Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development

Mark C. Hanks1,‡,*, Cynthia A. Loomis1,2,*, Esther Harris1, Chung-Xiang Tong2, Lynn Anson-Cartwright3, Anna Auerbach1 and Alexandra Joyner1,§

1Developmental Genetics Program and Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine and Departments of Cell Biology and Physiology and Neuroscience, NYU Medical Center, 540 First Ave., New York, NY 10016, USA
2Ronald O. Perelman Department of Dermatology and Department of Cell Biology, NYU Medical School, 550 First Avenue, New York, NY 10016, USA
3Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Canada

*The work of these two authors was equally important to the completion of the work reported
‡Present address: Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason Montgomery Road, Mason, OH 45040, USA
§Author for correspondence at Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, NYU Medical Center, 540 First Ave., New York, NY 10016, USA (e-mail: joyner@saturn.med.nyu.edu)

Accepted 2 September; published on WWW 20 October 1998

SUMMARY

The Engrailed-1 gene, En1, a murine homologue of the Drosophila homeobox gene engrailed (en), is required for midbrain and cerebellum development and dorsal/ventral patterning of the limbs. In Drosophila, en is involved in regulating a number of key patterning processes including segmentation of the epidermis. An important question is whether, during evolution, the biochemical properties of En proteins have been conserved, revealing a common underlying molecular mechanism to their diverse developmental activities. To address this question, we have replaced the coding sequences of En1 with Drosophila en. Mice expressing Drosophila en in place of En1 have a near complete rescue of the lethal En1 mutant brain defect and most skeletal abnormalities. In contrast, expression of Drosophila en in the embryonic limbs of En1 mutants does not lead to repression of Wnt7a in the embryonic ventral ectoderm or full rescue of the embryonic dorsal/ventral patterning defects. Furthermore, neither En2 nor en rescue the postnatal limb abnormalities that develop in rare En1 null mutants that survive. These studies demonstrate that the biochemical activity utilized in mouse to mediate brain development has been retained by Engrailed proteins across the phyla, and indicate that during evolution vertebrate En proteins have acquired two unique functions during embryonic and postnatal limb development and that only En1 can function postnatally.

Key words: engrailed, En1, Limb, Mid/hindbrain, Development, Transcription factor, Mouse, Drosophila

INTRODUCTION

There is ample evidence to demonstrate that developmentally crucial genes have been conserved across evolution. Indeed, since the demonstration that the homeobox HOM-C and vertebrate HOX gene clusters were conserved across the phyla, isolating homologues from different species has been an effective strategy in isolating key developmental genes (Rossant and Joyner, 1989). Furthermore, components of genetically defined pathways have, in many instances, also been conserved and some striking molecular parallels exist between diverse developmental processes from very different organisms. A challenge now is to determine what aspects of the biochemical functions of genes have diverged, allowing for the evolution of new species.

One of the best-studied genetic pathways controlling Drosophila segment development involves the segment polarity genes engrailed (en) and wingless (wg). These genes are essential for establishing the anterior/posterior polarity of the segments (Ingham and Martinez-Arias, 1992). En- and wg-expressing cells lie adjacent to each other in the cellular blastoderm, spanning the parasegment boundary, and expression of these two genes is mutually exclusive, such that cells expressing en do not express wg and vice versa. The paired gene is involved in initiating expression of both genes. However, after their initial induction, for a period of time, expression of en is required for continued wg expression in adjacent cells as well as the converse (Perrimon, 1994). Many of the genetic components involved in this pathway have been identified and placed in a regulatory hierarchy. Components of the wg signaling pathway include frizzled, disheveled, armadillo and APC (Moon et al., 1997), whereas en represses ci expression in the posterior cell, allowing for hedgehog signaling to the adjacent wg-expressing cell (Eaton and Kornberg, 1990; Schwartz et al., 1995).

All of the genes known to be components of the en-wg pathway are conserved in vertebrates, although the situation is considerably more complex, as many of the ancestral genes have undergone duplications to generate larger gene families (Joyner, 1996). Evidence has emerged that many genes of this conserved
en-wg pathway operate in controlling the development of the vertebrate midbrain and cerebellum as well as the limb, although it is not clear to what extent the epistatic relationships have been retained from fly to mouse (Joyner, 1996; Wassef and Joyner, 1997). There are some notable differences between the pathway in the vertebrate midbrain/cerebellum when compared to segmentation in the Drosophila cellular blastoderm. For example, although expression of En and Wnt-1 in the anterior neural folds appear to be dependent on each other (McMahon et al., 1992; W. Wurst and A. L. Joyner, unpublished), in this case both genes are expressed by the same cells rather than adjacent cells. In addition, a Hedgehog pathway does not seem to be required for anterior-posterior patterning of this region of the brain. In the developing limb, on the other hand, En1 and Wnt7a are expressed in the ventral and dorsal ectoderm, respectively, and one role of En1 appears to be to repress Wnt7a expression (Loomis et al., 1996, 1998; Logan et al., 1997; Cygan et al., 1997). These observations present something of a paradox, since components of the en-wg pathway are conserved across species, but the rules governing the operation of the pathway do not hold true, even within the same organism. Thus it is likely that there are numerous different pathways involving the En genes, and the diverse pathways probably utilize different protein-protein and/or protein-DNA interactions.

A key question in understanding the evolution of the En genetic pathways to allow participation in diverse developmental processes, is whether the biochemical activities of En and other protein components have been conserved. Previously, we showed that all en proteins contain five conserved regions (EH1-EH5), including the homeodomain, and their existence implies a degree of functional conservation (Logan et al., 1992). Some degree of functional activity has been shown for four of these domains: the homeodomain (EH4) mediates DNA binding (Desplan et al., 1988), and EH2 interacts with exd and Pbx homeodomain proteins to increase DNA-binding affinity and specificity (Peltengbur and Murre, 1996; Pfeifer and Wieschaus, 1990; van Dijk et al., 1995; van Dijk and Murre, 1994). The EH1 and EH5 regions have been shown to have transcriptional repression activity (Han and Manley, 1993; Smith and Jaynes, 1996). EH1 can bind to the corepressor groucho in vitro, and en repressor function in vivo has been shown to be grouch-dependent (Jimenez et al., 1997; Tolkunkova et al., 1998). The non-conserved region C-terminal to EH1 also appears to have a repressor activity, although this is more apparent in an in vitro assay than in vivo (Han and Manley, 1993; Smith and Jaynes, 1996). Interestingly, in an in vivo assay in flies, the activity of EH1 from en can be replaced by EH1 from mouse En1 (Smith and Jaynes, 1996).

It is not clear if all En proteins are capable of performing the same repertoire of activities in vivo. En1 and En2 are both expressed in the developing midbrain and anterior hindbrain from early embryonic stages, except that En1 is expressed half a day earlier than En2 (Davis et al., 1988, 1991). Despite their similar expression patterns, En1 null mutants die at birth and lack most midbrain and cerebellar structures, whereas En2 mutants are viable and have only mild cerebellar defects (Joyner et al., 1991; Millen et al., 1994; Wurst et al., 1994). En1 mutants also have defects in tissues that do not express En2, such as the axial skeleton and presence of double dorsal paws (Loomis et al., 1996). Previously, we showed that En2 can substitute for En1 in mouse brain and axial skeleton development, as well as embryonic patterning of the limb by gene replacement in vivo (Hanks et al., 1995). The study indicated, however, that En2 could not rescue the requirement for En1 in development of paw skin structures (Loomis et al., 1996). These results demonstrated that the differences in function between En1 and En2 in mouse, which are revealed by analysis of null mutants, are in the main part due to divergent embryonic expression patterns, rather than to differing biochemical capabilities of the two mouse En proteins. However, cell type-dependent differences in their biochemical activities could not be excluded. To extend this approach and to determine to what extent biochemical function of en has been retained across the phyla, we have compared the activities of the Drosophila en protein with those of En1 and En2 in transfection assays. These experiments suggest that in this limited cell system all en proteins mediate transcriptional repression. In a much more exacting test of functional conservation, we replaced mouse En1 coding sequences with Drosophila en sequences by a gene-targeting knock-in strategy (Hanks et al., 1995). These studies demonstrate that Drosophila en can substitute for En1 during murine brain development, leading to a near complete rescue of the lethal En1 null mutant brain phenotype. Drosophila en can also, for the most part, rescue the skeletal defects in En1 mutants. Interestingly, en expression in the ventral ectoderm of the developing embryonic limb buds in place of En1 does not fully rescue the embryonic dorsal-ventral limb defects since en can neither repress Wnt7a expression nor subsequent development of dorsal structures such as hairs and nails on the ventral digits. In addition, neither en nor En2 can rescue the postnatal limb defects caused by loss of En1 function.

MATERIALS AND METHODS

Generation of Drosophila en knock-in construct

The pKSlloxP.NT.enKI targeting vector was constructed as follows. The PGKNeo cassette in pKSNT was first replaced by a loxP-flanked PGKNeo cassette taken from pCCM7a.TK (a gift from Cecelia Moens) to generate pKSlloxP.PNT (Hanks et al., 1995). Firstly, pCCM7a.TK was digested with HindIII and Sall, Klenow-blunted and self-ligated to remove unwanted polylinker sequences, to generate pLoxNeo. pKSNT was digested with XbaI and HindIII, blunt-ended and cloned into pLoxNeo, which encoded the loxP-flanked PGKNeo cassette. This generated pKSlloxP.PNT. Next, the 3′ En1 sequence was inserted into pKSlloxP.PNT: a 4 kb ClaI, Sall En1 fragment (the 3′ arm) was cloned into Sall-digested, Klenow-blunted and ClaI-digested pKSlloxP.PNT, to generate pKSlloxP.PNT.En1.3′.

The entire Drosophila en coding sequence contained within a 2 kb EcoRI cDNA fragment (Poole et al., 1985) was then isolated and cloned into the EcoRI site of pBluescript KS+ to generate pKsen. A 4.2 kb XbaI, ApaI partial fragment of the En1 5′ region was then ligated into HindIII-digested, Klenow-blunted, XbaI-digested pKsen to generate pKsen.En1.5′. This fused the en coding sequence to a 4.2 kb En1 5′ fragment (the 5′ homology arm) at a position approximately 90 bp upstream of the endogenous En1 ATG.

Finally, the en coding sequence fused to the 5′ En1 arm was isolated on a 6.2 kb XbaI-, ClaI-digested, Klenow-blunted fragment, which was ligated to EcoRI-digested Klenow-blunted pKSlloxP.En1.3′, to generate the final knock-in vector pKSlloxP.NT.enKI. The en cDNA was kindly provided by Thomas Kornberg.

ES cell culture and production of mice with knock-in mutant alleles

ES cell culture and Southern blot analysis were as described (Hanks et
Germ line transmitting chimeric mice were generated from correctly targeted R1 ES cell lines (Nagy et al., 1993) by aggregation with CD1 morulae as described (Wood et al., 1993).

Southwestern blotting

GST fusion proteins with En1 and En2 were constructed as follows. A 1.1 kb ClaI-digested, Klenow-blunted, EcoRI-digested En1 cDNA fragment was ligated to BamHI-digested, Klenow-blunted, EcoRI-digested pGEX-2T (Pharmacia) to produce pGST:En1. The ClaI site is at amino acid 112 in the En1 protein. pGST:En2 was constructed by ligating a 750 bp ClaI, BglII-digested, Klenow-blunted En2 cDNA fragment to BamHI-digested, Klenow-blunted pGEX-2T. The ClaI site is at amino acid 68 in the En2 protein. Oligos used for southwestern DNA binding assays were: (TCAA TTAAA TGA) 4 , derived from a defined en binding sequence (Desplan et al., 1988), and the mutated derivative, (TCAATTAAGTGA) 4 , in which the essential A residues have been mutated to G (underlined).

Southwestern blots were performed as described (Staudt et al., 1988).

Transfections, CAT and fl-Gal assays

Transfections into SL2 cells (Schneider, 1972) were performed at least in triplicate and standardized using HSPLaZ cotransfection as an internal reference; CAT and fl-Gal assays were also performed as described (Jaynes and O'Farrell, 1988, 1991) pT3N6-D33CAT, pT3D-33CAT, pAC-en and pPAC (Krasnow et al., 1989) were kindly provided by Jim Jaynes. HSPLaZ was a gift from Vincent Giguere. pPACEn1 and pPACEn2 were constructed as follows: pPAC was digested with BamHI and blunted with Klenow. A 1.3 kb EcoRI-, BglII-digested, Klenow-blunted En2 cDNA fragment, containing the complete En2 coding sequence, was cloned into the blunted pPAC to generate pPACEn2. A 1.3 kb Apal-digested, T4 polymerase-blunted En1 cDNA fragment, containing the entire En1 coding sequence, was cloned into the blunted pPAC to generate pPACEn1. We noted that the levels of dexamethasone induction of GR-mediated CAT activity from T3D-33CAT and from T3N6D-33CAT were consistently 10-fold less and 100-fold less, respectively, than those reported by Jaynes and O’Farrell (1991). To address this, we altered the amounts of CAT reporter constructs and GR producer plasmid in the transfection mixes, as well as the concentration of dexamethasone in the cell cultures (data not shown), but failed to achieve greater inductions than shown in Fig. 1. Jaynes and O’Farrell (1991) showed that en repressed GR-mediated transcriptional activation by a factor of between 4- and 10-fold in their experiments and we observed a similar 10-fold repression activity in our assays. This suggests that, although we were unable to achieve the high levels of GR-mediated transcriptional activation of the CAT reporters used by Jaynes and O’Farrell (1991), our assays nevertheless recapitulated en-mediated transcriptional repression.

In situ hybridizations and skeletal preparations

35S- and digoxigenin-labeled RNA in situ hybridizations were performed by aggregation with CD1 morulae as described (Wood et al., 1993). Generated from correctly targeted R1 ES cell lines (Nagy et al., 1993; Wurst et al., 1994). Germ line transmitting chimeric mice were created by aggregation with CD1 morulae as described (Wood et al., 1993).

Fig. 1. En1, En2 and en are capable of active and passive transcriptional repression in SL2 cells. (A) En1, En2 and en passively repress Ftz-mediated transcription. Cotransfection of T3D-33CAT and pPAC Ftz resulted in an approximately 170-fold induction of the CAT reporter (lane 4) over basal levels (lanes 1 and 3). This was dependent on the presence of the NP6 homeodomain binding sequence, as Ftz had no effect on T3D-33CAT, which lacks NP6 (lane 2). Coexpression of en (lane 6), En1 (lane 7) or En2 (lane 8) repressed ftz-mediated transcriptional expression approximately 10-fold, 9-fold and 18-fold, respectively. However, equivalent amounts of empty pPAC vector had no effect on transcription (lane 5). (B) Active repression of GR-mediated transcriptional activation by En1, En2 and en. All samples were transfected with pPAC GR in addition to the vector pT3N6-D33CAT depicted below. Induction with dexamethasone consistently resulted in a 12-fold induction of T3N6-D33CAT (lane 1). Coexpression with pPAC en, pPAC En1 or pPAC En2 (lanes 3, 4 and 5), but not empty pPAC (lane 2) resulted in approximately 10-fold repression of GR-mediated transcription. (C) Repression was dependent on the presence of NP6, as the same transfection mixes resulted in a reproducible 50- to 60-fold induction of T3-D33CAT, but no repression was observed by coexpressing any of the En proteins.
performed on tissue sections and whole-mount mouse embryos as described (Hanks et al., 1995; Loomis et al., 1996). The probe to detect Drosophila en transcripts in situ was transcribed from a 2.1 kb EcoRI fragment from the en cDNA (Poole et al., 1985), subcloned into pBluescript KS. Mouse newborn skeletal preparations were prepared as described (Luftkin et al., 1992).

RESULTS

Transcriptional repression by mouse En proteins in cultured cells

As a first approach to determine the degree of functional conservation between the Drosophila en and mouse En proteins, the DNA binding and transcriptional activities of the proteins were compared in vitro. Southwestern blotting was used to show that mouse En1 and 2-GST fusion proteins were capable of binding to a previously defined DNA target sequence for en (NP6), which consists of six tandem copies of the sequence TCAATTTAATGA (Desplan et al., 1985, 1988; Hoey and Levine, 1988) (data not shown). The assays established by Jaynes and O’Farrell (1988, 1991) were modified to enable comparison of the transcriptional activity of the En1 and En2 proteins with that of en in Drosophila SL2 cells. These authors had previously demonstrated, using transient transfection assays in SL2 cells, that en could passively repress ftz-mediated transcriptional activation of a CAT reporter construct carrying NP6. In addition, en was capable of repressing glucocorticoid receptor (GR)-mediated transcriptional activation from reporter constructs carrying NP6 located adjacent to binding sites for GR (GRE); this was termed active repression.

We performed similar experiments using the mouse En proteins. Cotransfection of the reporter construct T3N6D-33CAT and pPAC-ftz resulted in an approximately 170-fold induction of the CAT reporter over basal levels (Fig. 1A). This was dependent on the presence of the NP6 homeodomain binding sequence, as Ftz had no effect on T3D-33CAT, which lacks NP6. Co-expression of en, En1 or En2 with ftz and T3N6D-33CAT repressed the ftz-mediated transcriptional activation approximately 100-fold, 9-fold and 18-fold, respectively (Fig. 1A). However, equivalent amounts of empty pPAC expression vector had no effect on transcription. Semi-quantitative western blots showed that similar amounts of ftz protein were present in lysates transfected with pPACftz (data not shown).

These data demonstrated that, at least qualitatively, mouse and Drosophila En proteins share the ability to passively repress ftz-mediated transcriptional activation. Drosophila en protein was the most effective repressor, followed by mouse En2 and then En1. However, we have no accurate means of comparing the relative levels of these En proteins in the transfection lysates, so it is possible that in these assays, where repression is presumed to be a result of competition between ftz and competitor (En proteins) for their common binding site, these quantitative differences in ability to repress may reflect differing protein levels in transfected cells.

![Fig. 2. Generation of En1dki targeted ES cell lines. (A) Knock-in targeting strategy. Line 1: depiction of the En1 genomic locus. Coding sequences are shown by solid boxes, the arrow shows the transcriptional start and the polyadenylation signal is represented by the asterisk. Line 2: targeting vector. The selectable neomycin resistance (PGKneo), thymidine kinase (PGKTK) cassettes and the en coding sequence are shown. Ellipses depict LoxP sites. The regions of homology between the genomic sequence and the targeting vector are shown by the dashed lines. Line 3: structure of the En1dki targeted locus. The 5' en coding sequence is shown. Elipses depict LoxP sites. The regions of homology between the genomic sequence and the targeting vector are shown by the dashed lines. Line 4: structure of the En1dki targeted locus. The 5' en coding sequence is shown. Elipses depict LoxP sites. The regions of homology between the genomic sequence and the targeting vector are shown by the dashed lines.](image-url)
cells. In support of this, semi-quantitative western blots, using a polyclonal antibody that recognizes both En1 and En2 (Davis et al., 1991), showed that En1 protein was always present in transfection lysates at reduced levels when compared to En2 (data not shown). However, this could reflect, at least in part, the specificity of the polyclonal antibody, which was raised against En2.

Jaynes and O’Farrell (1988) first showed that en was able to repress transcriptional activation mediated by the glucocorticoid receptor (GR), when bound to a site adjacent to the glucocorticoid response element (active repression). In similar assays, we found that En1 and En2 were also capable of actively repressing GR mediated transcription as effectively as en (Fig. 1B). Again, this effect was dependent on the presence of NP6, as no repression was observed in lysates using T3D-33CAT as the reporter (Fig. 1C).

Replacement of mouse En1 with Drosophila en by gene targeting

The most stringent test of conservation of protein function would be to determine whether substitution of a mouse En protein with Drosophila en in vivo can rescue the developmental effects of a loss-of-function mutation in a mouse En gene. We chose to rescue the En1hd loss of function mutation because En1 is the first En gene expressed in the presumptive embryonic midbrain-cerebellum and the En1 homologous mutant brain phenotype is much more severe than that of the En2hd mutant phenotype (Milten et al., 1994; Wurst et al., 1994). In addition, En1hdhd mutants show defects in limb and skeleton development, whereas the En2hdhd phenotype is mild and restricted to the brain (Loomis et al., 1996; Wurst et al., 1994). Thus, rescuing the En1hd, rather than En2hd, loss-of-function mutation represents a broader test of functional conservation.

To test the ability of Drosophila en to substitute for En1 in vivo, we used a gene targeting knock-in strategy (Hanks et al., 1995) in mouse embryonic stem (ES) cells to replace the coding sequences of mouse En1 with those of Drosophila en (Fig. 2A). The first En1 allele generated was designated En1dkin, for En1 Drosophila en knock-in containing neo. One correctly targeted ES cell line (Fig. 2B) was used to generate chimeric mice giving germline transmission of the En1dkin allele (see Materials and methods). Heterozygous En1dkin+/+ animals were viable, fertile and in all respects appeared conserved.

Expression of the Drosophila en RNA transcripts from the En1dkin and En1dkin alleles was analyzed to determine whether it was similar to that of En1. Whole-mount RNA in situ hybridization using an antisense Drosophila en probe showed the presence of en transcripts in 8.0- to 10.5-day post coitus (dpc) En1dkin and En1dkin embryos. In En1dkin embryos, en was expressed at high levels and in all tissues that normally express En1, including the brain, spinal cord, somites and limbs (Figs 3C,F and 4J,P). However, en expression in En1dkin embryos, although restricted to the normal En1 expression domains, was variable (Figs 3B,E and 4B,H); in the brains of En1dkin embryos the width of the en expression domain was generally much narrower than that of the wild-type En1 domain or that of the en domain in En1dkin brains (Fig. 3E). Furthermore, en expression from the En1dkin allele was often reduced in limb buds (Fig. 4B) and undetectable in the spinal cord and somites (Fig. 4H). Thus, the presence of a neo cassette in the first exon of the En1dkin allele interferes with expression of the inserted en sequences, and removal of neo results in normal En1-like expression from the En1dkin allele.

Drosophila en can rescue En1 mutant mid-hindbrain development

In contrast to En1hdhd newborns, which generally never feed and die within 24 hours of birth due to deletion of midbrain and hindbrain structures, 90% of En1dkin/dkin homozygous mice (27/30) survived to weaning, although four of these died during the next 4 weeks. The animals that survived to adulthood did not show behavioral defects and many males and females were fertile. These results suggest that, if expressed in place of En1, Drosophila en can substantially rescue the brain defects of En1 mutants. Given the incomplete expression of en from the En1dkin allele, it is not surprising that survival of En1dkin/dkin animals was lower, with approximately 67% (10/15) of En1dkin/dkin pups surviving to 3-4 weeks of age, and 50% (7/15) to 8 weeks. Some En1dkin/dkin females were fertile (4/6), but no males (n=6) appeared fertile.

To examine the degree of morphological rescue of the En1 mutant brain phenotype, whole-mount preparations and sagittal sections through newborn and adult brains from En1dkin/dkin and En1dkin/dkin animals were prepared (Fig. 5). All the adult (n=4) and newborn (n=5) En1dkin/dkin whole brains examined showed a near complete rescue of the En1hdhd mutant phenotype, with a well-developed midbrain and cerebellum and all the cerebellar folds apparently present in adults (Fig. 5E,G). Sagittal sections through the brains of En1dkin/dkin newborns revealed that the midbrain and cerebellum appeared grossly normal (Fig. 5F), although in some animals the midbrain was slightly truncated and cerebellar folding slightly delayed. However, sagittal sections through adult En1dkin/dkin brains showed that there were subtle cerebellar foliation defects in some animals. One of four animals had a relatively normal foliation pattern (Fig. 5H), whereas another animal was missing most of the first anterior fold (Fig. 5I). This animal also had an alteration of the eighth fold that was similar to that seen in En2 mutants (Joyner et al., 1991). The other two animals had a partial fusion of the anteriormost two folds and a partial posterior shift in the eighth fold (Fig. 5P).

As expected, En1dkin/dkin brains showed a variable rescue that correlated with the ability of En1dkin/dkin pups to feed and older animals to survive. In general, the brain rescue was less complete than that observed in En1dkin/dkin animals (Fig. 5L,K), and newborn brains exhibiting the weakest rescue were only marginally less affected than En1hdhd mutants (not shown). Examination of sagittal sections through the
cerebellums of adult and newborn animals confirmed that
collicular and cerebellar cytoarchitecture was largely
normal, though in some En1 dkin/dkin animals that survived,
regions of the posterior colliculi and medial and anterior
cerebellum were missing (Fig. 5L). These results suggested
that the En1 dkin/dkin brains exhibit a partial loss-of-En1
phenotype, whereas the En1 dki/dki brains more closely
resemble the wild-type phenotype.

Fig. 3. Whole-mount RNA in situ analysis of mouse embryos analyzed with Drosophila en or mouse En1 probes. 8.5 dpc En1 dkin/+ (A,B) or En1 dki/+ (C) mouse embryos probed with En1 (A) or en (B,C). Expression in the anterior neural folds is indicated by arrowheads. 9.5 dpc En1 dkin/+(D,E) and En1 dki/+ (F) embryos probed with En1 (D) and en (E,F) sequences, using long proteinase K treatments appropriate for detecting transcripts in the neural tube. Expression of en from the En1 dkin allele is seen at the mid/hindbrain border (E), but is more variable than that seen in either En1 dkin/+ embryos probed with En1 (D) or En1 dki embryos probed with en (F).

Fig. 4. Whole-mount and section RNA in situ analysis of limbs and trunk from embryos carrying the En1 dkin or En1 dki alleles. 11.0 dpc limb sections (A-F) and 11.5 dpc whole mounts (G-P) of En1 dkin/+ (A,B,G,H), En1 dki/+ (I,J,O,P), En1 dkin/dkin (D,F), En1 dki/dki (L,N) or En1 +/+ (C,E,K,M) embryos probed with En1 (A,G,I,O), en (B,H,J,P), Wnt7a (C,D), Lmx1b (K,L) or Fgf8 (E,F,M,N). Expression patterns of En1 and en are similar in En1 dkin/+ and En1 dki/+ limbs (A,B,I,J), but the level of en expression in En1 dkin embryos was variable and often reduced compared to en in En1 dki/+ limbs. En1 dkin/dkin and En1 dki/dki mutant limbs display ectopic ventral expression of the dorsalizing genes Wnt7a (D, white arrowhead) and Lmx1b (L, black arrowhead) as well as aberrant proximoventral expansion of the Fgf8 expression domain at early stages of AER development (F, white arrow) and an ectopic Fgf8-positive rim at later stages (N, black arrow). Somites and spinal cord of En1 dkin/+ embryos did not express detectable levels of en (H), whereas those of En1 dki/+ embryos expressed en at levels comparable to endogenous En1 (O versus P). D, dorsal; V, ventral.
Drosophila en cannot rescue En1 mutant embryonic or postnatal limb patterning

Whole-mount and section in situ hybridizations showed that en expression in the embryonic limbs of En1\textasciitilde dki/\textasciitilde and En1\textasciitilde dki/dki embryos was detectable though weak in most limbs (Fig. 4B and data not shown), whereas en was consistently expressed at appropriate levels in the limbs of En1\textasciitilde dki/\textasciitilde and En1\textasciitilde dki/dki embryos (Fig. 4J and data not shown). Nevertheless, the limbs of both En1\textasciitilde dki/\textasciitilde and En1\textasciitilde dki/dki animals displayed the double dorsal phenotype characteristic of En1\textasciitilde hd/hd mutants, with ventral nails and hair, and loss of palmer eccrine glands (Fig. 6H,I and data not shown) (Loomis et al., 1996; Wurst et al., 1994). Like En1 null mutants, the posterior paw (4th and 5th digits) displayed less severe dorsalization than the anterior...
paw. However, in the $En^{dki/dki}$ mutants the middle digits were slightly less dorsalyzed than in the $En^{hd/hd}$ and $En^{dki/dki}$ mutants. $En^{dki/dki}$ and $En^{dki/dki}$ limbs also displayed the forelimb handplate defects, syndactyly and post-axial polydactyly, seen in $En^{hd/hd}$ forelimbs, but the syndactyly was much less prominent in the $En^{dki/dki}$ mutants (Fig. 6E,F). Occasional ectopic ventral digits similar to $En^{hd/hd}$ homozygotes were also observed on fore- and hindpaws of both knock-in mutants (Fig. 6F). Finally, postnatal hyperpigmentation and nail-like differentiation on the ventral epidermis developed at 3-4 weeks of age in both $En^{dki/dki}$ and $En^{dki/dki}$ mice, as seen in the $En^{hd/hd}$ animals that survive past birth (Loomis et al., 1996; Fig. 6H-I).

Our previous studies showed that the dorsalization of En^{hd} mutant paws at birth reflected changes in gene expression at early limb bud stages. In $En^{hd/hd}$ 10.5 dpc mutant embryos, the dorsally restricted limb gene Wnt7a is upregulated in the ventral ectoderm of En^{hd} early limb buds and this leads to the ectopic up-regulation of $Lmx1b$ in the ventral mesenchyme of 11.5 dpc limbs (Loomis et al. 1996, 1998; Cygan et al., 1997). In addition, the AER markers Fgf8, Bmp2 and Dlx2 are expanded ventroproximally at slightly later developmental stages and delineate a second rim of thickened ectoderm (Loomis et al., 1998; Fig. 4) along the proximoventral border of the expanded domain. RNA in situ analysis of $En^{dki/dki}$ and $En^{dki/dki}$ limbs showed that Fgf8, Wnt7a and Lmx1b were abnormally expressed, as in En^{1} null mutants, despite high levels of en expression in the ventral ectoderm of $En^{dki/dki}$ embryos (Fig. 4D,F,L,N and data not shown).

En2 can rescue embryonic, but not postnatal limb patterning

In our studies of En^{2ki} mice (previously designated En^{2k} mice), in which En^{1} was replaced with En^{2} (Hanks et al., 1995; Loomis et al., 1996), we had found that En^{2} can rescue the embryonic patterning defects of En^{hd} mutant limbs, but not the postnatal defects. Since the En^{2kin} allele contained the neo gene it was possible that the lack of postnatal rescue was due to an effect of neo on En^{2} expression in the limb. To address this, neo was removed by site-specific recombination to produce En^{2ki} heterozygous mice, which were interbred to produce homozygotes. $En^{2ki/2ki}$ mice were, however, found to develop the hyperpigmentation and ventral nail-like structures of $En^{hd/hd}$ mutants a few weeks after birth (Fig. 6J).

en can substitute for En1 in sternum development

In contrast to the limb defects, the severity of the sternum and rib skeletal phenotypes differed between $En^{dki/dki}$ and $En^{dki/dki}$ homozygotes. In $En^{dki/dki}$ animals, where en showed appropriate En1-specific expression, the chest wall skeletal defects appeared largely rescued (Fig. 6C). However, since en was poorly expressed in the developing body mesoderm of $En^{dki/dki}$ embryos, as expected, these animals exhibited the disorganized sternum described for $En^{hd/hd}$ mutants (Fig. 6B), with delayed irregular ossification, partial fusion of the two halves of the sternal primordium and asymmetric articulation of ribs 2-5. These results provide compelling evidence that Drosophila en can functionally replace mouse $En1$ in skeletal as well as brain development, but not during embryonic or postnatal limb development.

DISCUSSION

In summary, we have utilized in vitro transient transfection assays and an in vivo knock-in gene targeting approach to demonstrate that mouse $En1$ and Drosophila en share common biochemical activities, despite having roles in diverse developmental processes. $En1$, $En2$ and en have qualitatively similar biochemical activities in vitro: all can bind a common DNA sequence and can act as active and passive repressors of transcription. Additionally, Drosophila en can substitute for $En1$ in the developing murine midbrain and cerebellum, leading to a near complete rescue of the $En^{hd/hd}$ mutant phenotype. We further show that en can for the most part replace $En1$ in sternal development, but cannot functionally replace $En1$ in limb dorsal/ventral patterning during embryonic or postnatal stages.

A number of studies have shown that mammalian homologues of Drosophila genes can partially rescue Drosophila mutant phenotypes, or elicit similar phenotypes to their endogenous fly homologues when transiently expressed from a heat shock promoter (Bachiller et al., 1994; Dauwalder and Davis, 1995; Malicki et al., 1990, 1993; McGinnis et al., 1990; Zhao et al., 1993). Our studies are among the first to demonstrate that a gene from an invertebrate can substitute for a mammalian gene throughout development of a particular organ and contribute to development of a highly evolved structure, the brain (see also Acampora et al., 1998). Our mutant analysis also provides the first evidence for specific functional diversity of En proteins during evolution, based on the degree to which en and $En2$ can rescue three different aspects of the En^{1} null mutant phenotype. Furthermore, the two knock-in mutants show interesting and different intermediate phenotypes in all tissues and therefore, together with $En^{hd/hd}$ mutants, represent an informative $En1$ allelic series.

The incomplete brain and skeletal rescue of $En^{dki/dki}$ mutants probably reflects the variable and weak expression of en from the En^{dki} allele in the neural tube and presumptive thoracic mesenchyme. In support of this idea, removal of neo from the En^{dki} allele, to produce the En^{dki} allele, results in normal En^{1}-like expression of en in these tissues and consequent rescue of the relevant structures. The reduction of en expression from the En^{dki} allele as compared with the En^{dki} allele or wild-type $En1$ locus is consistent with other reports that neo can interfere with the proper regulation of a nearby gene (Olson, 1996). In addition, since neo was inserted within the $En1$ transcription unit in exon 1, it could also produce an en mRNA that is less stable than the $En1$ transcript. The expression studies suggest that in either case, there are tissue-specific effects on production of en mRNA from the En^{dki} allele. Furthermore, it is interesting to note that insertion of the mouse $En2$ or bacterial lacZ cDNAs into $En1$, instead of en, resulted in more faithful $En1$-like expression of these cDNAs in the presence of neo (Hanks et al., 1995).

The finding that some $En^{dki/dki}$ animals died after weaning might suggest that expression from the En^{dki} allele was also variable, although based on our expression studies this was to a much smaller degree. An explanation for the post-weaning fatalities in $En^{dki/dki}$ or $En^{dki/dki}$ animals could be that variation in levels of en expression from the En^{dki} and En^{dki} alleles, combined with a reduced functional capacity of en.
compared to En1, sometimes results in en failing to operate above a critical threshold level. Consistent with this idea, our studies of En1 and En2 double mutants have shown a graded deletion of mid-hindbrain structures that correlates with a graded loss of total En expression (W. Wurst and A. L. Joyner, unpublished). Furthermore, the intermediate phenotypes seen in En1^{+/−}-En2^{-/-} double mutants, loss of posterior colliculi and anterior cerebellum, are similar to those seen in some En1^{dki/dki} mutants. One other interesting alternative in the case of En1^{dki/dki} animals is that En1 plays an essential role postnatally in some tissue where en is expressed, but where en can not completely replace En1 function. Taken together, our studies demonstrate that, given an appropriate expression profile, en can functionally replace En1 throughout brain development to a great degree.

The finding that Drosophila en expression in the developing limbs of En1^{dki/dki} embryos is unable to repress ventral expression of Wnt7a raises the interesting possibility that En1 protein has different functions in the embryonic brain and limb, with en capable of performing the functions required for brain-specific, but not limb-specific development. The lack of limb rescue is not likely to be due to insufficient en expression in the limb ectoderm, since en appears to be expressed at normal levels from the En1^{dki} allele. Furthermore, En1^{hd/+} heterozygotes have normal limbs.

Our recent analysis of targeted En1^{2ki} mutants (Hanks et al., 1995; Loomis et al., 1996) and present analysis of En1^{2ki} mutants, in which En2 replaces En1, have shown that En2 can rescue the En1^{hd} brain defects and embryonic limb patterning defects, but not an apparent postnatal role of En1 in the limb epidermis. The limbs of En1^{2ki/2ki} animals appear normal at birth and En2 can repress embryonic expression of Wnt7a and Lmx1b in the ventral limb (R. Kimmel and C. Loomis, unpublished data). However, by about 3-4 weeks post partum in En1^{2ki/2ki} and En1^{dki/dki} mutants, and in rare En1^{hd/+} animals that survive, the ventral epidermis overlying the palm pads becomes pigmented and begins to form nail-like structures. These postnatal defects correlate with postnatal expression of En1 in epidermal structures (C. Loomis, unpublished results). Although it is possible that the postnatal limb defects in En1 mutants result from a lack of En1 during early embryonic limb patterning, it seems more likely that they are due to a requirement for En1 later in the epidermis. The fact that En2 can rescue the early dorsal/ventral patterning function of En1 in the limb but not a later function in the epidermis, and that en cannot fully rescue either limb function of En1, suggests that the functions of En1 protein are different in early and late limb development. Furthermore, since both En2 and en can rescue the function of En1 in the brain, the region(s) of En1 required for this function must be conserved in both en and En2, unlike the region(s) required for limb development.

We speculate that the functional differences between the three engrailed proteins may reflect the inability of en and En2 to interact with the full repertoire of En1 accessory proteins, possibly resulting in altered DNA binding affinities for selective targets. As already mentioned, comparison of the sequences of all En proteins has identified five conserved domains, the largest being the homeodomain (Logan et al., 1992). Outside these domains En1 and En2, or en, diverge to a similar degree. Thus, in a non-conserved En region, the coding sequence of the first vertebrate En gene could have evolved a domain required for specific protein-protein or protein-DNA interactions in the limbs, which became further specialized in En1 after the second En gene (now designated En2) was formed by duplication. In this regard it is interesting to note that En1 proteins share a number of conserved regions that are not found in other En proteins (Logan et al., 1992). It is also possible that some of the conserved domains do not have the same repertoire of functions. It has been noted that EH-1, which is present in a number of transcription factors, can be divided into subfamilies based on sequence conservation (Smith and Jaynes, 1996). Furthermore, EH-1 is quite divergent between mouse and Drosophila. Although it was shown in a fly in vivo assay that EH-1 from mouse En1 can functionally replace EH-1 from en, it is possible that during mouse development en EH-1 can functionally replace En1 in the brain and skeleton, but not the limb. Thus, protein sequence and experimental data are consistent with the hypothesis that En1 protein has evolved one or more functional domains required for vertebrate limb development.

We would like to thank M. Kownacka and H. Park for technical assistance, W. Auerbach for the CMV-cre mice, S. Chu, M. Birge and the NYU Pathology Department for histology, Randy Johnson, Andy McMahon, Gail Martin and Tom Kornberg for Lmx1b, Wnt7a, Fgf8 and en cDNAs, Jim Jaynes for expression vectors, and Gordon Fishell, Doug Epstein and Karoline Briegel for critical reading of the manuscript. We are also grateful to Robin Kimmel, Wolfgang Wurst and members of the Joyner laboratory for useful discussions. This work was funded in part by grants from NINDS and Human Frontiers Science Program. A. L. is an HHMI Investigator and C. L. is supported by a Dermatology Foundation Career Development Award.

REFERENCES

