, shares a number of phenotypes with chic, a known regulator of the actin cytoskeleton, again suggests that the microtubule and microfilament cytoskeletons within the egg chamber are connected either directly or indirectly and suggests that capu and chic affect the same process.

Role of the actin cytoskeleton in posterior patterning

Our evidence suggests that within the egg chamber the actin cytoskeleton is required for maintaining a normal microtubule cytoskeleton and this in turn is required for patterning. First, treatment with cytochalasin D rapidly induces microtubule-based cytoplasmic streaming. This induced streaming is capable of sweeping STAUFEN from the posterior pole (Emmons et al., 1995). Treatment with doses of cytochalasin D that do not induce streaming do not result in mislocalization of posterior determinants (Pokrywka and Stephens, 1995). The second, and perhaps more convincing, line of evidence is that chic mutants have defects in anterior-posterior patterning. STAUFEN is never found correctly localized to the posterior pole in strong alleles of chic. It appears that misregulation of the microtubule cytoskeleton is likely to be responsible for the posterior patterning defects: in a weak chic allele, the lack of localization of STAUFEN to the posterior pole is correlated with abnormal microtubule distributions.

There are other examples of disruption of microfilaments affecting mRNA localization, but in none of those cases do the microtubules seem to be affected. Using cytochalasin, it has been shown that microfilaments are required for proper localization of actin mRNA in fibroblasts and the microtubules appear unaffected by the drug treatment (Sundell and Singer, 1991). In Xenopus oocytes, cytochalasin B disrupts anchoring of Vg1 mRNA at the vegetal cortex but, again, the microtubule array appears unaffected (Yisraeli et al., 1990). Finally, in Drosophila, tropomyosin mutants also have defects in posterior localization of oskar mRNA, but the microtubule distributions are normal (Erdelyi et al., 1995).

Relationship between the actin and tubulin cytoskeletons

That disruption of the actin cytoskeleton either with cytochalasin D or with chic mutants induces microtubule-based streaming in the Drosophila oocyte suggests that the two cytoskeletons are functionally connected. Both the cytochalasin D-induced streaming and the streaming in chic mutants display characteristics of streaming seen both in wild-type stage 10 oocytes and in stage 8 capu and spir mutant oocytes: they are microtubule-based and concomitant with the appearance of microtubule fibers around the cortex of the oocyte. This suggests that some aspect of the actin cytoskeleton normally represses microtubule-based streaming within the oocyte. Because the egg chamber contains three different cell types, the oocyte, the nurse cells and the follicle cells, it is

Fig. 4. capu and chic share cytokinesis defects in the nurse cells. Stage 10 egg chambers are stained with (A,C,E) fluorescein-phalloidin to visualize filamentous actin and (B,D,F) DAPI to visualize DNA. (A,B) Wild-type: there are 15 nurse cells with each cell containing a single nucleus. (C,D) chic1320/chic1320 and (E,F) capu277/capu277: chambers with multinucleate nurse cells resulting from failure to properly cytokinese are apparent (see arrows).
difficult to know whether or not it is the actin cytoskeleton within the oocyte that is responsible for suppressing microtubule-based streaming. While cytochalasin D treatment would certainly affect the actin cytoskeleton in all three cell types, the chic mutant that we have used dramatically reduces profilin expression only in the nurse cell-oocyte complex (Verheyen and Cooley, 1994), indicating that the actin cytoskeleton in either the nurse cells or the oocyte is regulating the oocyte microtubule cytoskeleton.

Profilin can act either to depolymerize or polymerize actin filaments (for reviews see Carlier and Pantaloni, 1994; Theriot and Mitchison, 1993). There is also evidence implicating profilin in the PLCγ signaling cascade (mediated by binding to PIP2) and the RAS signaling pathway (Goldschmidt-Clermont et al., 1990; Vojtek et al., 1991) suggesting that profilin may either mediate cytoskeletal responses to external signals and/or modulate incoming signals to reflect the state of the cytoskeleton (reviewed in Mackesky and Pollard, 1993; Sohn and Goldschmidt-Clermont, 1994; Theriot and Mitchison, 1993). In vitro studies indicate that cytochalasins cap the barbed ends of actin filaments, reduce polymerization at the pointed ends of filaments and convert ATP-actin to ADP-actin, all of which result in depolymerization of actin filaments (Sampath and Pollard, 1991). Within the cell, it is possible that various actin-binding proteins might alter the effect of cytochalasin D treatment, but it seems likely that the net result is depolymerization of filaments. Thus, in chic mutants, it is likely to be the loss of profilin’s promotion of actin polymerization that is important in inducing premature microtubule-based cytoplasmic streaming and bundling of the microtubules.

We suggest two basic models for the regulatory interaction between the actin and microtubule cytoskeletons. We need only consider models involving the oocyte-nurse cell complex, since we see the microtubule phenotypes in a chic mutant allele that has dramatically reduced expression only in these cells. The first model is that there is a direct physical interaction between the two cytoskeletons such that a change in the actin cytoskeleton enables bundling of the microtubules at the cortex of the oocyte. Microtubules could be tethered to the microfilament cytoskeleton such that depolymerization of the actin would enable bundling of the microtubules at the cortex. Alternatively, the polymerized actin cortex might mask sites for initiation of microtubule bundling. A second class of models involves signaling between the two cytoskeletons, such that depolymerization of the actin cytoskeleton releases a signal for bundling of the microtubules. This signal could be transmitted from the nurse cells to the oocyte or could be released within the oocyte.

Profilin may interact directly with CAPU during development

We have provided genetic evidence suggesting that CAPU and profilin act in the same process. capu and chic share a number of mutant phenotypes including premature microtubule-based streaming and premature microtubule bundling within the oocyte. In addition, capu and chic disrupt posterior localization at the same point in the posterior localization pathway, upstream of both STAUFEN and oskar mRNA localization. Finally, a strong capu allele shares cytokinesis defects with chic. These results suggest that capu and chic affect the same pathway and imply a role for capu in regulating or responding to the state of the actin cytoskeleton.

That CAPU and profilin interact in the two-hybrid system suggests a model whereby CAPU and profilin may affect the same process through a direct physical interaction. Although we have failed to co-immunoprecipitate profilin and CAPU from oocytes or yeast, this may be because the interaction is too transient to be detected by immunoprecipitation. While the combination of a similar mutant phenotype and a two-hybrid interaction is suggestive that CAPU and profilin interact directly in vivo, this awaits confirmation.

We are grateful to Lynn Cooley for providing us with chic mutant strains. We would like to thank Daniel St. Johnston for providing us with STAUFEN antibody. We appreciate training from Clare Paine and Doug Cromey on the confocal microscope. We thank Tom Bunch and Viswanathan Ragham for providing us with control constructs used to test for interactions with CAPU. The oogenesis library for the two-hybrid screen was generously provided by Russ Finley and plasmids and the yeast strain for the two-hybrid screen were provided by the Brent lab. We thank Tom Bunch, Alison Adams and Danny Brower for comments on this manuscript.

REFERENCES

(Accepted 12 April 1996)