INTRODUCTION

In the developing embryo, combinatorial signals elicit appropriate patterning and morphogenesis via regulatory networks that control stem-cell determination, proliferation, differentiation and programmed death (Slack, 1992). The retinoblastoma (Rb) family, including Rb, p107 and p130, which are believed to play important roles in cell-cycle control and cellular differentiation. We have generated a null mutation in p130 by gene targeting and crossed the null allele into Balb/cJ and C57BL/6J strains of mice. In an enriched Balb/cJ genetic background, p130−/− embryos displayed arrested growth and died between embryonic days 11 and 13. Histological analysis revealed varying degrees of disorganization in neural and dermamyotomal structures. Immunohistochemistry with antibody reactive with Islet-1 indicated markedly reduced numbers of neurons in the spinal cord and dorsal root ganglia. Immunohistochemistry with antibody reactive with desmin indicated a similar reduction in the number of differentiated myocytes in the myotome. The myocardium of mutant embryos was abnormally thin and resembled an earlier staged two-chambered heart consisting of the bulbus cordis and the ventricular chamber. TUNEL analysis indicated the presence of extensive apoptosis in various tissues including the neural tube, the brain, the dermomyotome, but not the heart. Immunohistochemistry with antibody reactive with PCNA revealed increased cellular proliferation in the neural tube and the brain, and decreased proliferation in the heart. The placentalas of p130−/− embryos did not display elevated apoptosis and were indistinguishable from wild type suggesting that the phenotype was not due to placental failure. Following a single cross with the C57BL/6 mice, p130−/− animals were derived that were viable and fertile. These results indicate that p130 in a Balb/cJ genetic background plays an essential role that is required for normal development. Moreover, our experiments establish that second-site modifier genes exist that have an epistatic relationship with p130.

Key words: p130, Balb/C, Embryonic lethality, Mouse, Retinoblastoma

SUMMARY

The retinoblastoma-related p130 protein is a member of a conserved family, consisting of Rb, p107 and p130, which are believed to play important roles in cell-cycle control and cellular differentiation. We have generated a null mutation in p130 by gene targeting and crossed the null allele into Balb/cJ and C57BL/6J strains of mice. In an enriched Balb/cJ genetic background, p130−/− embryos displayed arrested growth and died between embryonic days 11 and 13. Histological analysis revealed varying degrees of disorganization in neural and dermamyotomal structures. Immunohistochemistry with antibody reactive with Islet-1 indicated markedly reduced numbers of neurons in the spinal cord and dorsal root ganglia. Immunohistochemistry with antibody reactive with desmin indicated a similar reduction in the number of differentiated myocytes in the myotome. The myocardium of mutant embryos was abnormally thin and resembled an earlier staged two-chambered heart consisting of the bulbus cordis and the ventricular chamber. TUNEL analysis indicated the presence of extensive apoptosis in various tissues including the neural tube, the brain, the dermomyotome, but not the heart. Immunohistochemistry with antibody reactive with PCNA revealed increased cellular proliferation in the neural tube and the brain, and decreased proliferation in the heart. The placentals of p130−/− embryos did not display elevated apoptosis and were indistinguishable from wild type suggesting that the phenotype was not due to placental failure. Following a single cross with the C57BL/6 mice, p130−/− animals were derived that were viable and fertile. These results indicate that p130 in a Balb/cJ genetic background plays an essential role that is required for normal development. Moreover, our experiments establish that second-site modifier genes exist that have an epistatic relationship with p130.

Key words: p130, Balb/C, Embryonic lethality, Mouse, Retinoblastoma

INTRODUCTION

In the developing embryo, combinatorial signals elicit appropriate patterning and morphogenesis via regulatory networks that control stem-cell determination, proliferation, differentiation and programmed death (Slack, 1992). The retinoblastoma (Rb) family, including Rb, p107 and p130, plays an integral role in these regulatory pathways, in part by negatively regulating E2F-dependent transcription (Weinberg, 1995). Moreover, an important role for p130 in repressing cell cycle progression during differentiation is supported by the observation that p130:E2F complexes are predominant in differentiated cells (Muller, 1995; Nevins et al., 1997). Different members of the Rb-family also regulate the activity of other transcription factors including the developmentally important paired homeodomain-containing proteins MHox, Chx10 and Pax-3 (Wiggan et al., 1997), as well as the transcriptional control proteins C/EBP and c-Myc (Chen et al., 1996; Weinberg, 1995; Whyte, 1995).

Rb-family members differentially bind cyclins and their associated kinases (cyclin-dependent kinases or Cdks) resulting in the differential phosphorylation of Rb-members during progression through the cell cycle. Consequently, Rb, p107 and p130 are hypophosphorylated during different phases of the cell cycle allowing the formation of complexes that contain different E2F transcription factors (Nevins et al., 1997). The multimember E2F-family of transcription factors regulates the transcription of many genes, for example, thymidylate synthase, ribonucleotide reductase M2, DHFR, B-myb and cdc2 that are involved in DNA synthesis and cell-cycle progression. Complexes containing hypophosphorylated Rb-family members are believed to bind promoters at E2F sites and inhibit transcription by recruiting HDAC1, a histone deacetylase, to repress gene expression via chromatin remodeling (Brehm et al., 1998; Luo et al., 1998; Magnaghi-Jaulin et al., 1998). Presumably, the cyclic activation and repression of E2F-regulated genes facilitates appropriate gene expression and hence progression through the cell cycle (Muller, 1995).

Mice carrying targeted mutations in Rb display phenotypes supportive of a role for Rb in cellular differentiation. Homozygous mutant embryos die in utero between day 13.5 and day 15.5 of gestation and exhibit defects in erythropoiesis and extensive cell death in the central nervous system (Clarke
et al., 1992; Jacks et al., 1992; Lee et al., 1992, 1994; Macleod et al., 1996). Chimeras containing both wild-type and Rb-deficient cells are viable, but exhibit adrenal medulla hyperplasias, pituitary tumors and lens cataracts (Maandag et al., 1994; Williams et al., 1994). Unlike Rb-deficient embryos, Rb"/-wild-type chimeras contain mature Rb-deficient erythrocytes suggesting that erythroid differentiation is delayed rather than blocked in the absence of Rb.

Mice lacking either p107 or p130 in a mixed 129/Sv: C57BL/6J genetic background exhibit no overt phenotype, are viable and fertile, and embryonic fibroblasts derived from the mutants display normal cell-cycle kinetics (Cobrinik et al., 1996; Herrera et al., 1996; Hurford et al., 1997; Lee et al., 1996). Embryos lacking both Rb and p107 die in utero 2 days earlier than Rb-deficient embryos and exhibit apoptosis in the liver and central nervous system suggesting some redundancy in function. Compound mutant mice lacking both p130 and p107 die soon after birth and exhibit defective endochondral bone development likely due to a deficiency in osteoblast differentiation. Taken together, these data suggested that p107 and p130 have relatively subtle roles in regulating the cell cycle and that a significant degree of overlap in function exists between the proteins (Cobrinik et al., 1996; Lee et al., 1996).

We have independently derived a targeted null mutation in p130 into the germline of mice. In our experiments, we bred chimeras with mice from the Balb/cJ strain. Surprisingly, we observed that mice lacking p130 displayed an embryonic lethal phenotype associated with reduced cellular differentiation and increased apoptosis. These data strongly support the assertion that p130 in a Balb/cJ genetic background plays an essential role that is required for normal development. Moreover, the observed strain-dependence of the phenotype suggests that second-site modifier genes exist that have an epistatic relationship with p130.

MATERIALS AND METHODS

Generation of p130 mutant mice

A 13 kb fragment of the p130 locus was cloned from a J1 genomic library and was used to construct a targeting vector containing 3 kb of 5'- and 7.2 kb of 3'-homologous sequence. The PGK-neo expression cassette was inserted in the opposite transcriptional orientation to p130 immediately downstream of the codon encoding aa 106 (Fig. 1). The p130 targeting vector was linearized with NotI and gene targeting performed with the J1 line of ES cells as described previously (Rudnicki et al., 1992). Targeting events were detected by Southern analysis of EcoRV-digested genomic DNA using a 5'-flanking probe. Two independent targeted lines were injected into Balb/cJ blastocyst stage embryos to generate chimeras. Chimeras were subsequently mated to Balb/cJ females and the resulting heterozygous mice were bred to produce homozygous mutant mice. Care of animals was in accordance with institutional guidelines.

Northern and immunoblot analysis

Northern analysis of total RNA (10 μg) was performed using standard techniques with the full-length mouse p130 cDNA as probe (LeCouter et al., 1996). Immunoblot analysis was performed as follows. Protein lysates were prepared by lysing in modified TNE (1 mM Na3V and 10 μg/ml PMSF, aprotinin, pepstatin and leupeptin) or EBC lysis buffer (50 mM Tris HCl, pH 7.5, 0.5% NP40, 150 mM NaCl and protease inhibitors). Protein (30 μg) was electrophoresed on 7.5% SDS-polyacrylamide gels and transferred to PVDF membranes. Membranes blocked with 5% skim milk powder in TBST were incubated for 1 hour at room temperature with anti-p130 antibody C-20 (Santa Cruz) diluted 1:500. Following five washes in TBST, secondary antibody (diluted 1:2000) was incubated at RT for 1 hour. After five TBST washes, proteins were visualized by ECL detection (Amersham).

Histopathology and immunohistochemistry

Preparation, fixation, sectioning and staining of tissue samples for light microscopy of histological preparations were performed as described previously (Kablar et al., 1997). Following timed matings, embryos were isolated at different stages of gestation and fixed in 4% paraformaldehyde in PBS for 12-20 hours. Processing and staining with antibodies reactive with Isl-1 (Developmental Hybridoma Bank), desmin (Dako) and PCNA (Dakopatts) was performed as previously described (Kablar et al., 1997). TUNEL analysis was performed with the ApoTag Kit (Oncor). All sections were lightly counterstained with hematoxylin.

RESULTS

Targeted inactivation of p130 in mice

The p130 gene was disrupted by homologous recombination in J1 embryonic stem (ES) cells using standard techniques (Rudnicki et al., 1992). The p130 targeting vector was constructed by inserting the PGK-neo cassette (McBurney et al., 1991) into a 1 kb deletion originating from a BamHI site introduced into an exon immediately downstream of the codon encoding aa 160 to a KpnI site within the downstream intron. The PGK-neo cassette was inserted in the opposite transcriptional orientation to p130 (Fig. 1A). Approximately 1% of G418-resistant clones contained the targeted p130 allele as revealed by Southern analysis. A probe upstream of the targeting vector detected an 18.5 kb EcoRV fragment from the wild-type p130 allele, whereas an 7.5 kb EcoRV fragment was detected following homologous recombination (Fig. 1B).

Chimeras were generated following microinjection of two independently derived targeted ES lines into Balb/cJ blastocysts. Southern analysis of tail DNA in p130+-/- germline progeny revealed the predicted restriction fragment length polymorphism (not shown). Two independent p130 mutant mouse lines were derived into the germline and the observed homozygous embryonic lethal phenotype was completely identical in all experiments and are hereafter discussed together (see below).

To confirm that the engineered disruption of p130 by PGK-neo had generated a null mutation, we examined expression of p130 at the level of mRNA and protein by northern and immunoblot analysis. RNA and protein was isolated from E14 embryos from an enriched C57BL/6J genetic background as previously described (LeCouter et al., 1998). Immunoblot analysis was performed on total RNA using the full-length mouse p130 cDNA as probe (Fig. 1C). The mature 4.9 kb p130 mRNA was readily detected in wild-type total RNA (Fig. 1C, lane 1) and the level of p130 mRNA was reduced by about half in p130+-/- total RNA (Fig. 1C, lane 2). However, no p130 mRNA was detected in RNA isolated from p130+-/- samples (Fig. 1C, lane 3).

Immunoblot analysis was performed with antiseraum C20 (Santa Cruz) reactive with the carboxyl-terminal 20 aa of p130. The p130 protein was readily detected in wild-type extracts and...
depicted as filled boxes. The targeting vector contained 3 kb of 5¢ targeting vector and structure of the disrupted

delivered and indicated that

uter.

Together, this suggested that

revealed no increased incidence of non-viable newborn pups.

animals. Moreover, inspection of newly delivered litters

p130 +/− lysates (Fig. 1D, lane 3). Moreover, no smaller molecular

lanes 1 and 2). No detectable product was detected in

Targeted disruption of the

Embryonic lethality in the absence of p130

Genotyping of the weaned 3-week-old progeny derived from interbreeding of p130+/− mice revealed an absence of p130+/− animals. Moreover, inspection of newly delivered litters revealed no increased incidence of non-viable newborn pups. Together, this suggested that p130+/− embryos were not being delivered and indicated that p130+/− embryos were dying in utero.

To delineate the gestational stage that p130+/− embryos were being lost, Cesarean sections were performed at successive days postcoitum (dpc) following timed matings (Table 1). DNA was isolated from the fetal portion of the placenta and the conceptuses genotyped by Southern analysis. At 9.5 dpc and 10.5 dpc, we observed an approximate Mendelian frequency of 1:2:1 of wild-type, p130+/− and p130+/− genotypes. However, about 50% of the expected numbers of p130+/− embryos were observed on 11.5 dpc, whereas only about 10% of the expected numbers of p130+/− embryos were observed on 12.5 dpc. On and after 13.5 dpc, no viable p130+/− embryos were detected (Table 1). In addition, we observed that approximately 25% of the conceptuses were non-viable and were undergoing absorption on and after 12.5 dpc. Therefore, we conclude that a null mutation in p130 in a Balb/cJ genetic background resulted in an embryonic lethal phenotype with embryos dying between embryonic day 11 and 13.

Table 1. Viability of embryos derived from p130+/− interbreeding

<table>
<thead>
<tr>
<th>Genotype</th>
<th>9.5</th>
<th>10.5</th>
<th>11.5</th>
<th>12.5</th>
<th>13.5</th>
<th>14.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>6</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>p130+/−</td>
<td>15</td>
<td>31</td>
<td>23</td>
<td>23</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>p130+/−</td>
<td>4</td>
<td>14</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The F1 p130+/− offspring of chimeras bred with Balb/cJ mice were interbred and Cesarean sections performed at different gestational ages. Note, the morning following mating is considered 0.5 days post coitum.

Embryos lacking p130 display abnormal growth

Inspection of p130+/− embryos revealed a disparity in growth that increased with gestational age until 11.5 dpc when the mutant embryo reached approximately 25% of the normal size (Fig. 2A). Mutant embryos at 10.5 dpc exhibited beating hearts with seemingly normal vascularization and distribution of blood. However, mutant hearts displayed an abnormal dilated morphology and appeared to resemble the two-chambered hearts of earlier-stage embryo. More anterior structures appeared normal, for example, 10.5 dpc p130−/− hearts of earlier-stage embryo. More anterior structures appeared normal, for example, 10.5 dpc p130−/− embryos exhibited normal brain segmentation, normal elaboration of branchial arches and normal morphology of forelimbs. Posterior structures were reduced and mutant 10.5 dpc embryos failed to form hind limb buds. By 11.5 dpc, the remaining viable mutant embryos had progressed little in development and appeared similar in size to 10.5 dpc p130+/− embryos (Fig. 2A).

One possible explanation for the observed growth arrest of p130+/− embryos was that function of the placenta was compromised due to abnormal placental development. Importantly, dissection of the placentas from p130+/− embryos revealed a normal anatomy and arrangement of extraembryonic blood vessels and membranes. Histological analysis of hematoxylin-stained sections indicated a normal cytomorphology including that of giant cells and placental labyrinth. To assess the extent of apoptosis in p130+/− placentas, TUNEL analysis was performed to detect the presence of fragmented DNA in apoptotic bodies (Gavrieli et al., 1992). Importantly, no evidence of apoptosis was detected by TUNEL staining (Fig. 3). Taken together, these data support

Fig. 1. Targeted disruption of the p130 gene. (A) Genomic locus, targeting vector and structure of the disrupted p130 locus with exons depicted as filled boxes. The targeting vector contained 3 kb of 5¢- and 7.2 kb of 3¢-homologous sequence. The PGK-neo expression cassette was inserted in the opposite transcriptional orientation to p130 immediately downstream of the aa 106 codon. (B) Southern analysis of EcoRV-digested DNA isolated from E11.5 embryos derived from a heterozygous intercross resulted in the predicted restriction length polymorphism. (C) Northern blot analysis of total RNA probed with the full-length mouse cDNA revealed a complete absence of a transcript from the targeted allele. Abbreviations: E, EcoRV; X, XhoI; H, HindIII; B, BamHI; Mr, relative mobility in kD.

Reduced levels were observed in p130+/− extracts (Fig. 1D, lanes 1 and 2). No detectable product was detected in p130+/− lysates (Fig. 1D, lane 3). Moreover, no smaller molecular weight species were apparent in p130+/− extracts. Therefore we conclude that disruption of p130 with PGK-neo generated a null allele.

Genotype 9.5 10.5 11.5 12.5 13.5 14.5

<table>
<thead>
<tr>
<th>Genotype</th>
<th>9.5</th>
<th>10.5</th>
<th>11.5</th>
<th>12.5</th>
<th>13.5</th>
<th>14.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>6</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>p130+/−</td>
<td>15</td>
<td>31</td>
<td>23</td>
<td>23</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>p130+/−</td>
<td>4</td>
<td>14</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The F1 p130+/− offspring of chimeras bred with Balb/cJ mice were interbred and Cesarean sections performed at different gestational ages. Note, the morning following mating is considered 0.5 days post coitum.

Embryos lacking p130 display abnormal growth

Inspection of p130+/− embryos revealed a disparity in growth that increased with gestational age until 11.5 dpc when the mutant embryo reached approximately 25% of the normal size (Fig. 2A). Mutant embryos at 10.5 dpc exhibited beating hearts with seemingly normal vascularization and distribution of blood. However, mutant hearts displayed an abnormal dilated morphology and appeared to resemble the two-chambered hearts of earlier-stage embryo. More anterior structures appeared normal, for example, 10.5 dpc p130−/− embryos exhibited normal brain segmentation, normal elaboration of branchial arches and normal morphology of forelimbs. Posterior structures were reduced and mutant 10.5 dpc embryos failed to form hind limb buds. By 11.5 dpc, the remaining viable mutant embryos had progressed little in development and appeared similar in size to 10.5 dpc p130+/− embryos (Fig. 2A).

One possible explanation for the observed growth arrest of p130+/− embryos was that function of the placenta was compromised due to abnormal placental development. Importantly, dissection of the placentas from p130+/− embryos revealed a normal anatomy and arrangement of extraembryonic blood vessels and membranes. Histological analysis of hematoxylin-stained sections indicated a normal cytomorphology including that of giant cells and placental labyrinth. To assess the extent of apoptosis in p130+/− placentas, TUNEL analysis was performed to detect the presence of fragmented DNA in apoptotic bodies (Gavrieli et al., 1992). Importantly, no evidence of apoptosis was detected by TUNEL staining (Fig. 3). Taken together, these data support
the conclusion that the growth deficit of p130−/− embryos was not due to placental failure.

Impaired neurogenesis and myogenesis in p130−/− embryos

Histological examination of sections of 10.5 dpc p130−/− embryos revealed some variability in the histological appearance of embryos presumably reflecting their overall viability. A typical 10.5 dpc p130−/− embryo that exhibited a beating heart when delivered is described below. Histological analysis revealed varying degrees of disorganization in neural and dermamyotomal structures, a poorly formed notochord and, in addition, a thin myocardium (Figs 4, 5).

Neuroepithelial cells within the neural tube are the progenitors of motor neurons that differentiate in response to signals from the floor plate of the neural tube (Yamada et al., 1991, 1993). To assess neuronal differentiation, immunohistochemistry was performed with antibody reactive against the LIM-domain transcription factors Isl-1 and Isl-2, expressed in newly born motor and sensory neurons (Ericson et al., 1992; Tsuchida et al., 1994). We observed severely decreased numbers of Isl-1/2-expressing motor neurons within the ventral horn of a somewhat disorganized neural tube and similarly decreased numbers of sensory neurons within a poorly demarcated dorsal root ganglia (compare Fig. 4A and B). Moreover, the neural epithelium in the neural tube entirely failed to elaborate a basement membrane and cells were not organized into layers as in the wild-type neural tube (Figs 4B,D, 5). The floorplate of the neural tube was observed to have undergone marked apoptotic loss at thoracic and lumbar levels (compare Figs 4A and B, 5A and B). However, reduced numbers of neurons were noted at all levels.

The somite-derived dermamyotome, segmentally arranged on either side of the neural tube, forms the first differentiated skeletal muscle of the embryo known as the myotome (Hauschka, 1994). Myogenic differentiation was assessed with antisera reactive to desmin, an intermediate filament protein expressed in skeletal and cardiac muscle (Kablar et al., 1997). The differentiated myotome of wild-type embryos at 10.5 dpc displayed the typical pattern of desmin-expressing myocytes (Fig. 4C). By contrast, the differentiated myotome of p130-deficient embryos was composed of very few desmin-expressing skeletal myocytes (compare Fig. 4C and D). The observed reduction in numbers of myotomal myocytes was also found at all levels.

Inspection of 10.5 dpc p130−/− embryos revealed a somewhat dilated myocardium and abnormal cardiac morphology suggestive of a defect in chamber formation (Fig. 2A). To characterize cardiac structure of p130−/− embryos, serial sections were performed through the hearts and
immunohistochemistry was performed with antibody reactive with desmin. The myocardium of p130−/− embryos was poorly developed with a thin wall usually only a single cell in thickness. However, the pericardium and endocardium appeared normal. Examination of serial sections revealed a failure to properly loop and form the four-chambered heart (compare Fig. 6A and B, C and D). Instead, the mutant heart somewhat resembled the two chambered E8.5 heart consisting of the bulbus cordis and the ventricular chamber (Fig. 6).

Increased apoptosis and cellular proliferation in p130−/− embryos

The observed deficiency in neurogenic and myogenic development and presence of numerous subcellular bodies suggested that many cells in p130−/− embryos had undergone programmed death. Therefore, to assess the levels of apoptosis in p130-deficient embryos, we performed TUNEL analysis on sectioned material. Wild-type embryos typically contained few apoptotic cells disseminated through the neural tube and dermamyotome (Figs 4E,G, 5A). By contrast, p130−/− embryos contained numerous apoptotic bodies throughout the neural tube and floor plate, and within the epithelial and delaminating portions of the dermamyotome (Figs 4F,H, 5B). In addition, extensive apoptosis was also observed in the midgut and urogenital ridge, but not the mesonephros (Fig. 6). Moreover, little or no apoptosis was detected in the p130−/− lung bud,
foregut and hepatic primordia (Fig. 7). Note that the morphological development of the midgut, urogenital ridge, mesonephros, lung bud, foregut and liver primordia were at an appropriate stage for 10.5 dpc embryos but appeared abnormal due to markedly reduced cellularity in surrounding structures and poorly elaborated basement membranes. Interestingly, the myocardium of p130−/− embryos, like the wild-type myocardium, contained very few apoptotic nuclei (Fig. 8E,F). Taken together, these data suggest that the absence of p130 differentially affects the differentiation or survival of myotomal and neuronal cells versus cardiac myocytes.

Examination of neural structures in the heads of p130−/− embryos suggested that cell survival within the developing central nervous system was severely perturbed in the absence of p130. TUNEL analysis of 10.5 dpc p130−/− embryos revealed reduced size and extensive apoptosis in the optic vesicle (Fig. 9E), optic stalk (Fig. 9G), facial acoustic neural crest complex (Fig. 9I) and otic vesicle (Fig. 9K). By contrast, wild-type embryos displayed only moderate numbers of apoptotic bodies in head neural structures (Fig. 9A,D,F,H,J). Interestingly, Rb-deficient embryos display elevated apoptosis and inappropriate proliferation in brain and retinal neurons (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992, 1994; Maandag et al., 1994). Therefore, taken together these data suggest that Rb and p130 play important functions in coupling cellular differentiation to cell-cycle control, particularly in the context of neural cell development.

To investigate whether p130−/− embryos exhibited inappropriate proliferation, we performed immunohistochemistry with antibody PC10 reactive with proliferating cell nuclear antigen (PCNA). Replicating cells

Fig. 6. Increased apoptosis in the urogenital ridge and midgut in p130−/+ 10.5 dpc embryos. TUNEL analysis revealed low levels of apoptosis in wild-type embryos (A,C,E) and markedly increased numbers of apoptotic bodies (arrowheads) in the urogenital ridge (B,D) and midgut (F) of p130−/− embryos. Abbreviations: a, midline dorsal aorta; dm, dermamyotome; g, midgut; m, mesonephric duct/vesicle; nt, neural tube; u, urogenital ridge. Panels were photographed at magnification of 200× (A-D) and 400× (C-F).

Fig. 7. Absence of apoptosis in lung bud, foregut and hepatic primordia in E10.5 p130−/+ embryos. TUNEL analysis revealed negligible levels of apoptosis in both wild-type (A,C) and p130−/+ (B,D) lung bud, foregut and hepatic primordia. Abbreviations: lb, lung bud; ga, gastric dilatation of foregut; hp, hepatic/biliary primordia. Panels were photographed at magnification of 400×.
Fig. 8. Abnormal cardiogenesis in p130−/− embryos. Immunochemistry with antibody reactive with desmin revealed the four-chambered myocardium of wild-type embryos (A,C). By contrast, the myocardium of p130−/− embryos (B,D) was poorly developed and serial sections indicated the presence of two-chambers, the bulbus cordis and the ventricular chamber. TUNEL analysis did not reveal any significant apoptosis in wild-type (E) or mutant (F) hearts. Abbreviations: m, myocardium; pc, pericardium; ra, right atria; la, left atria; rv, right ventricle; lv, left ventricle. Panels were photographed at magnification of 100× (A,D) and 400× (B,C,E,F).

Fig. 9. Increased apoptosis and poor differentiation of head neural structures in the absence of p130. TUNEL analysis of 10.5 dpc wild-type embryos (A) revealed moderate numbers of apoptotic bodies in the optic vesicles (D), optic stalks (F), facial acoustic neural crest complexes (H) and otic vesicles (J). The head neural structures of p130−/− embryos (B, C) displayed reduced size and extensive apoptosis in the optic vesicles (E), optic stalks (G), facial acoustic neural crest complexes (I) and otic vesicles (K). Note the absence of a basement membrane lining the neural structures of p130−/− embryos. In A-C, long arrow denotes optic vesicle and stalk, and short arrow denotes otic vesicle. In the remainder of the panels, arrowheads indicate TUNEL-positive cells. Abbreviations: oc, optic cup; os, optic stalk; fa, facio-auditory pre-ganglion complex; ov, otic vesicle. Panels were photographed at 400× magnification with the exception of A-C, at 25×.
Table 2. Genetic background specifies the penetrance of the \(p130^{+/−} \) phenotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Intercross</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F_1^{+/−} \times F_1^{+/+})</td>
</tr>
<tr>
<td>Wild type</td>
<td>42 12 21</td>
</tr>
<tr>
<td>(p130^{+/−})</td>
<td>78 28 39</td>
</tr>
<tr>
<td>(p130^{−/−})</td>
<td>00 2 4</td>
</tr>
</tbody>
</table>

*The \(F_1 \) \(p130^{+/−} \) progeny of the founding chimeras bred with Balb/cJ mice when interbred yielded no viable \(p130^{−/−} \) pups.
†The \(B_1 \) \(p130^{−/−} \) mice derived from an \(F_1 \) \(p130^{+/−} \times \) Balb/cJ mating when interbred also failed to produce \(p130^{−/−} \) mice.
‡The \(B_1 \) \(p130^{+/−} \) mice, derived from a \(F_1 \) \(p130^{+/−} \times \) C57BL/6J mating, when interbred generated litters that contained viable and fertile \(p130^{+/−} \) mice that displayed an apparently normal phenotype (see Fig. 2B).
§The \(B_1 \) \(p130^{+/−} \) mice, derived from an \(F_1 \) \(p130^{+/−} \times \) C57BL/6J mating, when interbred generated litters that contained viable and fertile \(p130^{+/−} \) mice that displayed an apparently normal phenotype (see Fig. 2B).

The \(p130 \) mutant phenotype is strain dependent

The relatively normal phenotype of the \(p130^{−/−} \) mice previously described in a mixed 129/Sv: C57BL/6J genetic background (Cobrinik et al., 1996) and the embryonic lethal phenotype of \(p130^{−/−} \) mice in an enriched Balb/cJ background suggested that the penetrance of the \(p130^{−/−} \) phenotype was dependent on second site modifier genes. To test this hypothesis, we bred \(F_1 \) \(p130^{+/−} \) mice, the progeny of the founding chimeras and Balb/cJ mice, with either C57BL/6J or Balb/cJ mice. The resulting \(B_1 \) \(p130^{+/−} \) mice were then interbred to generate \(p130^{−/−} \) mice. The \(B_1 \) \(p130^{+/−} \) mice derived from the \(F_1 \) \(p130^{+/−} \times \) C57BL/6J cross have one set of C57BL/6J chromosomes and a second set composed of a mixture of Balb/cJ and 129/Sv chromosomes. The 129/Sv chromosomes are derived from the embryonic stem cells. The \(B_1 \) \(p130^{+/−} \) mice derived from the \(F_1 \) \(p130^{+/−} \times \) Balb/cJ cross have one set of Balb/cJ chromosomes and a second set composed of an undefined mixture of Balb/cJ and 129/Sv chromosomes. Thus, such crosses allow an assessment of the contribution of Balb/cJ and C57BL/6J genetic backgrounds to the penetrance of the phenotype. However, these experiments do not directly assess the contribution of the 129/Sv genetic background to the penetrance of the phenotype.

As described above, \(p130^{−/−} \) animals derived from an \(F_1 \) \(p130^{+/−} \times \) \(F_1 \) \(p130^{+/−} \) mating displayed 100% penetrance of the lethal phenotype (see Table 2, 1st column). In a small proportion of \(F_2 \) \(p130^{−/−} \times \) \(F_2 \) \(p130^{−/−} \) matings, we observed litters that contained a mixture of runted and normal-sized \(F_3 \) \(p130^{−/−} \) mice suggesting that multiple recessive second-site modifier genes were segregating in the population. Interbreeding of \(B_1 \) \(p130^{+/−} \) mice derived from a \(F_1 \) \(p130^{+/−} \times \) Balb/cJ mating gave rise to \(p130^{−/−} \) mice that also exhibited a 100% penetrance of the phenotype (Table 2, 2nd column). By contrast, interbreeding of \(B_1 \) \(p130^{+/−} \) mice derived from a \(F_1 \) \(p130^{+/−} \times \) C57BL/6J mating gave rise to \(p130^{−/−} \) mice that were viable and fertile, and displayed no detectable phenotype (Fig. 2B). Taken together, these data suggest that the C57BL/6J genetic background suppressed the \(p130^{−/−} \) embryonic lethal phenotype apparent on a Balb/cJ genetic background (Table 2,
3rd column). Therefore, we conclude that multiple second-site modifier genes exist that have an epistatic relationship with p130.

DISCUSSION

We have generated a null allele of p130 by gene targeting in mice and crossed the mutant allele into Balb/cJ and C57BL/6J strains of mice. Embryos lacking p130 in a genetic background enriched for Balb/cJ were reduced in size and died between embryonic stages E11 and E13. Immunohistochemistry with Isl-1 antibody revealed profoundly reduced numbers of motor neurons in the spinal cord and sensory neurons in the dorsal root ganglia. In addition, immunohistochemistry with antibody reactive to desmin similarly indicated markedly reduced numbers of differentiated myocytes within the myotome. The hearts of mutant embryos displayed unusually thin walls and appeared delayed in development. TUNEL analysis indicated the presence of numerous apoptotic bodies in many tissues including the neural tube, dermamyotome and brain, but not in the heart or the histologically normal placenta. Immunohistochemistry with antibody reactive with PCNA revealed increased cellular proliferation in the neural tube and the brain, and decreased proliferation in the heart. Importantly, following a backcross to C57BL/6J mice, p130/-/- animals were derived that were phenotypically normal. These data clearly indicate that p130 plays an essential role in development, but in a strain-dependent manner.

Embryos deficient for p130 contained low numbers of Isl-1, expressing neurons in the neural tube and low numbers of desmin-expressing myocytes in the dermamyotome. This deficiency was correlated with the presence of reduced notochord and floor plate structures in the trunk, together with increased levels of apoptosis. Several contributing mechanisms can be proposed to functionally explain the embryonic lethal phenotype in the absence of p130 in a genetic background enriched for Balb/cJ. For example, patterning and morphogenesis may be perturbed following loss of key structures during development and cellular differentiation. Alternatively, cell survival may be detrimentally affected because of a unique function of p130 in withdrawal from the cell cycle or in enforcing terminal differentiation.

Apoptotic loss of structures like the notochord during the development of p130/-/- embryos could contribute significantly to the embryonic phenotype. For example, the determination of progenitors of motor neurons is regulated in part by signals from the notochord and floor plate of the neural tube (Yamada et al., 1991, 1993). Sonic hedgehog (Shh) is expressed in the notochord and the floor plate in the trunk where it functions to induce the progenitors of motor neurons. These progenitors, situated in the ventricular epithelium of the ventral neural tube, are induced to migrate laterally and to differentiate and settle in a single continuous primary motor column (Tanabe et al., 1995). Additionally, Shh, expressed in the floor plate and the notochord, and Wnt family members, expressed in the dorsal neural tube, have been suggested to combinatorially activate myogenesis in the somite (Munsterberg et al., 1995). Wnts positively stimulate myogenesis in the somite whereas Shh is believed to activate Noggin expression in the dorsal somite, inhibiting the repression of myogenesis by lateral-plate-derived BMP4 (Hirsinger et al., 1997; Marcelle et al., 1997; Reshef et al., 1998). Therefore, it is interesting to speculate that loss of structures such as the floorplate in p130/-/- embryos may contribute to the severity p130-mutant phenotype.

A loss-of-function mutation in p130 may also result in cell-autonomous deficits in cellular differentiation. For example, the reduced neurogenesis and myogenesis observed in p130/-/- embryos may reflect a global perturbation of patterning due to specific requirements for p130 in directly negatively regulating proteins with paired-like homeodomains that play key developmental roles (Wiggan et al., 1997). Alternatively, appropriate withdrawal from the cell cycle and terminal differentiation may be detrimentally affected due to an important regulatory role played by the formation of specific E2F/p130 complexes (Mueller, 1995; Whyte, 1995). For example, myoblasts contain free E2F as well as E2F complexes with p105 and to a lesser degree p130, but not Rb, whereas differentiated myocytes primarily contain E2F complexes with p130, but not p105 or Rb (Corbeil et al., 1995; Shin et al., 1995). In differentiated myocytes, E2F complexes are primarily composed of E2F-4/p130 and formation of this complex has been suggested to be a necessary event in terminal differentiation (Puri et al., 1997; Shin et al., 1995). Similarly, formation of analogous E2F/p130 complexes has been observed during both neuronal and cardiomyocyte differentiation (Flink et al., 1998; Raschella et al., 1997). Therefore, the low numbers of cells expressing Isl-1 or desmin in p130/-/- embryos may reflect an important and unique role for p130 in withdrawing from the cell cycle or enforcing terminal differentiation. Clearly, the presence of markedly increased numbers of PCNA-expressing cells in tissues containing increased numbers of apoptotic cells supports this later hypothesis.

In Rb-deficient embryos, cells continue to replicate in regions of the central and peripheral nervous system that normally contain only postmitotic cells with many of the neurons undergoing apoptosis shortly after entering an ectopic S-phase (Lee et al., 1994). Apoptosis in the nervous system of Rb/-/- embryos is p53-dependent and correlates with increased levels of E2F, cyclin E and p21 (Macleod et al., 1996). In muscle, lack of Rb similarly results in apoptotic loss of inappropriately proliferating cells that fail to undergo terminal differentiation (Wang et al., 1997; Zacksenhaus et al., 1996). Heterozygous Rb mice develop lens cataracts due to loss-of-homoyzogosity in Rb, in which cells are poorly differentiated, are highly proliferative and undergo very high rates of apoptosis. By contrast, heterozygous Rb mice bred into a p53-homoyzogous mutant background exhibit overt lens hyperplasias with no associated apoptosis (Morgenbesser et al., 1994). Similarly, transgenic mice expressing human papilloma virus type 16 (HPV-16) E7 in retinal cells exhibit very high rates of retinal cell apoptosis. However, expression of both E7 and E6 transgenes, or the E7 transgene in p53-mutant mice induces retinal tumors with a reduction or absence of associated apoptosis (Howes et al., 1994; Pan and Griep, 1994). HPV-16 E7-protein binds all Rb-family members suggesting that the failure of retinoblastomas to form in targeted Rb-mutant mice is a consequence of functional redundancy amongst the Rb-family.

Inappropriate activation of E2F in a wide variety of cell types leads to p53-enhanced apoptosis (Hiebert et al., 1995;
Phillips et al., 1997; Qin et al., 1994; Shan and Lee, 1994). Moreover, Rb and p130 appear to induce G1 arrest via biochemically distinct mechanisms involving either E2F-1 or E2F-4 (Vairo et al., 1995). Therefore, generation of compound p130-/-p53-/- embryos in a Balb/cJ genetic background may elucidate whether the observed widespread apoptosis is p53-dependent as well as potentially allow partial rescue of the phenotype.

We have also derived a targeted null mutation in p107 and have bred the mutant allele into either Balb/cJ or C57BL/6J genetic backgrounds. We observed that p107-/- embryos in an enriched Balb/cJ background are viable and fertile but exhibit diathetic myeloid metaplasia, a severe postnatal growth deficiency and an accelerated cell cycle (LeCouter et al., 1998). By contrast, p107-/- mice in a C57BL/6J background display no apparent phenotype (LeCouter et al., 1998; Lee et al., 1996). These data strongly support our interpretation that second-site modifier genes exist that effect the penetrance of null mutations in both p130 and p107.

Mice carrying targeted null mutations (for example in IGF-1, fibronectin, EGFR, CTFR, TGFβ1, TGFβ3 and β1-adrenergic receptor) can display highly variable penetrance of phenotype on different genetic backgrounds (Bonyadi et al., 1997; George et al., 1993; Liu et al., 1993; Proetzl et al., 1995; Rohrer et al., 1996; Rozmahel et al., 1996; Sibilia and Wagner, 1995; Threadgill et al., 1995). Clearly, these observations underscore the significance of second-site modifier genes when characterizing null mutations. The molecular basis for the penetrance of the p130-/- phenotype on C57BL/6J versus Balb/cJ backgrounds remains to be established. Nevertheless, the breeding data is consistent with the existence of multiple modifier alleles representing either recessive loss-of-function mutations in the C57BL/6J background, dominant gain-of-function mutations in the Balb/cJ background, or a mixture of both (Table 2). Alternatively, our data does not rule out the possibility that heterozygosity at some modifier alleles contributes to the observed phenotype. In addition, our experiments do not directly assess the role played by the ES-derived 129/Sv background, dominant gain-of-function mutations in the embryonic lethality in TGF β1 knockout mice. Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. J. Mol. Cell Cardiol. 30, 563-78.

REFERENCES

