Pax3 functions in cell survival and in pax7 regulation

Anne-Gaelle Borycki1, Jun Li2, Fuzi Jin2, Charles P. Emerson, Jr1 and Jonathan A. Epstein1,2,*

1Department of Cell and Developmental Biology, 2Division of Cardiovascular Medicine and the Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
*Author for correspondence (e-mail: epsteinj@mail.med.upenn.edu)

Accepted 5 February; published on WWW 17 March 1999

SUMMARY

In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and Pax3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Sp) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Sp) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.

Key words: Apoptosis, Myogenesis, Gene regulation, Embryogenesis, Mouse

INTRODUCTION

During mouse embryogenesis, dorso-medial somitic mesoderm gives rise to the epaxial deep back muscles, and ventro-lateral somitic mesoderm gives rise to the hypaxial body wall and limb muscles (Buckingham, 1992). Multiple signaling processes are required to determine presomitic mesoderm to form these different muscle lineages. These signals initiate and maintain lineage-specific gene expression, regulate the spatial domain of gene expression, and control cell growth, survival and differentiation. Two bHLH transcription factors, Myf5 and MyoD, are essential for the determination of the presomitic mesoderm to skeletal muscle lineages, because targeted mutations in Myf5 and MyoD genes result in mice that entirely lack skeletal muscles and myogenic progenitor cells (Rudnicki et al., 1993). However, mice lacking either MyoD or Myf5 form normal embryonic musculature, indicating that compensatory mechanisms can override initial defects (Braun et al., 1992; Rudnicki et al., 1993). The basis for this compensation is not yet well understood, but loss of MyoD function results in upregulation of Myf5 in somitic cells (Rudnicki et al., 1992), and loss of Myf5 function results in a delay in myotome formation, which recovers after the later onset of MyoD expression (Braun et al., 1994; Tajbakhsh et al., 1997). Insertion of lacZ into the Myf5 locus reveals that somitic mesodermal cells that lack Myf5 function can adopt alternate dermatomic or sclerotomic somitic fates prior to MyoD activation, or can engage in myogenesis once MyoD is activated (Tajbakhsh et al., 1996), demonstrating that Myf5 is an essential gene for the initiation of early myogenic determination. In agreement with this observation, Myf5 is the earliest regulatory gene activated in epaxial and hypaxial muscle lineages in mouse embryos at E8.5, while MyoD expression is first observed at E9.75 (Ott et al., 1991; Sassoon et al., 1989; Tajbakhsh et al., 1996). Early expression of Myf5 is confined to the dorso-medial epaxial domain of somites, and is then detected in the ventro-lateral hypaxial domain of somites (Ott et al., 1991; Tajbakhsh et al., 1996). MyoD expression follows that of Myf5, and is first detected in the ventro-lateral hypaxial domain of somites, and then in the dorso-medial epaxial domain (Ott et al., 1991; Sassoon et al., 1989; Tajbakhsh et al., 1996).

Another key regulatory gene in myogenesis is Pax3, which is a member of the Paired Box transcription factor family (Borycki and Emerson, 1997; Goulding et al., 1991; Tajbakhsh et al., 1997). Pax3 function in appendicular muscle formation is well established: Sp mutant mice, in which a mutation disrupts Pax3 function, do not form limb muscles (Auerbach, 1954; Franz et al., 1993; Goulding et al., 1994). In Sp mutants, hypaxial muscle progenitors do not
migrate into the limb bud (Bober et al., 1994; Goulding et al., 1994), likely because they do not express c-Met, a tyrosine kinase receptor implicated in cell migration (Bladt et al., 1995) and a transcriptional target of Pax3 (Epstein et al., 1996). Moreover, when transplanted into chick wing buds, Sp mutant hypaxial cells differentiate into muscle (Daston et al., 1996), showing that Pax3 is not essential for muscle differentiation. Pax3, however, has essential functions in myogenesis, as revealed by the discovery that compound Pax3 and Myf5 mutant embryos completely lack trunk muscles and do not express MyoD (Tajbakhsh et al., 1997). This phenotype mimics the absence of muscle observed in Myf5/MyoD double mutant embryos, indicating that Pax3 has a function upstream of MyoD during muscle determination in the embryo. One possibility is that Pax3 controls MyoD expression in somites, which is suggested by the finding that overexpression of Pax3 in chick presomitic mesoderm induces Myf5 and MyoD expression (Maroto et al., 1997). Furthermore, Pax3 is expressed in somitic domains of future myogenesis, although transcripts are initially expressed throughout the somite and also are found in non-myogenic lineages such as the dorsal neural tube, the neural crest and the nasal epithelium (Goulding et al., 1991). An alternative possibility is that Pax3 has general or lineage-specific functions in somitic mesoderm that are necessary prior to myogenic differentiation and acting upstream of MyoD activation.

Another closely related member of the Paired Box transcription factor family, Pax7, is also expressed in the dorsal neural tube and in somites (Jostes et al., 1991). However, in contrast to Pax3, Pax7 is not expressed in presomitic mesoderm but is gradually induced in late stages of somite maturation (Jostes et al., 1991). Following somite formation, Pax3 transcripts are found throughout the somite, and then become restricted to the dermomyotome as somites mature (Goulding et al., 1991). Pax3 expression then becomes concentrated in the ventro-lateral domain of the dermomyotome (Goulding et al., 1994; Tajbakhsh et al., 1997), whereas Pax7 expression is concentrated to the central and dorso-medial regions of the dermomyotome (Jostes et al., 1991; Tajbakhsh et al., 1997). These overlapping but distinct patterns of expression of Pax3 and Pax7 in somites suggest that Pax3 and Pax7 may have partially overlapping functions in hypaxial and epaxial myogenic domains. Further evidence for shared functions in myogenesis comes from the observation that translocations of the human PAX3 locus or PAX7 locus to the FKHR locus are correlated with formation of rhabdomyosarcomas, muscle neoplasms (Davis et al., 1994; Galili et al., 1993).

To investigate Pax3 functions in skeletal myogenesis, we designed an in vitro presomitic mesoderm explant assay to examine early myogenesis in Sp mutant embryos. We show that presomitic mesoderm from Sp mutant embryos fails to activate MyoD in response to neural tube/notochord and surface ectoderm signals. Nevertheless, in vivo, MyoD activation occurs normally in the lateral hypaxial domain of somites of Sp mutant embryos, indicating that Pax3 is not essential for the initiation of MyoD transcription. Further analysis shows that apoptosis is greatly enhanced in presomitic mesoderm explants from Sp mutant embryos, as well as in Pax3-expressing cells in newly formed somites of Sp mutant embryos. However, apoptosis does not occur in dorsal neural tube or in more mature somites where Pax7 becomes ectopically expressed in the absence of Pax3 function. We further demonstrate that Pax3 represses Pax7 expression in cultured muscle cells, providing an explanation for the ectopic expression of Pax7 in neural tube and somites of Sp embryos. These data establish that Pax3 is essential for the survival of uncommitted somitic progenitor cells, as well as for the negative regulation of Pax7 expression in somitic cells and neural tube.

MATERIALS AND METHODS

Presomitic mesoderm explant cultures

Splotch mice (Jackson Laboratory) were bred and embryos were collected by cesarean incision (E0.5 is designated as noon of the day of vaginal plug identification). Presomitic mesoderm with overlying ectoderm was dissected from E9.5 mouse embryos using electrothetically sharpened tungsten knives. When indicated, the axial notochord/neural tube complex was dissected together with the presomitic mesoderm. Explants were transversally cut into two anterior and posterior halves, transferred without prior dissociation of cells onto gelatin-coated 48-well plates, and cultured at 37°C in 0.5 ml DMEM/F-12 medium (Gibco/BRL) containing 15% FCS (Gibco/BRL), 1% penicillin/streptomycin (Gibco/BRL) and 2 ng/ml bFGF (Sigma), for 2 or 3 days in a humidified CO2 incubator. Anterior and posterior explant halves were monitored for myogenesis and showed to behave in a similar manner. Addition of bFGF to the culture medium has previously been shown to increase cell survival (Fan and Tessier-Lavigne, 1994), but has also been shown to act on myogenic precursor cells (Stern et al., 1997). Here, we tested different concentrations of bFGF (1-10 ng/ml) on explant cultures for the absence of effect on MyoD activation but an increase in cell survival, and 2 ng/ml was found to be optimal. Oligonucleotides (5-8 µM final concentration) were added to culture medium 24 hours after the tissue was explanted and explants were cultured for an additional 16-48 hours.

Immunohistochemistry

Explant cultures were fixed for 30 minutes in 4% paraformaldehyde, washed with PBS, and incubated for 1 hour at room temperature in a blocking solution containing 0.1% Triton X-100 and 2% FCS in PBS. Cultures were then incubated overnight at 4°C with the primary antibody (anti-mouse MyoD 5.8A, Novocastra) diluted 1:25, followed by a 30-minute incubation with the secondary antibody (biotin-conjugated anti-mouse IgG, Vector Labs) diluted 1:200. Peroxidase staining of positive cells was performed using the Vectastain Kit (Vector Labs) according to the manufacturer’s instructions. MyoD-positive cells per explant were counted on an inverted LEITZ-DMIRB microscope.

Paraflin sections of mouse embryos were dewaxed and dehydrated through an ethanol series followed by antigen unmasking using Vector Labs Unmasking Solution as directed. Pax7 antibody (Ericson et al., 1996) was obtained from the Developmental Studies Hybridoma Bank and used at a dilution of 1:100. Biotinylated horse anti-mouse secondary antibody (Vector Labs ABC reagent) was obtained from Vector Labs and used at a dilution of 1:200, followed by developing with Vector Labs ABC reagent.

Antisense oligonucleotides

Oligonucleotides were synthesized from phosphorothioate-modified nucleotides (Oligos Etc, Wilsonville, OR). Pax3 antisense (5'-GGTCA TGGCCTGGGCTGCG-3') spanned the translation initiation site. Pax3 random (5'-GGTCA TGGCCTGGGCTGCG-3') had the same nucleotide content as the Pax3 antisense but the sequence was randomized. Pax3 control (5'-TGGATTCGACATGTCAGA-3') was an unrelated random sequence oligonucleotide.
Apoptosis assays
Apoptotic cells were detected in situ on paraffin sections or explant cultures fixed briefly in 2% paraformaldehyde in PBS (20 minutes) using a modified TUNEL technique (protocol kindly provided by E. Fernandez, University of Texas Southwest, USA) by specific end-labeling of fragmented nuclear DNA with biotin-dCTP (Gibco/BRL). Slides were deparaffinized, hydrated, washed with PBS, treated with proteinase K (20 μg/ml in PBS) for 10 minutes at room temperature, washed with PBS, permeabilized with 0.3% Triton X-100 in PBS for 5 minutes at room temperature, incubated in TdT buffer (30 mM Tris, pH 7.2, 140 mM sodium cacodylate, 1 mM cobalt chloride) for 30 minutes at room temperature and incubated in TdT enzyme mix containing biotin-dCTP (TdT buffer containing 20 ng/ml biotin-dCTP and 300 units/ml TdT enzyme) at 37°C for 90 minutes in a humidified chamber. Slides were then washed in PBS, pH 8.2, and biotin-labeled fragmented DNA was detected by Texas Red-labeled streptavidin (Vector Labs) diluted 1:50 in PBS, pH 8.2 (30 minutes at room temperature), followed by final extensive washing in PBS and mounting in Vectorshield (Vector Labs). DNsase I-treated tissue was used as a positive control and equivalent slides without TdT enzyme were used as a negative control.

Apoptosis was also assessed by annexin-V staining of extracellular phosphatidylserine using fluorescein-conjugated annexin-V (Boehringer Mannheim) as directed. Annexin-V binds to phosphatidylserine, which is exposed on the extracellular surface of cells during the early phases of apoptosis (Vermes et al., 1995). Cells were simultaneously stained with propidium iodide to differentiate apoptotic cells from necrotic cells with a loss of membrane integrity.

In situ hybridization
35S-labeled antisense riboprobes were synthesized by in vitro run-off transcription of linearized plasmids using SP6, T7 or T3 RNA polymerase and 35S-labeled UTP. Prehybridization, hybridization and transcription of linearized plasmids using SP6, T7 or T3 RNA polymerase K (20 μg/ml in PBS) for 10 minutes at room temperature, washed with PBS, permeabilized with 0.3% Triton X-100 in PBS for 10 minutes at room temperature, incubated in TdT buffer (30 mM Tris, pH 7.2, 140 mM sodium cacodylate, 1 mM cobalt chloride) for 5 minutes at room temperature and incubated in TdT enzyme mix containing biotin-dCTP (TdT buffer containing 20 ng/ml biotin-dCTP and 300 units/ml TdT enzyme) at 37°C for 90 minutes in a humidified chamber. Slides were then washed in PBS, pH 8.2, and biotin-labeled fragmented DNA was detected by Texas Red-labeled streptavidin (Vector Labs) diluted 1:50 in PBS, pH 8.2 (30 minutes at room temperature), followed by final extensive washing in PBS and mounting in Vectashield (Vector Labs). DNsase I-treated tissue was used as a positive control and equivalent slides without TdT enzyme were used as a negative control.

Apoptosis was also assessed by annexin-V staining of extracellular phosphatidylserine using fluorescein-conjugated annexin-V (Boehringer Mannheim) as directed. Annexin-V binds to phosphatidylserine, which is exposed on the extracellular surface of cells during the early phases of apoptosis (Vermes et al., 1995). Cells were simultaneously stained with propidium iodide to differentiate apoptotic cells from necrotic cells with a loss of membrane integrity.

Transfection and western blotting
C2C12 myoblasts (ATCC) were transfected with pcDNA3-Pax3-HA, which encodes full-length murine Pax3, with an amino-terminal epitope tag consisting of three copies of the hemagglutinin peptide (YPYDVPDYA) (Epstein et al., 1995) and polyclonal stable transfectants were selected with 500 μg/ml G418. Western blotting was performed with the mouse monoclonal anti-HA antibody 12CA5 (Boehringer Mannheim) as recommended and described previously (Epstein et al., 1995), and developed with the ECL kit (Amersham Life Sciences).

Northern blotting
RNA was prepared from fresh tissue using Trizol™ Reagent (Gibco/BRL) and poly(A)RNA was purified using Quiagen Oligotex mRNA purification kit. 1 μg mRNA was loaded per lane, transferred to GeneScreen II (DuPont NEN) and probed with random hexamer 32P-labeled probes.

RESULTS
MyoD expression is impaired in presomitotic mesoderm in response to signals from axial tissues or surface ectoderm
To investigate the role of Pax3 in the regulation of myogenic determination genes in somitic mesoderm, we cultured presomitotic mesoderm (PSM) explants from E9.5 wild-type, heterozygous and homozygous Splotch (Sp) embryos in association with surface ectoderm (SE), which provides signals for hypaxial muscle lineage determination, or in association with axial tissues (neural tube and notochord), which provide signals for epaxial muscle lineage determination. In wild-type mice, MyoD+ cells were detected in both SE and axial tissues (Fig. 1A). MyoD expression was assessed by immunohistochemistry (Fig. 1A). In contrast, no MyoD-expressing cells were detected in PSM explants derived from homozygous Sp mutant embryos cultured in the presence of SE (P=0.109). In contrast, no MyoD-expressing cells were detected in PSM explants derived from homozygous Sp mutant embryos cultured in the presence of SE (P=0.01), and MyoD expression...
was markedly impaired in PSM cultured with SE and axial tissues (15 MyoD-positive cells per explant; \(P=0.008 \) compared to wild type) (Fig. 1A). These data confirm earlier work showing that Pax3 is required for MyoD activation by signals from the surface ectoderm in the hypaxial domain of somites (Tajbakhsh et al., 1997), and demonstrate that Pax3 is also required for activation of MyoD by signals from axial tissues in the epaxial domain.

To test whether Pax3 is essential for MyoD activation in vivo, we examined the onset of MyoD expression in \(Sp \) embryos by performing in situ hybridization on E9.75 wild-type and \(Pax3 \) mutant embryos (Fig. 1B-E). We found that MyoD is activated normally at E9.75 in the ventro-lateral hypaxial domain of somites of wild-type and \(Pax3 \) mutant littermates (Fig. 1B,D). MyoD-expressing cells are disorganized in \(Pax3 \) mutant embryos (Fig. 1E), likely reflecting the disruption of the ventral lateral lip of the dermomyotome, as described previously (Franz et al., 1993). We also have observed that PSM explants from \(Pax3 \) mutant mice cultured in the presence of surface ectoderm grow poorly and have poor survival, compared to PSM explants from wild-type littermates. These findings suggest that PSM from \(Pax3 \)-deficient mice is defective in cell survival, which may lead to loss of MyoD-expressing cells.

Apoptosis in \(Pax3 \)-deficient PSM explants

To examine cell death in PSM explants, we performed TUNEL analysis, which detects DNA fragmentation in apoptotic nuclei, and annexin-V immunohistochemistry, which detects extracellular phosphatidylserine in apoptotic cells (Vermes et al., 1995). PSM explants from wild-type embryos co-cultured with surface ectoderm and axial structures produce large numbers of MyoD-positive cells (Figs 1A, 2A) and have few TUNEL-positive nuclei (Fig. 2C). In contrast, PSM explants from \(Pax3 \) mutant embryos have few MyoD-expressing cells (Figs 1A, 2B) and have large numbers of apoptotic nuclei (Fig. 2D). These findings suggest that the defect in MyoD activation by surface ectoderm and neural tube/notochord in \(Pax3 \) mutant mice is associated with programmed cell death of somitic cells. To examine whether apoptosis observed in PSM cultures from \(Pax3 \) mutant embryos is directly caused by loss of Pax3, rather than due to the loss of a neural tube survival factor under the control of Pax3, we performed TUNEL assays on PSM explants treated with \(Pax3 \) antisense oligonucleotides. In control western blot experiments, we established that antisense \(Pax3 \) oligonucleotides, but not control or random oligonucleotides, impaired \(Pax3 \) protein expression in cultured cells (see Materials and methods; Fig. 3A). Random, control and \(Pax3 \) antisense oligonucleotides were applied on PSM explants for 72 hours, and MyoD expression was analyzed by immunohistochemistry. We found that PSM explants cultured in the presence of antisense \(Pax3 \) oligonucleotides had eightfold fewer MyoD-positive cells per explant as compared to explants cultured without oligonucleotides or with random oligonucleotides (data not shown). Furthermore, treatment of explants with antisense \(Pax3 \) oligonucleotides (Fig. 3D), but not with control or random oligonucleotides (Fig. 3B,C), triggered a dramatic increase in the number of apoptotic cells, indicating that \(Pax3 \) is required in a cell-autonomous manner for PSM cell viability. In agreement, we observed many apoptotic cells in \(Pax3 \) mutant PSM explants as compared to wild-type PSM, as assayed by staining with fluoresceine-conjugated annexin-V (Fig. 3E,F) and by TUNEL assays (data not shown). Apoptosis was also observed in wild-type PSM explants cultured without surface ectoderm (data not shown), which is required for \(Pax3 \) expression (Fan and Tessier-Lavigne, 1994). This provides additional evidence that Pax3 function in PSM cells is required for their survival. Interestingly, we noticed that less apoptosis occurs in PSM cocultured with both surface ectoderm and axial tissues than in PSM cocultured with surface ectoderm alone, indicating that axial tissues (neural tube and notochord) provide additional cell survival factors.

Apoptotic cells in somites of \(Pax3 \)-deficient embryos

The apoptosis observed in PSM explants from \(Pax3 \) mutant embryos led us to compare apoptosis in the somites of wild-type and \(Pax3 \) mutant embryos. Transverse sections from E9.5-11.5 wild-type and \(Pax3 \) mutant embryos were analyzed by in situ hybridization for \(Pax3 \) expression, and by TUNEL assay for apoptosis (Fig. 4). In E11.5 wild-type embryos, \(Pax3 \) transcripts are detected in the dorsal neural tube, dorsal root ganglia and dermomyotome (Fig. 4A), and TUNEL-positive cells are scattered throughout the embryo (Fig. 4C). In E11.5
Pax3 mutant embryos, nonfunctional Pax3 transcripts are detected in the dorsal domain of the open neural tube and at the hindlimb level, in clusters of somitic cells (Fig. 4B). This observation correlates with previous work (Daston et al., 1996) showing that elongated somites are absent in Pax3 mutant mice. Significantly, TUNEL assays on adjacent sections revealed clusters of apoptotic cells that colocalize with Pax3-expressing cells (Fig. 4D), establishing that Pax3-deficient dermomyotomal cells undergo apoptosis. These clusters of apoptotic cells were seen at multiple levels along the rostral-caudal axis of Pax3 mutant embryos at E9.5 (Fig. 4F) but not in wild-type embryos (Fig. 4E). In somites of older E11.5 embryos, apoptotic cells were detected in significant numbers only at the hindlimb level and more posteriorly (Fig. 4D), suggesting that a compensatory mechanism may prevent extensive cell death, at later stages at the level of interlimb somites where MyoD is activated.

We observed additional clusters of TUNEL-positive cells in the hindlimb region of Pax3 mutant E11.5 embryos, located just lateral to the neural tube (yellow arrow, Fig. 4D). These apoptotic cells are located in the region occupied by the dorsal root ganglia that express Pax3 in wild-type embryos (Fig. 4C), suggesting that these dying cells are derived from the neural crest that is missing in the hindlimb region of Pax3 mutant embryos (Auerbach, 1954). This observation indicates that Pax3-expressing somitic cells as well as Pax3-expressing neural crest cells undergo apoptosis in the embryo. However, at these developmental stages, we did not observe increased apoptosis in the dorsal neural tube of Pax3 mutant embryos, where Pax3 is expressed at high levels (Fig. 4B,D).
Fig. 5. Pax7 is not expressed in PSM of E9.5 wild-type or Splotch embryos. Whole-mount in situ hybridizations of E9.5 wild-type (A,B) and Pax3-mutant (C) embryos using Pax3 (A) and Pax7 (B,C) DIG-labeled RNA probes are shown. In wild-type embryos, in addition to neural tube expression, Pax3 is expressed in mature and newly formed (caudal) somites and in PSM (A, black arrowhead), while Pax7 is not expressed in PSM (B, black arrowhead). In Pax3 mutant embryos, Pax7 is strongly upregulated in the neural tube (compare white arrows in B and C), but Pax7 is not prematurely expressed in the PSM (black arrowhead, C). Note that the neural tube is open in the caudal region of this mutant embryo.

Misexpression of Pax7 transcripts in the neural tube and rostral somites of Pax3 mutant embryos

To investigate the differential responses of dorsal neural tube and somites in Pax3 mutant embryos, we examined the expression of Pax7, a gene that has sequence homology and developmental expression patterns similar to Pax3 (Jostes et al., 1991). In E10.5 wild-type embryos, Pax7 is expressed in the medial region of the neural tube along the dorsal/ventral axis (Figs 5B, 6A,C), but is excluded from the dorsal extreme of the neural tube (compare Figs 4A and 6A,C). Pax7 also is transiently expressed in the dermomyotome of somites after Pax3 expression has initiated (Jostes et al., 1991) (Fig. 5C). However, unlike Pax3, Pax7 is not detected in PSM and newly formed somites, as assayed by whole-mount in situ hybridization (Fig. 5A,B).

In E9.5 Pax3 mutant embryos, Pax7 expression is strongly upregulated in the dorsal neural tube (Fig. 5C), and by E10.5, Pax7 mRNA transcripts were detected in the most dorsal regions of the neural tube including the lumbosacral area, where loss of Pax3 results in failure of neural tube closure (Fig. 6D). At E10.5, the dorsal expansion of Pax7 expression occurs in the neural tube along the entire rostral-caudal axis (Figs 5C, 6B,D), as well as in the lamina terminalis of the brain, where normally Pax3 is expressed and Pax7 is at very low levels (Fig. 6A,B, red arrow). The dorsal expansion of Pax7 into the Pax3 domain of Splotch embryos indicates that Pax3 normally functions to repress Pax7.

To investigate whether Pax7 also is mis-expressed in rostral somites of Pax3 mutant embryos, we examined Pax7 expression in somites of E9.5, E10.5 and E11.5 wild-type and Pax3 mutant embryos (Figs 5, 7). At E9.5, Pax7 expression is activated in anterior, but not in posterior somites of Pax3-mutant embryos (Fig. 5B,C), indicating that the onset of Pax7 expression is not disrupted in Pax3 mutant embryos. However, in the interlimb somites, Pax7 transcripts are misexpressed in both the posterior and the anterior compartments of somites in E9.5 Pax3 mutant embryos (Fig. 7D,E), reflecting the pattern of Pax3 expression in wild-type embryos (Fig. 7G,H). In contrast, in wild-type embryos Pax7 transcripts are abundant mainly in the posterior compartment of somites (Fig. 7A,B). In addition, Pax7 expression expands into the dorsomedial lip of the dermomyotome in E9.5 Pax3 mutant embryos (compare Fig. 7C,F), where Pax3 is normally expressed at this developmental stage (Fig. 7I). In the medial portion of the somite, Pax3 and Pax7 expression domains overlap. By E10.5, expression of Pax7 protein in Pax3 mutant embryos expands dorsally into the dorsomedial lip of the dermomyotome (Fig. 8A,B) where Pax3 is normally expressed at this time (Tajbakhsh et al., 1997). By E11.5, Pax7 is abundantly expressed in the medial domain of the dermomyotome and expression is increasing in the dorsomedial lip in wild-type embryos (Fig. 8C) (Jostes et al., 1991). In Pax3 mutant embryos, Pax7 expands into the ventral dermomyotome (Fig. 8C,D, open arrows), where Pax3 expression would normally predominate. We also noted that Pax7 is misexpressed in the remnants of dorsal root ganglia in Pax3 mutant embryos (Fig. 8B,D, arrowheads), but not in wild-type embryos (Fig. 8A,C). These data further support the conclusion that Pax3 is a negative regulator of Pax7.

Pax3 represses endogenous Pax7 expression in C2C12 myoblasts

To test directly whether Pax3 can repress Pax7 expression, we stably transfected C2C12 cells, which normally express Pax7 but not Pax3 (Fig. 9B), with a Pax3 expression construct. Northern blot analysis of polyadenylated RNA from C2C12 myoblasts and two stably transfected C2C12 cell lines revealed
that Pax7 expression is downregulated strongly in both Pax3-transfected cell lines (Fig. 9A), establishing that Pax3 can repress Pax7 expression in cultured C2C12 myoblasts. This result is consistent with our in vivo expression data suggesting a reciprocal relationship between Pax3 and Pax7 in muscle precursor cells.

DISCUSSION

In this report, we provide in vivo and in vitro evidence that Pax3 has previously unknown functions in apoptosis and Pax7 regulation during embryogenesis. We first show that Pax3 is required for the survival of somitic mesodermal cells, providing a mechanism by which Pax3 may act genetically upstream of MyoD in somitic mesoderm. In addition, we show that Pax3 represses the expression of the closely related Pax7 gene in both neural tube and somites. The misexpression of Pax7 in Pax3 mutant embryos provides a likely compensatory mechanism for cell survival and for cell fate determination in neural tube and in mature somites.

Pax3 is required for survival of somitic mesoderm

Multiple functions have been attributed to Pax3 in the control of muscle cell progenitor migration into the limb bud (Bober et al., 1994; Goulding et al., 1994), in cell transformation (Galili et al., 1993) and finally in the control of MyoD transcription (Maroto et al., 1997). However, these previously known functions of Pax3 do not account for the observation that the epithelial organization of the somite and the dermomyotome is disrupted in Pax3 mutant embryos (Franz et al., 1993), a phenomenon that is observed in newly formed somites. We now show that Pax3 mutant somitic cells undergo extensive apoptosis, as assayed both in vivo and in vitro. Therefore, apoptosis contributes to the disorganization of Pax3

Fig. 7. Pax7 expression expands in mature somites of E9.5 Pax3 mutant embryos. Sagittal (B,E,H) and transverse sections (C,F,I) of E9.5 embryos after whole-mount in situ hybridization (A,D,G) to detect Pax7 (A-F) and Pax3 (G-I) expression are shown from wild type (A-C, G-I) and Pax3 mutant (D-F) embryos. Sagittal sections reveal that Pax7 expression expands anteriorly in Pax3 mutant somites (arrows in D,E) as compared to wild-type somites (arrows in A,B). Pax7 is also expressed in the dorsomedial lip (DML) of the somite in Pax3 mutant embryos (black arrow, F), whereas it is excluded from the DML in wild-type somites (black arrow, C). The expression pattern of Pax7 in Pax3 mutant somites and neural tube resembles the expression pattern of Pax3 in wild-type embryos (G-I). Note the dorsal expansion of Pax7 in the neural tube (nt) of Pax3 mutant embryos compared to wild-type (white arrows in C and F). sc, sclerotome; dm, dermomyotome; post, posterior.

Fig. 8. Pax7 protein expression expands in somites of Splotch embryos. Immunohistochemistry using an anti-Pax7 antibody on transverse sections of E10.5 (A,B) and E11.5 (C,D) wild-type (A,C) and Pax3-mutant (B,D) embryos. In E10.5 Pax3 mutant embryos, Pax7 protein expression expands dorsally in the dorsomedial lip of the somites (black arrow, B). By E11.5 (D), Pax7 protein expression also expands in the ventral lateral domain of the dermomyotome (open arrow in D). Pax7 misexpression is also observed in the residual, small dorsal root ganglia of Pax3 mutant embryos (black arrowheads B,D). dm, dermomyotome; nt, neural tube.

Fig. 9. Pax3 represses endogenous Pax7 expression in C2C12 myoblasts. (A) Northern blot analysis of Pax7 mRNA expression in C2C12 myoblasts and two different clonal C2C12 lines stably expressing Pax3 (C2Pax3#1, C2Pax3#2) is shown. Pax7 mRNA expression is markedly downregulated in the clones expressing Pax3. 1 μg of polyadenylated RNA is loaded per lane. Actin expression is shown below to indicate loading of lanes. (B) Western blot using a Pax3 antibody reveals Pax3 protein expression by the two C2C12 clones shown in A but not by untransfected C2C12 cells.
mutant somites and to the failure of somitic cells to express MyoD in response to signals from axial tissues and surface ectoderm in vitro.

Pax3 has upstream functions in muscle cell determination, as revealed by the complete loss of MyoD expression in trunk muscles of Pax3 and Myf-5 double mutant embryos (Tajbakhsh et al., 1997). Retrovirus-mediated ectopic expression of Pax3 in chick presomitic mesoderm explants can activate the expression of MyoD (Maroto et al., 1997), indicating that Pax3 may have a direct role in MyoD transcription. In Myf5 mutant embryos, MyoD activation is delayed developmentally in both epaxial and hypaxial somite muscle lineages, suggesting that MyoD activation is controlled by an early acting, Myf5-dependent mechanism, and a later-acting Myf5-independent mechanism. Early acting MyoD activation may be indirectly influenced by the role of Pax3 in somite cell survival. Alternatively, Pax3 may act upstream and be required for survival of the lateral dermamyotome cells prior to MyoD expression in Pax3/Myf5 double mutant embryos (Tajbakhsh et al., 1997). In support of this latter hypothesis, the most drastic disruptions in myogenesis in Pax3/Myf5 double mutant embryos occur in cell lineages derived from the lateral dermamyotome (Tajbakhsh et al., 1997). Furthermore, disruption of Pax3 expression by removal of surface ectoderm (Fan and Tessier-Lavigne, 1994) increases cell death in the lateral, but not the medial compartment of somites in chick embryos (Schmidt et al., 1998). In this respect, ablation of the neural tube/ectoderm complex in chick embryos and the Danforth's short tail (Sd) mutation causing notochord degeneration in mouse embryos led to increased apoptosis of epaxial somite cells (Asakura and Tapscott, 1998; Teillet et al., 1998). These data indicate that lateral and medial domains of the dermamyotome are subject to different environmental influences that control cell survival. Our data indicate that Pax3 is required for the survival of the lateral dermamyotome domain.

Our data do not distinguish whether Pax3 directly or indirectly represses genes in the apoptotic pathway during the development of the paraxial mesoderm. There is some evidence that Pax genes directly regulate programmed cell death. A conserved Pax binding site is located in the first untranslated exon of the human p53 gene (Stuart et al., 1995), which can promote apoptosis (Levine, 1997), and Pax2, Pax5, and Pax8 can transcriptionally inhibit p53 expression (Stuart et al., 1995). Pax8 binds the bcl-2 promoter and activates in vitro the transcription of the bcl-2 gene (Hewitt et al., 1997), which suppresses apoptosis (Allsopp et al., 1993; Sentman et al., 1991). Further experiments are required to address whether Pax3 prevents apoptosis by controlling p53 or bcl-2 gene expression during embryonic development. However, a generalized function for Pax gene products in promoting cell survival is supported by the observation that Pax3/Pax9 compound homozygous mutant embryos have increased cell death in the sclerotome (H. Peters and R. Balling, personal communication). Finally, antisense-mediated inhibition of Pax3 in rhabdomyosarcoma cells results in apoptosis (Bernasconi et al., 1996), suggesting that one mechanism contributing to malignancy in these rhabdomyosarcomas may be PAX3/FKHR inhibition of an apoptotic pathway. Further understanding of the target genes of Pax3 is required to fully elucidate its role in apoptosis.

Pax3 negatively regulates Pax7 expression in neural tube and somites

Pax7 and Pax3 proteins are closely related, and both genes likely arose by gene duplication from a common ancestor (Noll, 1993). We now show that, in absence of Pax3 function, Pax7 expression is misexpressed in the dorsal neural tube and in specific domains of somites where Pax3 would normally be expressed. Furthermore, we establish experimentally that Pax3 can repress Pax7 expression in C2C12 cultured myoblast cells. These findings indicate that Pax3 negatively regulates Pax7 expression in specific domains of somites and neural tube. Such cross-gene repression is also observed for two other closely related Pax genes, Pax1 and Pax9, which are expressed in the ventral sclerotome domain of somites, based on the observation that Pax9 expression is upregulated in homozygous Pax1 mutant mice (H. Peters and R. Balling, personal communication). We did not observe upregulation of the non-functional Pax3 transcripts in Pax3 mutant embryos, indicating that Pax3 does not regulate its own expression, as is the case for Pax6 expression (Grindley et al., 1995). The purpose of such a regulatory network among homologous gene family members is probably to regulate the overall summation of Pax3 and Pax7 proteins in embryonic tissues. Pax3 and Pax7, however, also have overlapping domains of expression in somites and in neural tube (Goulding et al., 1991; Jostes et al., 1991), suggesting that, in specific regions of the embryo, Pax3 protein levels are insufficient to downregulate Pax7 expression. If this is the case, we would predict that overexpression of Pax3 in the neural tube would result in a gradual downregulation of Pax7 expression. Such cross-regulatory mechanisms amongst closely related factors provide a sophisticated layer of functional redundancy that protects the embryo from individual gene mutation or inactivation. There is evidence for similar regulatory networks amongst other transcription factor gene families, such as GATA genes and bHLH genes, whose functions are critical for the embryo (Kuo et al., 1997; Rudnicki et al., 1993; Weiss et al., 1994). Consistent with this idea, the paired and homeobox domains of Pax3 and Pax7 are 91% and 95% identical, respectively (Goulding et al., 1991; Jostes et al., 1991). Structural homology and the expression data presented here suggest that Pax7 may be able to compensate, at least partially, for loss of Pax3, as has been suggested for GATA factors and bHLH myogenic factors (Kuo et al., 1997; Rudnicki et al., 1993; Weiss et al., 1994). Furthermore, we have also observed that Pax7 misexpression occurs in regions of the somite in Pax3-deficient mice that do not undergo apoptosis. Conversely, in presomitic mesoderm and newly formed somites, where Pax7 expression has not initiated, apoptosis is prevalent. Similarly, Pax3 mutant embryos have neural tube closure defects, and we hypothesize that Pax3 function is required for neural tube closure at a stage when Pax7 expression is not activated in the neural tube (Jostes et al., 1991). In support of our hypothesis of the overlapping redundant functions of Pax3 and Pax7, Pax3/Pax7 double homozygous embryos die earlier than Pax3 mutant embryos and have extensive neural tube abnormalities, including spina bifida and exencephaly (Mansouri and Gruss, 1998). In addition, the dermamyotome of the Pax3/Pax7 double mutant embryos appears to be severely affected at E10.5, as assessed by the loss of En1 expression and the absence of somite expression of the LacZ.
reporter gene inserted into the Pax3 locus (Mansouri and Gruss, 1998).

In summary, Pax3 plays a role in somitic cell survival and this function may be especially critical prior to activation of myogenic determination genes. While Pax3 acts genetically upstream of MyoD, its cellular function may be critical to the undifferentiated myogenic precursor rather than as a mediator of myogenic differentiation. The possibility of functional compensation by the related Pax7 gene is supported by our finding that Pax3 represses Pax7 in specific neural and somitic tissue domains.

We are grateful to Fred Barr for sharing results prior to publication. This work was supported in part by grants from the NIH (RO1 HL03267-01), AHA (96008010) and the Basil O’Connor Starter Scholar Award (5-FY97-0664) from the March of Dimes Birth Defects Foundation to J.A.E., who is the recipient of a Penn/Hughes Scientist Award (made possible by the Howard Hughes Medical Institute Research Resources Program for Medical Schools). This work was also supported by a NIH Grant HD-07796 from the National Institute of Child Health and Human Development to C.P.E.

REFERENCES

