Differential interactions between Brother proteins and Runt domain proteins in the Drosophila embryo and eye

Ling-Hui Li and J. Peter Gergen*

Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, SUNY at Stony Brook, Stony Brook, NY 11794-5215, USA

*Author for correspondence (e-mail: pgergen@life.bio.sunysb.edu)

Accepted 20 May; published on WWW 5 July 1999

SUMMARY

Brother and Big brother were isolated as Runt-interacting proteins and are homologous to CBFβ, which interacts with the mammalian CBFα Runt-domain proteins. In vitro experiments indicate that Brother family proteins regulate the DNA binding activity of Runt-domain proteins without contacting DNA. In both mouse and human there is genetic evidence that the CBFα and CBFβ proteins function together in hematopoiesis and leukemogenesis. Here we demonstrate functional interactions between Brother proteins and Runt domain proteins in Drosophila. First, we show that a specific point mutation in Runt that disrupts interaction with Brother proteins but does not affect DNA binding activity is dysfunctional in several in vivo assays. Interestingly, this mutant protein acts dominantly to interfere with the Runt-dependent activation of Sex-lethal transcription. To investigate further the requirements for Brother proteins in Drosophila development, we examine the effects of expression of a Brother fusion protein homologous to the dominant negative CBFβ::SMMHC fusion protein that is associated with leukemia in humans. This Bro::SMMHC fusion protein interferes with the activity of Runt and a second Runt domain protein, Lozenge. Moreover, we find that the effects of lozenge mutations on eye development are suppressed by expression of wild-type Brother proteins, suggesting that Brother/Big brother dosage is limiting in this developmental context. Results obtained when Runt is expressed in developing eye discs further support this hypothesis. Our results firmly establish the importance of the Brother and Big brother proteins for the biological activities of Runt and Lozenge, and further suggest that Brother protein function is not restricted to enhancing DNA-binding.

Key words: runt, lozenge, AML1, CBFβ::MYH11, Inv(16), Sex-lethal, engrailed

INTRODUCTION

Runt domain proteins are a recently described family of transcriptional regulators with pivotal roles in several developmental pathways in Drosophila, mammals and Xenopus (for reviews see Speck and Stacy, 1996; Wang et al., 1996a; Daga et al., 1996; Ducy et al., 1997; Kramer et al., 1998; Tracey et al., 1998). The family members are defined by the Runt domain, a 128 amino acid region that mediates sequence-specific DNA binding (Ogawa et al., 1993a; Bae et al., 1994; Kagoshima et al., 1996). Significant insights on the functions of Runt domain proteins came from studies on a mammalian transcription factor referred to as polyomavirus enhancer-binding protein 2 (PEBP2) or as core binding factor (CBF) (Ogawa et al., 1993a; Wang and Speck, 1992). This transcription factor, referred to here as CBF, has important roles in leukemogenesis, hematopoiesis and osteogenesis (Tanaka et al., 1995; Miyoshi et al., 1995; Okuda et al., 1996; Wang et al., 1996a,b; Komori et al., 1997; Otto et al., 1997). It regulates the expression of genes specific to T-, B-, myeloid or osteoblast cell lineages through DNA binding (for reviews, see Speck and Stacy, 1996; Geoffroy et al., 1995; Ducy et al., 1997). Cloning of cDNAs for CBF revealed that it is a heteromeric complex comprised of two unrelated proteins (Ogawa et al., 1993b; Wang et al., 1993). The DNA-binding α subunit proteins are Runt-domain proteins while the β subunit is a novel protein. CBFβ does not bind to DNA, but instead interacts with the Runt domain to enhance DNA-binding affinity by an unknown mechanism (Ogawa et al., 1993b; Crute et al., 1996).

Several lines of evidence indicate that CBFα and CBFβ proteins are likely to function together to regulate the growth and/or differentiation of hematopoietic progenitors in mammals. The human Runt domain gene AML1 is expressed in a number of lymphoid cell lines and is a frequent target for chromosomal translocations associated with acute myeloid leukemias (Miyoshi et al., 1993, 1995; de Greef et al., 1995). Interestingly, chromosomal rearrangement of the human Cbfβ gene is also associated with a subtype of acute myeloid leukemia (Liu et al., 1993; Claxton et al., 1994; Marlton et al., 1995). In this case the rearrangement is an inversion of chromosome 16, which results in a fusion protein containing
most of CBFβ at the N terminus and the coiled-coil tail region of the smooth muscle myosin heavy chain MYH11 gene at the C terminus. Cell culture experiments suggest that CBFβ::MYH11 disrupts CBF function by sequestering the normally nuclear CBFα subunit in the cytoplasm (Kanno et al., 1998; Adya et al., 1998).

Experiments in the mouse system provide further evidence that CBFα and CBFβ function together in hematopoiesis. First, the phenotypes associated with knock-out mutations of Cbfα and Cbfβ are nearly identical. Homozygous disruption of either gene results in hemorphaging in the central nervous system, and blocks fetal liver hematopoiesis (Wang et al., 1996a; Okuda et al., 1996). Similar phenotypes are also obtained in mice with one copy of the knocked-in Cbfβ::MYH11 gene (Castilla et al., 1996). These several observations strongly suggest that the CBFα and CBFβ proteins function together in vivo, presumably as a DNA-binding heterodimeric regulator.

There are two well-characterized Runt-domain proteins in Drosophila, Runt and Lozenge (Lz). The runt gene participates in three developmental pathways: sex determination, segmentation and neurogenesis (Gergen and Wieschaus, 1986; Torres and Sanchez, 1992; Duffy et al., 1991; Duffy and Gergen, 1991; Dormand and Brand, 1998). In the sex determination pathway Runt directly activates Sex-lethal (Sxl) gene expression (Kramer et al., 1998), while in the segmentation pathway Runt acts as both an activator and a repressor of segmentation gene expression (Tsai and Gergen, 1994; Aronson et al., 1997). Lz plays an important role in patterning the developing eyes (Daga et al., 1996; Flores et al., 1998). It is absolutely required in R7 and cone cell precursors to negatively regulate seven-up expression and functions in R1/R6 photoreceptors to positively regulate Bar expression. Although some of the target genes regulated by Runt and Lz have been identified, the mechanism by which these two proteins regulate the expression of their target genes is not fully understood.

Two Drosophila CBFβ homologues, referred to as Brother (Bro) and Big Brother (Bgb), have been identified as Runt-interacting proteins (Golling et al., 1996; Fujioka et al., 1996). Both Bro and Bgb interact with Runt to enhance its DNA-binding affinity in vitro. The Bro and Bgb transcripts are expressed at uniformly high levels throughout the embryo during the syncitial blastoderm and cellular blastoderm stages. These are the stages during which Runt is required for sex determination and segmentation. Based on this overlapping expression and on what is known about the interaction of CBFα and CBFβ in mammals, it is reasonable to speculate that the Bro and Bgb proteins function with Runt during these stages.

Here we use a number of approaches to address the functional importance of interactions between Runt domain proteins and the Bro proteins during Drosophila development. First, we examine the effects of a point mutation in Runt, which specifically disrupts interaction with the Bro and Bgb proteins. This mutant is non-functional in a number of in vivo assays, supporting the hypothesis that interaction with the Bro proteins is critical for Runt function. Experiments that examine the activity of this mutant Runt protein on Sxl activation further suggest that interaction with Bro is required for more than stimulation of DNA-binding. We also generate a Drosophila version of the dominant negative CBFβ::MYH11 protein. The resulting fusion protein interferes with runt activity in the pathway of sex determination as well as with the activity of Lz during eye development. Moreover, we find that ectopic expression of the wild-type Bro proteins during eye development rescues an intermediate Lz phenotype. These results, in conjunction with the phenotypes generated by expression of the Bro::SMMHC and Runt proteins during eye development, indicate that Bro dosage is limiting in this developmental context. These results establish the in vivo importance of interactions between Runt domain proteins and Bro/Bgb proteins, provide new insights on Bro protein function, and lay a foundation for further studies in the Drosophila model system.

MATERIALS AND METHODS

Generation of plasmid constructs

pBS:runt[G163R] was generated by PCR following the instructions in the ExSite PCR-based site-directed mutagenesis kit (Stratagene) with the oligonucleotide primers, 5’-GTCCATCAAGTGGCGCA-ACGACGACG-3’ and 5’-CCAGGTGGCCACATCGGCACGTCG-3’ on a pBluescript (Stratagene) vector. Plasmid DNA with the desired mutation was identified by sequencing and a SalI/XhoI fragment containing this mutation with no other alterations was subcloned into pBluescript (Stratagene) vector and digested with SalI and XhoI. pGPTB9runt[G163R] was digested with BamHI and cloned into pUAST (Brand and Perrimon, 1993) digested with BglII. To create pGBT9runtBro, a PCR product was generated using oligonucleotide primers 5’-ATCCGAATTCTATACGTTATAACGTTAGACATAGCTGACG-3’ and 5’-AATTCCGGATCCGGTACGTCGTCGGACG-3’ on a pACT:Bro template (Golling et al., 1996). The resulting PCR product was digested with EcoRI and BamHI and cloned into pGPT9. The resulting plasmid, referred to as pGPT9runtBro, contains amino acids 1-159 of Bro. A second PCR product was generated with primers specific to the break point and the C terminus of human CBFβ::MYH11 fusion protein, respectively, on a pGem:KL2 template (generous gift from Paul Liu, NHGR, Bethesda). The resulting PCR product, which encodes amino acids 1527-1972 of the MYH11 gene product, was digested with BamHI and SalI and ligated into pGPT9runtBro with cut with BamHI and SalI to produce pGPT9runtBro::SMMHC. pCS2+::runtBro::SMMHC and pUAS::runtBro::SMMHC were generated with the EcoRI/Sall fragment of pGPT9::runtBro::SMMHC ligated to pCS2+ and to pUAST, each digested with EcoRI and XhoI.

Two hybrid assay and DNA-binding experiments

The two-hybrid assay was performed as described in Golling et al. (1996). The Runt and Runt[G163R] coding regions were subcloned into the vector pGPT9runtBro. Ubiquitin and Bgb were cloned into pACT (Chien et al., 1991). pGAD10:Bro was described in Golling et al. (1996). After transformation and plating on selective medium without leucine and tryptophan, colonies that grew well were restreaked onto fresh selective medium without leucine, tryptophan and histidine, and containing 33 mM 3-amino triazole, and then incubated for 5 days at 30°C. The Runt, Runt[G163R] and Bro proteins with hexa-His tags were expressed in bacteria using the pQE30 (Qiagen) expression system. The procedures used for protein purification and electrophoretic mobility-shift assays were based on work described by Pepling and Gergen (1995) with a few modifications. First, the reaction mixture
without the DNA probe was preincubated for 2 hours on ice. After the addition of DNA probe, the reaction mixture was incubated for another 2 hours on ice. The DNA-protein complexes were electrophoresed on a 10% polyacrylamide gel containing 0.05% Nonidet P-40 in 0.25X TBE running buffer containing 0.05% Nonidet P40 at 60 V for 17 hours at 4°C. The DNA probe used was a 37-bp fragment of the polyomavirus enhancer A element containing a PEBP2 binding site (Kamachi et al., 1990).

### Fly strains

**NGT40** is the transformant strain which contains the Gal4 coding region fused to the nanos promoter, followed by the 3' non-translated region of tubulin gene (D. Tracey and J. P. Gergen, unpublished). This Gal4 driver provides embryos with evenly distributed maternal region fused to the NGT40 Fly strains PEBP2 binding site (Kamachi et al., 1990). Fragment of the polyomavirus enhancer A element containing a P40 at 60 V for 17 hours at 4°C. The DNA probe used was a 37-bp fragment of the polyomavirus enhancer A element containing a PEBP2 binding site (Kamachi et al., 1990).

**RESULTS**

#### A Run mutant that does not interact with Bro proteins

In order to investigate the functional importance of partner protein interaction for Runt, we generated a mutant derivative of Runt that is specifically impaired for interaction with the Bro proteins. Random mutagenesis of the Runt domain of CBFA1 identified mutations that affect the interactions with DNA and/or with the CBFB partner protein (Akamatsu et al., 1997). Among these, one mutation is particularly interesting because it blocks interaction with CBFB without affecting DNA binding activity. This mutation, G151R, is a replacement with an arginine by a glycine that is conserved in all Runt domain proteins. The corresponding point mutation in Runt, G163R, was generated with PCR-based site directed mutagenesis and then examined for its effects on Runt's in vitro activities.

The yeast two-hybrid assay was used to investigate the effects of the G163R mutation on the interaction between Runt and the Bro proteins. In this assay, interaction between the Runt and Bro proteins results in activation of a His3 reporter gene, which allows for growth on plates lacking histidine (Fig. 1A). In contrast, no interaction between Run[G163R] and Bro or Bgb was detected in the same assay. Interaction of Run[G163R] with Ubiquitin, another Runt interacting protein (Golling et al., 1996), was detected, indicating the Run[G163R] protein is expressed in these yeast transformants.

To examine whether Run[G163R] retains DNA binding activity, an electrophoretic mobility shift assay was performed in the presence or absence of the Bro protein. Purified proteins were incubated with a DNA probe containing a consensus binding site for Runt domain proteins. In the absence of Bro, Run WT and Run[G163R] showed weak but comparable DNA binding activity (Fig. 1B, lanes 2 and 4). However, in the presence of Bro, only Run but not Run[G163R] showed increased DNA binding activity and formation of a more slowly migrating DNA-protein complex (Fig. 1B, lanes 3 and 5). These data indicate that Run[G163R] has a similar intrinsic DNA binding activity to Runt. Moreover, the data provide further evidence that Run[G163R] does not interact with Bro.

From the results of these in vitro assays, we conclude that the G163R mutation specifically disrupts the interaction between Runt and the Bro proteins without affecting the overall conformation of the Runt protein. This makes Run[G163R] a valuable tool for investigating the importance of Bro protein interaction for the in vivo regulatory function of Runt.

**The Run[G163R] protein is defective in regulating gene expression in vivo**

We used an ectopic expression assay to compare the activity of the Run WT and Run[G163R] proteins. Expression was driven
using fly lines that maternally express GAL4, which allows for uniform expression during the cellular blastoderm stage (D. Tracey and J. P. Gergen, unpublished). Ectopic expression of Runt resulted in partial to complete lethality, depending on the UAS-runt lines used for the experiments. In contrast, ectopic expression of Runt[G163R] had no effect on viability (Table

**Fig. 1.** A single point mutation of Runt, G163R, affects dimerization with Bro/Bgb but not DNA binding activity. (A) A two-hybrid assay was used to detect the interaction of Runt or Runt[G163R] and Bro or Bgb proteins. Interaction between two proteins was visualized by growth of yeast transformants on plates lacking histidine. Growth was detected for Runt but not Runt[G163R] when they were cotransformed with Bro or Bgb. Both Runt and Runt[G163R] showed interaction with Ubiquitin (Ubi), a protein that interacts with Runt in a Runt domain-independent manner. (B) Bacterially expressed proteins were incubated with DNA probe containing a binding site for Runt domain proteins. Then the DNA binding activity was tested in an electrophoretic mobility-shift assay. Runt and Runt[G163R] bind to DNA at a comparable efficiency in the absence of Bro (lanes 2 and 4). In the presence of Bro, Runt shows increased DNA binding affinity and an upper DNA-protein complex is detected. However, these phenomena are not observed when Runt[G163R] is used in this assay (lanes 3 and 5). This autorgraphy is overexposed to visualize the weak shifted bands. The much slower migrating band in lane 3 may be a multimer of proteins.

**Fig. 2.** Runt[G163R] does not have the ability to repress the odd-numbered en stripes. The expression of en in embryos ectopically expressing Runt or RuntG163R was visualized by in situ hybridization with an en ribo-probe. In this and the following figures, embryos are oriented with the anterior left and dorsal up. (A-C) Embryos were collected from females carrying the NGT driver. The embryo in (A) is from a cross with a male that does not contain an UAS-runt gene, and shows the normal 14-stripe en expression pattern. (B) Ectopic expression of Runt in the embryos heterozygous for the UAS-runt232 chromosome leads to repression of the odd-numbered en stripes. (C) Ectopic expression of Runt[G163R]2-1 does not affect en expression. (D) The expression pattern of en is also not altered in embryos that express Runt[G163R] from a heat-inducible transgene. Expression of hs-runt[G163R] transgene is higher than that of NGT driven genes (data not shown).
an RNase protection assay was used to demonstrate that these results are not due to differences in the RNA expression levels of the different transgenes (Table 1). The RNA expression levels of the two runt[G163R] lines used in these experiments were comparable to that of UAS-runt22, a line that is fully lethall. We also examined the relative stability of the different proteins by western blotting and immunohistochemistry (data not shown) and found no difference between Runt and Runt[G163R].

The lethality associated with ectopic expression in these experiments is a crude assay for Runt function. In order to further characterize the activity of the Runt[G163R] protein, we examined the response of several Runt target genes to ectopic expression (Tsai and Gergen, 1994; Aronson et al., 1997). The most sensitive targets of Runt are the odd-numbered stripes of engrailed (en) expression (Fig. 2B). Ectopic expression of Runt[G163R] had no discernible effect on en expression (Fig. 2C), even at levels that are fivefold greater than required for repression of en by the wild-type Runt protein. To determine whether Runt[G163R] retains any residual activity we used heat-shock driven ectopic expression assay. The high levels of Runt expression obtained by this method cause alterations in the expression of other pair-rule genes in addition to en (Tsai and Gergen, 1994). Even under these conditions, the pattern of en expression as well as that of even-skipped and fushi tarazu in embryos expressing Runt[G163R] was indistinguishable from that of wild-type embryos (Fig. 2A,D; data not shown). These results indicate that Runt[G163R] is incapable of regulating expression of several of Runt's targets in the pathway of segmentation.

### Table 1. Lethal effects of ectopic Runt and Runt[G163R] expression

<table>
<thead>
<tr>
<th>UAS-runt transgene</th>
<th>Adult viabilitya</th>
<th>Embryonic viabilityb</th>
<th>RNA expression levelc</th>
</tr>
</thead>
<tbody>
<tr>
<td>runt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U15</td>
<td>0</td>
<td>0</td>
<td>2.75±0.22</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>1.49±0.04</td>
</tr>
<tr>
<td>232</td>
<td>0</td>
<td>0</td>
<td>1.00±0.00</td>
</tr>
<tr>
<td>U14</td>
<td>77</td>
<td>26</td>
<td>0.52±0.01</td>
</tr>
<tr>
<td>runt[G163R]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>100</td>
<td>100</td>
<td>1.13±0.07</td>
</tr>
<tr>
<td>2-2</td>
<td>100</td>
<td>100</td>
<td>1.02±0.05</td>
</tr>
</tbody>
</table>

aResult is presented as percentage of flies carrying UAS-runt transgene/flies without UAS-runt transgene. Progeny were scored from crosses between males heterozygous for either UAS-runt or UAS-runt[G163R] and the appropriate balancer chromosome with females homozygous for the maternal Gal4 driver, NGT40. A minimum of 150 flies were scored for each cross.

bResult is expressed as percentage of embryos hatched. Males homozygous for either UAS-runt or UAS-runt[G163R] were crossed to females homozygous for the NGT driver. Results were pooled from two or three separate experiments. A minimum of 210 embryos were scored for each cross.

cEmbryos collected from the crosses described in b were used in an RNase protection assay. The RNA expression level of each transgenic fly line was determined relative to the endogenous runt gene and these ratios were normalized using the UAS-runt22 as a standard. Values are means of three independent experiments ± s.d.

1). An RNase protection assay was used to demonstrate that these results are not due to differences in the RNA expression levels of the different transgenes (Table 1). The RNA expression levels of the two runt[G163R] lines used in these experiments were comparable to that of UAS-runt22, a line that is fully lethal. We also examined the relative stability of the different proteins by western blotting and immunohistochemistry (data not shown) and found no difference between Runt and Runt[G163R].

### Runt[G163R] has a dominant negative effect on SxlPe activation

In addition to functioning during segmentation, Runt also regulates the expression of the Sxl gene in the pathway of sex determination. Experiments using an in vivo mRNA injection assay demonstrate that DNA binding by Runt is essential for SxlPe activation (Kramer et al., 1998). The same assay was used to investigate the effect of the Runt[G163R] mutation on SxlPe activation. In vitro synthesized mRNAs encoding the Runt and Runt[G163R] proteins were injected into the central region of embryos carrying a SxlPe-lacZ reporter gene. As has been described previously, injection of runt mRNA resulted in ectopic lacZ expression in male embryos without affecting expression in female embryos (Fig. 3A,C; Table 2). In contrast, when runt[G163R] mRNA was injected, no ectopic SxlPe-lacZ expression was detected in male embryos (Fig. 3B; Table 2). This indicates that the Runt[G163R] is incapable of activating SxlPe, suggesting that the interaction between Runt and Bro/Bgb is required for SxlPe activation. Interestingly, we observed dominant interference of SxlPe activation in female embryos injected with runt[G163R] mRNA (Fig. 3D; Table 2). The implications of this result will be discussed further below. Taken together, these several in vivo assays demonstrate that the Runt[G163R] protein is dysfunctional and strongly suggest that the interaction with Bro/Bgb is essential for Runt's function in embryogenesis.

### A dominant negative form of Bro interferes with the activation of SxlPe

To further address the biological significance of the interaction between Runt and Bro/Bgb, we expressed the CBFβ::MYH11 transgene in male embryos without affecting the expression pattern in female embryos. The embryos shown in this figure are representative of typical strong phenotypes.

---

**Fig. 3.** Runt[G163R] is unable to activate SxlPe-lacZ expression. Syncytial blastoderm stage embryos were injected with mRNA and expression of a SxlPe-lacZ reporter gene was detected by in situ hybridization. (A,C) Injection of WT runt activates the expression of SxlPe-lacZ in a broad central domain in male embryos without affecting the expression pattern in female embryos. (B,D) Injection of runt[G163R] does not show detectable activation of SxlPe-lacZ in male embryos, but disrupts SxlPe-lacZ expression in female embryos. The embryos shown in this figure are representative of typical strong phenotypes.
fusion protein in *Drosophila* using various assays. Expression of this fusion protein in the mouse produces embryonic lethal phenotypes similar to loss-of-function mutations of either *Cbfβ* or *Cbfα2*. However, we did not detect any effect associated with ectopic expression of this mammalian fusion protein in *Drosophila*. The in vitro complex of Runt with mammalian CBFβ is less stable than the corresponding complex of Runt with the *Drosophila* Bro protein (Golling et al., 1996). We reasoned that these differences could account for the inactivity of the CBFβ::MYH11 fusion protein in our assays. Therefore, we decided to generate a presumptive dominant negative Bro by replacing the CBFβ portion of the CBFβ::MYH11 fusion protein with the analogous portion of Bro. This construct, named Bro::SMMHC, consists of the first 159 amino acids of Bro fused to the coiled-coil domain of human smooth muscle myosin heavy chain gene. To test whether Bro::SMMHC has a dominant negative effect on *SxlP* activation, the mRNA injection assay was performed. Injection of *Bro::SMMHC* mRNA interferes with *SxlP* activation in female embryos (Fig. 4C; Table 2). As expected, this construct does not activate *SxlP* in male embryos (Fig. 4A). To test whether this dominant negative interference is due to sequestering of Runt, we coinjected *Bro::SMMHC* and *runt* mRNA. The interference of *SxlP* activation by Bro::SMMHC is reduced in female embryos that are coinjected with *runt* (Fig. 4D; Table 2). Coinjection of *Bro::SMMHC* mRNA also reduces the ectopic activation of *SxlP* in male embryos compared to those injected with *runt* alone (Fig. 4B; Table 2). These results indicate that the Bro::SMMHC fusion protein functions as a dominant negative and provide further evidence for interactions between the Runt and Bro proteins in vivo.

### Brother protein interactions with the Runt domain gene *lozenge*

A second *Drosophila* Runt domain protein, Lz, participates in patterning the eye. We expressed Bro::SMMHC in the developing eye under the control of a *Sev-Gal4* driver to determine if this dominant negative protein interferes with Lz function. Expression of Bro::SMMHC causes mild patterning defects in the eyes of flies that are wild-type for Lz (Fig. 5A). Further, the phenotype produced by a temperature-sensitive Lz allele at an intermediate temperature is much more severe in flies that express the Bro::SMMHC protein (Fig. 5B,C). These results suggest that Lz activity may provide a sensitive assay for Bro protein function. Consistent with this, we find that expression of *UAS-Bro* and *UAS-Bgb* transgenes under the control of a *Sev-Gal4* driver rescues the phenotype of the *lz*ts mutation at 25°C (Fig. 5D,E). Similar observations have also been made by Utpal Banerjee and colleagues in flies where sev control elements are used to drive Bgb expression directly (U. Banerjee, personal communication). We examined the activities of multiple *UAS-Bro* and *UAS-Bgb* lines and found that Bro consistently rescues the Lz phenotype better than Bgb. This suggests that Bro is a more effective partner for Lz, although we cannot rule out that the difference is due to protein expression levels.

The above observations provide strong evidence for functional interactions between Bro/Bgb and Lz. Interestingly,
and in contrast to the results with \(lz\), the intermediate phenotypes produced by several \(runt\) hypomorphic mutants, including a temperature-sensitive allele, are not modified by ectopic expression of \(UAS-Bro\) or \(UAS-Bgb\) transgenes (data not shown). Furthermore, expression of \(UAS-Bro::SMMHC\) has no obvious effect on \(runt\) activity during embryogenesis (data not shown). The mRNA injection experiments described above indicate that the \(Bro::SMMHC\) fusion protein interacts with \(Runt\) in the pathway of sex determination. The explanation for these different results seems likely to be due to the levels of ectopic expression, which are greater in the RNA injection experiments than through use of the Gal4/UAS expression system. The \(Bro\) and \(Bgb\) mRNAs are expressed at relatively high levels during the blastoderm stage (Golling et al., 1996) and the level of ectopic \(Bro::SMMHC\) expression would have to approach this level in order to produce a clear phenotype. In the context of this explanation, the sensitivity of the \(lz\) phenotype to both the dominant negative activity of \(Bro::SMMHC\) and the suppressing activity of the wild-type \(Bro\) and \(Bgb\) proteins suggests that partner protein activity is lower and possibly limiting during eye development.

The hypothesis that \(Bro\) protein levels are limiting during eye development is further supported by experiments that involve expression of \(Runt\) under the control of the \(Sev-GAL4\) driver. Expression of \(Runt\) in wild-type eye discs results in a phenotype similar to that of \(lz\) mutants (Fig. 6A). In contrast, expression of \(Runt\[G163R\] does not result in any detectable abnormalities in the eye (data not shown). One explanation for these results is that \(Runt\) interferes with \(Lz\) by competing for the \(Bro\) and/or \(Bgb\) proteins. To test this possibility, \(Bro\) was coexpressed with \(Runt\) in wild-type eye discs. The resulting eyes are normal (Fig. 6B). This result is consistent with the competition model. In contrast, a more extreme eye phenotype would be expected in most other models for interference by \(Runt\). Finally, coexpression of \(Bro::SMMHC\) and \(Runt\) resulted in an eye phenotype that is even more severe than that produced by expression of either protein alone (Fig. 6C). Our interpretation of this result is that \(Bro::SMMHC\) sequesters both \(Bro\) and \(Lz\), and that the \(Runt\) protein that remains further reduces \(Lz\) function by competing for the limiting \(Bro/Bgb\) proteins.

**DISCUSSION**

**Importance of Bro proteins for Runt domain proteins’ function in vivo**

In this paper, we provide several lines of evidence to demonstrate the biological significance of the interaction between \(Drosophila\) Runt domain proteins and the \(Bro\) and \(Bgb\) proteins. First, a \(Runt\) mutant, \(Runt\[G163R\], which does not interact with \(Bro/Bgb\) but retains in vitro DNA binding activity, is dysfunctional in several different in vivo assays. Second, \(Bro::SMMHC\), a \(Drosophila\) version of \(CBF\)[::\(MYH11\], has a dominant negative interfering effect on \(Runt\)-dependent \(Sxl\) activation. These observations strongly suggest that interactions with the \(Bro/Bgb\) proteins are required for \(Runt\)’s function during embryogenesis. In addition, we find that expression of \(Bro::SMMHC\) interferes with the function of the \(Runt\) domain gene \(lz\) in the developing eye, whereas the patterning defects associated with reduced \(lz\) function are suppressed by expression of either the \(Bro\) or \(Bgb\) proteins. These results strongly suggest that interactions with \(Bro\) and/or \(Bgb\) are important for \(Lz\) function in eye patterning.
Bro/Bgb dosage is limiting in eye discs but not in embryos

Several observations suggest that the relative dosage of the Bro/Bgb proteins in eye discs and in embryos is different. First, the effects caused by expression of the Bro::SMMHC fusion protein in flies that are wild-type for runt and lz provides a clear indication of differences between the embryo and the eye. Expression of Bro::SMMHC with the Sev-Gal4 driver gives rise to patterning defects in the eye. In contrast, the expression of Bro::SMMHC that is driven by maternally expressed Gal4 produces no phenotype in embryos. The absolute levels of ectopic expression produced by these two Gal4 drivers in these two different developmental contexts are not known. However, based on the results of RNase protection assays, the expression levels achieved with the maternal Gal4 system are greater than the levels of endogenous runt expression. The sole assay in which we detect a dominant negative effect of Bro::SMMHC in the embryo is in the Runt-dependent activation of SxlR-transcription. This effect is produced by injection of mRNA, which allows ectopic expression levels greater than can be obtained using the Gal4 system. Our interpretation of these results is that high levels of Bro::SMMHC are required to compete with the abundant Bro and Bgb proteins in the embryo (Golling et al., 1996).

A second indication that Bro/Bgb dosage is not limiting in the embryo comes from the observation that the intermediate phenotypes produced by several runt hypomorphic mutations are not modified by ectopic expression of UAS-Bro, UAS-Bgb or UAS-Bro::SMMHC. These intermediate phenotypes are detectably altered by other relatively subtle perturbations, such as disruption of dosage compensation in female embryos (Gergen, 1987). An alternative explanation is that the Bro and Bgb proteins expressed from these transgenes are not capable of functional interactions with Runt. It will be necessary to obtain mutations that specifically affect Bro and Bgb activity in order to distinguish between these two explanations.

A final line of evidence that Bro/Bgb dosage is limiting in the eye comes from experiments that involved ectopic expression of Runt and Lz. Ectopic expression of Runt in eye discs results in a phenotype that resembles that of lz mutants. This phenotype is suppressed by coexpression of Bro, suggesting that Runt interferes with Lz by competing for limiting quantities of Bro proteins. In contrast, expression of Lz in embryos, although lethal, does not interfere with Runt’s function in segmentation (J. P. Gergern, unpublished data). These observations strongly support the idea that the dosage of Bro/Bgb proteins is limiting in eye discs but not in embryos. The sensitivity of the lz phenotype to Bro and Bgb dosage further suggests that mutations in these genes can be isolated in screens for modifiers of the lz eye phenotype.

The requirement of Bro for Runt function is not restricted to enhancing DNA binding

We observe repression of SxlP expression in female embryos injected with runt[G163R] mRNA. This dominant negative activity indicates that the Runt[G163R] protein interacts with some other factor(s) in the Drosophila embryos in a manner that interferes with the activity of the wild-type Runt protein. In contrast to this, no dominant negative interaction is observed when runt[CK], a Runt derivative that is specifically impaired for DNA-binding, is used in this assay (Kramer et al., 1998). If the Runt[G163R] protein was interfering by competing for interaction with some other limiting protein factors then Runt[CK] protein would also be expected to behave as a dominant negative. Taken together, these results suggest that DNA binding is required for the dominant negative activity of Runt[G163R]. This is somewhat surprising as the prevailing view, primarily from in vitro experiments, has been that the central function of the Bro/Bgb and CBFβ proteins is to enhance DNA-binding by the Runt domain proteins. Our data strongly suggest that the Bro proteins have other functions in addition to enhancement of DNA binding by Runt. What then might be the other functions of the Bro/Bgb proteins? One possibility is that Bro induces a conformational change in Runt that is required for transcriptional activation. Runt/Bro complexes induce a bend in DNA that is greater than that observed by binding of Runt alone (Golling et al., 1996). Perhaps DNA-bending is critical for interactions between Runt and other transcription factors on the SxlP promoter. An alternative possibility is that Bro/Bgb may be a bridge between Runt and other proteins that are critical for transcription regulation. In this model Runt[G163R] would compete for binding to the early promoter region of SxlP but when bound would fail to activate transcription because other Bro-interacting proteins are not recruited. In a two-hybrid screen for Bro-interacting proteins we have identified a number of proteins that appear to be members of the trithorax group of transcriptional regulators (G. Golling, personal communication). Trithorax group proteins have been implicated as having widespread roles in transcription activation in Drosophila development and it is attractive to speculate that recruitment of such proteins by Runt and Bro contributes to the activation of Sxl transcription. It is clear from the results presented here that interactions between Runt domain proteins and Bro/Bgb/CFBβ proteins are important for the functions of these conserved transcriptional regulators. Experiments that further address the functions of the Bro/Bgb and CBFβ proteins will be essential for understanding the mechanisms that account for the pivotal regulatory roles of these proteins in diverse developmental contexts.

We are particularly grateful to Utpal Banerjee for the contribution of lz P Drosophila strains and sharing results of eye phenotype rescue experiments prior to publication. We thank Paul Liu for providing Cbfβ::SMMHC cDNA and thoughtful suggestions. Information provided by Katsuya Shigesada on the generation of a Brother-interacting-defective form of Runt is greatly appreciated. Sunita G. Kramer provided invaluable technical support for processing mRNA injection experiments. Xiangqun Ning’s assistance with some of the mRNA injection experiments and Claudia Brunner’s assistance with some of the transgenic fly generation is also appreciated. We thank Dan Tracey, John Wheeler, Mary Wines and Kathy Wojtas for comments on the manuscript. This work was supported by NIH grants to J.P.G.; J.P.G. was a recipient of a Faculty Research Award from the American Cancer Society (FRA428).

REFERENCES


Akamatsu, Y., Tsukumo, S., Kagoshima, H., Tsurushita, N. and...


