OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P₁ blastomere of C. elegans embryos

Silke Pichler¹,², Pierre Gönczy¹,², Heinke Schnabel³, Andrei Pozniakowski¹, Anthony Ashford¹, Ralf Schnabel³ and Anthony A. Hyman¹,²,*

¹Max Planck Institute for Cell Biology and Genetics, D-01307 Dresden, Germany
²EMBL, Meyerhofstrasse 1, D-69117 Heidelberg Germany
³Institut für Genetik, TU Braunschweig, Spielmannstrasse 7, D-38023 Braunschweig, Germany
*Author for correspondence at address 2 (e-mail: hyman@embl-heidelberg.de)

Accepted 14 February; published on WWW 18 April 2000

SUMMARY

Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P₁ blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic spindle along the previously established axis of polarity. To identify genes required for these events, we have screened a collection of maternal-effect lethal mutations on chromosome II of C. elegans. We have identified a mutation in one gene, ooc-3, with mis-oriented division axes at the two-cell stage. Here we describe the phenotypic and molecular characterization of ooc-3. ooc-3 is required for the correct localization of PAR-2 and PAR-3 cortical domains after the first cell division. OOC-3 is a novel putative transmembrane protein, which localizes to a reticular membrane compartment, probably the endoplasmic reticulum, that spans the whole cytoplasm and is enriched on the nuclear envelope and cell-cell boundaries. Our results show that ooc-3 is required to form the cortical domains essential for polarity after cell division.

Key words: Polarity, Spindle orientation, ooc-3, Cortical domain, Endoplasmic reticulum, PAR protein, Asymmetric division, C. elegans

INTRODUCTION

The generation of cell diversity depends, among other mechanisms, on asymmetric cell divisions (Horvitz and Herskowitz, 1992). For cells to divide asymmetrically, they must first determine an axis of polarity and then communicate this polarity to downstream targets, such as the cytoskeleton (Gönczy and Hyman, 1996). Recent work has suggested that an early event in the establishment of cell polarity is the formation of cortical domains, regions of the cell cortex containing specialized sets of proteins. In the yeast S. cerevisiae, growth of the bud from the mother is accompanied by formation of cortical domains at the growing bud tip (Madden and Snyder, 1998). Drosophila neuroblasts form an apical basolateral axis in which the apical and basolateral surfaces represent different cortical domains (Kuchinke et al., 1998). In C. elegans embryos, establishment of the axis of polarity is accompanied by formation of two cortical domains represented by the PAR proteins (Rose and Kemphues, 1998).

The correct delivery of membrane proteins into cortical domains is essential for polarization and this targeting may already occur in the endoplasmic reticulum (ER). For example, in S. cerevisiae, Axl2, a transmembrane protein required for bud site selection, is transported to nascent bud tips by a mechanism that requires Erv14, a protein that localizes to the ER (Powers and Barlowe, 1998). In erv14 mutants, Axl2 accumulates in the ER and this correlates with a defect in bud site selection (Powers and Barlowe, 1998). Interestingly, erv14 is homologous to the cornichon gene in Drosophila, which is required for polarity of egg chambers during oogenesis (Roth et al., 1995). Therefore specific targeting of transmembrane proteins during their passage through the ER is important for the establishment of polarity in several systems, but these issues remain understudied.

The early embryonic cleavages of the nematode C. elegans provide an excellent system to study the establishment of polarity because defined cortical domains are established soon after fertilization, and these cortical domains trigger downstream events that are easy to follow by microscopy. In the cells of the P-lineage the cortical domains are established via the localization of PAR-3, PAR-6 and PKC-γ at the anterior, and PAR-2 and PAR-1 at the posterior cortices, respectively.
(Levitan et al., 1994; Etemad-Moghadam et al., 1995; Guo and Kemphues, 1995; Boyd et al., 1996; Watts et al., 1996; Tabuse et al., 1998). It is thought that PAR-3 first establishes an anterior cortical domain, PAR-2 and PAR-3 then interact, leading to a mutually exclusive distribution, with PAR-3 restricted to the anterior and PAR-2 to the posterior (Rose and Kemphues, 1998). Subsequently this polarity is communicated to downstream events. One set of events is the segregation of cell fate determinants of differentiation, such as P-granules, to one end of the cell prior to division (Strome and Wood, 1983). In a second set of events, the axis of polarity is communicated to the cytoskeleton, triggering a 90° rotation of the centrosome-nucleus complex, aligning the spindle along the anteroposterior axis (Albertson, 1984; Hyman, 1989).

We know very little about the cues that establish these cortical domains or how they are communicated to the cytoskeleton. In the zygote P0, the cue for the establishment of the anterior and posterior cortical domains is provided extrinsically by a sperm component that marks the future posterior pole (Goldstein and Hird, 1996). However, similar cortical domains are set up in subsequent cleavages of the P-lineage, and in these divisions the cues that establish these cortical domains are completely unclear.

MATERIALS AND METHODS

Culture conditions and strains

Culture, handling and crossing were as described (Brenner, 1974). The following genes and alleles were used in this study: mnC1 II dpy-10(e128) unc-32(e444) Hi(dpy-2(e8) II him-3 (e1147) IV (Herman, 1978), mnDf87 II, mnDf88 II, mnDf89 II and mnDf90 II (Sigurdson et al., 1984), ooc-1(mn250), ooc-3(mn241), mel-8(b312), mel-19(b293ts), mel-11(it26), mel-13(b306), mel-15(it38), mel-18(b300), mel-19(b310), mel-21(it9), mel-22(it30) (Kemphues et al., 1988).

Isolation and genetic analysis of t1308

L4-stage hermaphrodites of genotype mnC1 II/dpy-2(e8) II; him-3(e1147) IV were mutagenized using 50 mM ethyl methyl sulfonate for 4 hours according to standard procedures (Brenner, 1974). Mutagenized mnC1II/dpy-2; him-3 F1 L4 hermaphrodites were grown individually for 3 days on agar plates at 25°C. The plates were scored for the presence of dpy-2 progeny. Dumpy L4 or young adult hermaphrodites of each plate were transferred to a new plate and incubated at 25°C. The mutants were mapped with the deficiencies mnDf88 and mnDf89. (R. Schnabel, H. Schnabel and R. Feichtinger, unpublished). From 13700 mutagenized genomes, one mutation, t1308, failed to rotate the centrosome-nucleus complex in 100% of progeny. Dumpy L4 or young adult progeny. Dumpy L4 or young adult

Germline transformation and RNA interference (RNAi) analysis

Heterozygous ooc-3(mn241) unc-4(e120)/mnC1 dpy-10(e128) unc-52(e444) II, were injected with a mixture of the DNA (5 ng/µl) to be tested and rol-6 DNA (100 ng/µl) (Mello et al., 1991). Roller homozygous ooc-3 F1 hermaphrodites were plated on separate plates and scored for maternal-effect lethality. The mutation ooc-3(mn241) causes 100% lethality in embryos from homozygous hermaphrodites at 25°C. Cosmids B0334, C05D12 and W02B12 were injected. Only B0334 gave rescue. To define the ooc-3 locus, the ends of the overlapping cosmids C51D6, T18C10, F46F12 and C56C6 were sequenced. The end positions are as follows: 27791 (on W02B12)-38918 (on B0334) for C51D6, 28608 (on W02B12)-35255 (on B0334) for T18C10, 17816 (on W02B12)-2627 (on B0334) for F46F12 and C56C6 (on W02B12)-11585 (on B0334) for C56C6. The positions of the PCR fragments on the rescuing cosmids B0334 are as follows: 37-8506 for Bc11, 7521-15966 for Bc12, 14946-22099 for Bc13, 10061-17801 for Bc14 and 13741-16902 for B11.

RNAi was performed with modifications of Fire et al. (1998). The region 14192-16143 on B0334 was amplified from cosmid B0334 using standard PCR procedures. To interfere with the expression of PAR-3 in wild-type and ooc-3 mutant worms, plasmid PSA (Etemad-Moghadam et al., 1995) was linearized with BamHI and subsequently used as template for transcription reactions.

Sequencing of mutant alleles and cDNAs

The fragment B11 (from bases 13741 to 16902 on B0334) was amplified from wild-type and ooc-3(t1308) and ooc-3(mn241) homozygous mutant worms using whole-organ PCR. 50 worms were transferred to a PCR tube containing 10 µl lysis buffer (10 mM Tris, pH 8.3, 50 mM KCl, 2.5 mM MgCl2, 0.45% Tween-20, 0.005% gelatine) and 60 µg/ml proteinase K. Worms were frozen in liquid nitrogen for 10 minutes and incubated for 60 minutes at 60°C and 15 minutes at 95°C. The available cDNAs (yk383, yk524, yk588, yk589, yk645, yk332) were sequenced. None of these cDNAs is complete, but yk383 misses only the two very 5’ codons of the predicted B0334.11.

Antibodies and immunofluorescence

PAR-2 antibodies: a 741 bp fragment starting at nucleotide 943 in the par-2 ORF was cloned into pGEX-4T-3 (Pharmacia). The GST fusion protein was purified, injected into rabbits and purified according to standard procedures. A single band of the expected molecular mass was obtained by western blot (data not shown). PAR-3 antibodies: a 750 bp fragment starting at nucleotide 2053 in the par-3 ORF was cloned into pGEX-4T-3 (Pharmacia). ZYG-9; antibodies were raised against a C-terminal peptide of ZYG-9, and will be described elsewhere. OOC-3 antibodies (OOC3C2): C-terminal peptide was synthesized (amino acids 432-448). For affinity purification, the crude antiserum was passed over a column containing the coupled peptide. Bound antibodies were eluted with 100 mM glycine, pH 1.9, and dialyzed against PBS. OOC-3 antibody was used at 1:500 PBS.

Staining of microtubules, ZYG-9, P-granules, PAR-2 and PAR-3 by indirect immunofluorescence was performed with modifications of standard procedures (Gönczy et al., 1999). To stain for OOC-3, embryos were fixed in 75% methanol, 3.7% formaldehyde, 0.5% Triton X-100, and 0.1% Tween-20 and incubated at 20°C for 15 minutes. After dehydration in PBS for 10 minutes, embryos were incubated for 1 hour with 30 µl of primary antibody. Peptide competition was performed in which the OOC-3 antibody was pre-incubated with 0.1 mg/ml peptide for 15 minutes. Actin staining was as described in Waddle et al. (1994).

RESULTS

ooc-3 is required for proper spindle orientation in the P1 blastomere of two-cell stage. C elegans embryos

We wanted to identify genes required for the establishment of polarity and spindle orientation. The most obvious manifestation of polarity is the orientation of the cleavage axes, which in the P-lineage is mediated by a 90° rotation of the centrosome-nucleus complex (Fig. 1). Therefore we screened a collection of recessive maternal-effect lethal mutations on linkage group II by time-lapse DIC
In embryos defective for P₁ rotation the centrosome-nucleus complex does not rotate and the spindle sets up transverse to the longitudinal axis of the embryo (Hyman and White, 1987; Hyman, 1989; Waddle et al., 1994; Skop and White, 1998) (see Fig. 1). Tubulin staining revealed that microtubules in ooc-3 mutant embryos were indistinguishable from wild type; astral microtubules were numerous and long enough to reach the cortex (data not shown). However, tubulin staining indicated that the angle between the two centrosomes during prophase, the time at which P₁ rotation occurs in wild type (Hyman, 1989) was altered in some ooc-3 mutant embryos (data not shown).

To investigate this observation further, we stained fixed wild-type and ooc-3 mutant embryos with an antibody against a centrosomal marker, ZYG-9 (Matthews et al., 1998). As expected, in wild type the two centrosomes were at opposite sides of the nucleus, subtending an angle of about 180° with respect to the center of the nucleus. The whole centrosomal-

Table 1. Summary of DIC phenotypes of the three ooc-3 alleles, the transheterozygous combinations and transheterozygotes of ooc-3 and deficiencies uncovering the ooc-3 region

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Temperature (°C)</th>
<th>Size (µm)</th>
<th>Meiotic defect (%)</th>
<th>P₀ rotation defect (%)</th>
<th>Cleavage furrow position (%)</th>
<th>Chromosome segregation defect (%)</th>
<th>P₁ rotation defect (%)</th>
<th>P₁ timing defect (%)</th>
<th>Melb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>25</td>
<td>49.5±1.7</td>
<td>0 (20)</td>
<td>5 (20)</td>
<td>56.2±2.2</td>
<td>0 (20)</td>
<td>0 (19)</td>
<td>0/0 (11)</td>
<td>0/20</td>
</tr>
<tr>
<td>t1308</td>
<td>25</td>
<td>31.2±4.7</td>
<td>63 (11)</td>
<td>10 (11)</td>
<td>54.2±2.8</td>
<td>27 (11)</td>
<td>100 (11)</td>
<td>10/64 (11)</td>
<td>100 (80)</td>
</tr>
<tr>
<td>t1308 wt</td>
<td>25</td>
<td>49.4±2.1</td>
<td>0 (10)</td>
<td>0 (10)</td>
<td>55.8±1.8</td>
<td>0 (10)</td>
<td>0 (10)</td>
<td>0/10 (10)</td>
<td>0/20</td>
</tr>
<tr>
<td>mn241</td>
<td>25</td>
<td>33.8±3.0</td>
<td>25 (20)</td>
<td>45 (20)</td>
<td>52.6±2.5</td>
<td>35 (20)</td>
<td>80 (20)</td>
<td>15/40 (20)</td>
<td>100 (80)</td>
</tr>
<tr>
<td>b310</td>
<td>25</td>
<td>39.5±7.0</td>
<td>17 (12)</td>
<td>8 (12)</td>
<td>56.1±2.7</td>
<td>33 (12)</td>
<td>92 (12)</td>
<td>17/67 (12)</td>
<td>95 (39)</td>
</tr>
<tr>
<td>t1308 mn241</td>
<td>25</td>
<td>32.5±5.4</td>
<td>64 (11)</td>
<td>73 (11)</td>
<td>-</td>
<td>40 (10)</td>
<td>100 (10)</td>
<td>40/10 (10)</td>
<td>100 (17)</td>
</tr>
<tr>
<td>t1308 b310</td>
<td>25</td>
<td>50.1±4.7</td>
<td>0 (12)</td>
<td>10 (11)</td>
<td>52.7±3.5</td>
<td>25 (16)</td>
<td>94 (16)</td>
<td>14/29 (14)</td>
<td>100 (28)</td>
</tr>
<tr>
<td>ooc-3(t1308) mnDf87</td>
<td>25</td>
<td>31.2±3.6</td>
<td>0 (3)</td>
<td>80 (10)</td>
<td>52.5±2.5</td>
<td>25 (16)</td>
<td>94 (16)</td>
<td>14/29 (14)</td>
<td>100 (28)</td>
</tr>
<tr>
<td>ooc-3(t1308) mnDf90</td>
<td>25</td>
<td>28.4±3.0</td>
<td>0 (1)</td>
<td>100 (7)</td>
<td>52.8±2.1</td>
<td>40 (15)</td>
<td>100 (14)</td>
<td>36/50 (14)</td>
<td>100 (74)</td>
</tr>
<tr>
<td>ooc-3(b310) mnDf87</td>
<td>25</td>
<td>34.2±3.6</td>
<td>30 (9)</td>
<td>75 (12)</td>
<td>52.3±2.1</td>
<td>40 (15)</td>
<td>100 (14)</td>
<td>36/50 (14)</td>
<td>100 (74)</td>
</tr>
</tbody>
</table>

*After fertilization, one female and one male pronucleus form in wild-type embryos. Meiotic defects are revealed by aberrant numbers of female pronuclei (O’Connell et al., 1998; Gönczy et al., 1999).

*In one-cell stage wild-type embryos the centrosome-nucleus complex undergoes a 90° rotation (P₀ rotation), which orients the mitotic spindle along the longitudinal axis of the embryo. In embryos defective for P₀ rotation the centrosome-nucleus complex does not rotate, the spindle sets up transverse to the longitudinal axis of the embryo and, subsequently, a 90° rotation of the spindle occurs (‘spindle rescue’) (O’Connell et al., 1998; Gönczy et al., 1999). Partial rotation and aberrant rotation movements are not considered in this table.

*In P₀ the mitotic spindle assembles in the cell center but subsequently in anaphase gets displaced towards the posterior pole. To investigate anaphase displacement, we measured the position of the cleavage furrow which ingresses equidistant from the spindle poles. Whereas in wild-type embryos cleavage furrow progression occurs at 56% egg length in average, it occurs more symmetrically in ooc-3 mutant embryos.

*Chromosome segregation defects are revealed by the appearance of karyomeres after the reformation of nuclei in AB and P₁ (O’Connell et al., 1998; Gönczy et al., 1999). Partial rotation and aberrant rotation movements are not considered in this table.

*In P₀ the centrosome-nucleus complex rotates 90° and subsequently the spindle sets up transverse to the longitudinal axis of the embryo (Hyman and White, 1987). In embryos defective for P₀ rotation the centrosome-nucleus complex does not rotate and the spindle sets up transverse to the longitudinal axis of the embryo.

*In wild-type embryos nuclear envelope breakdown (NEB) in AB occurs about 2 minutes ahead of P₁ (Hyman and White, 1987). The P₁ cell cycle timing is defective when the delay between AB and P₁ NEB is less than 1 minute or more than 3 minutes. Values are given as x±y; x indicates the percentage of embryos in which the P₁ cell cycle is accelerated and y reveals the percentage of embryos in which the P₁ cell cycle is slowed down.

*In all the cases in which the P₁ cell cycle was accelerated (in two of the four cases P₁ even divides before AB), there is no rotation in P₀ and the spindle appeared to sweep around the whole cytoplasm (or even the whole embryo in the eggshell) during spindle rescue. The acceleration in the P₁ cell cycle in these embryos is therefore not a consequence of a secondary effect caused by the failure of P₀ rotation. Embryos in which P₀ rotation occurred correctly but the P₁ cell cycle was accelerated were never observed.

*Mel, maternal-effect lethality; one wild-type worm gives rise to about 200 hatching embryos. We define the mutation as maternal-effect lethal (100%) if less than 10 embryos/worm hatch.

*Throughout the table, the numbers in parentheses are the numbers of embryos (for the Mel test, the number of worms) analysed.

*3% of worms gave rise to about 20 hatching embryos, 2% gave rise to 50 and 2% to 100 hatching embryos.

*3% of worms gave rise to 200 hatching embryos.
nuclear complex then rotates by 90°, while keeping the angle between the centrosomes at 180° (n=10) (Fig. 3b). However, in ooc-3 mutants, the subtended angle was reduced to less than 120° in 40-54% of ooc-3 mutant embryos (t1308: 40%, n=10; mn241: 54%, n=11; b310: 50%, n=10 (Fig. 3c). This resulted in both centrosomes being positioned nearer to the anterior cortex than in wild type. One plausible explanation for the abnormal centrosome position is that pulling forces are exerted equally on both centrosomes.

The anterior cortical site is defective in ooc-3 mutant embryos

We next examined the enrichment of actin at the anterior cortical site, which is known to be required for P1 rotation in wild-type. In all 21 wild-type embryos examined, the cortical site formed a discrete ring-like structure either symmetrically or slightly asymmetrically positioned (Fig. 4a,b). In contrast, in ooc-3 mutant embryos the cortical site was no longer restricted to a defined location in 78% of the embryos examined (n=18). Either the cortical site was clearly enlarged (Fig. 4c,d), or several ring- or dot-like structures were observed (Fig. 4e,f). Thus, ooc-3 appears to be required for the restriction of actin to the defined ring-like structure at the anterior cortex, which is thought to represent the microtubule attachment site. It is possible that this expanded site allows capture of microtubules from both centrosomes, preventing rotation of the centrosome-nucleus complex, thus pulling them both around the nucleus towards the anterior cortex.

P-granule distribution is affected in the P1 blastomere of ooc-3 mutant embryos

The defects in the structure and the size of the anterior cortical site and the position of the centrosomes in ooc-3 mutant embryos might be due to a primary defect in the organization of the cytoskeleton. Alternatively, ooc-3 might be required to re-establish an axis of polarity from which the defects in the cytoskeleton are a secondary consequence. To distinguish between these two possibilities, we examined the distribution of P-granules, which are polarity markers segregated exclusively to P1 during the first cell division and localize to the posterior pole of P1 in prophase (Strome and Wood, 1983). We found that P-granules were properly segregated to P1 during the first cell division in all ooc-3 mutant embryos.

![Fig. 1. A 90° rotation of the centrosome-nucleus complex in P1 aligns the mitotic spindle along the antero-posterior axis of the embryo. (a) P0 at anaphase spindle positioning. PAR-2 (blue) and PAR-3 (red) are proteins whose polarized localization is required for the establishment of the antero-posterior in P0 and subsequently in P1. After rotation of the centrosome-nucleus complex, the spindle sets up in the cell center and subsequently gets displaced towards the posterior. (b) After duplication and migration of the centrosomes in AB and P1, both the AB and the P1 centrosome pairs are aligned transverse to the antero-posterior axis of the embryo. (c,d) In P1, the centrosome-nucleus complex subsequently undergoes a 90° rotation (P1 rotation), which aligns it along the antero-posterior axis. P1 rotation depends on the establishment of the antero-posterior axis by localization of PAR-2 and PAR-3 to opposing cortical domains and the subsequent communication of that polarity to the cytoskeleton. The physical process of P1 rotation is thought to be mediated as follows: astral microtubules (in green) emanating from one of the two centrosomes (green circle) attach at a site at the anterior cortex (yellow ellipse) enriched in actin, the actin capping proteins and components of the dynactin complex. Subsequent shortening of astral microtubules places this centrosome next to the anterior cortical site, which leads to a 90° rotation of the centrosome-nucleus complex. Anterior is to the left and posterior to the right.](image1)

![Fig. 2. Rotation of the centrosome-nucleus complex is defective in ooc-3 mutant embryos. P1 rotation does not take place in t1308 mutant embryos. Arrowheads point to the centrosomes. Anterior is to the left and posterior to the right. Both panels are at the same magnification. (a) In two-cell stage wild-type embryos the centrosome pair in P1 is oriented perpendicular to the one in AB in which the mitotic spindle has already been assembled. Thus, the centrosome-nucleus complex in P1 is aligned along the antero-posterior axis of the embryo (see Fig. 1). (b) In t1308 mutant embryos the centrosome-nucleus complex has not rotated in P1 at the time of spindle assembly in AB (and nor does it thereafter; data not shown). Thus, the centrosome pair in P1 is aligned transverse to the antero-posterior axis of the embryo. Bar, 10 μm.](image2)
The angle between the two centrosomes is about 180° (like in AB). P1 is in prophase. (a) ZYG-9, (c) DNA. (b,d) ooc-3 mutant ZYG-9 marks the centrosomes in both AB and P1. The centrosome pair in P1 has almost completed rotation and the angle between the two centrosomes is about 180° whereas in P1 the angle is reduced to less than 180°. P1 are parallel to each other, which reveals that the centrosome pair in P1 failed to rotate. In AB the angle between the two centrosomes is about 180° whereas in P1 the angle is reduced to less than 180°. P1 is in prophase. (b) ZYG-9, (d) DNA. Bar, 10 μm.

P1 is in prophase. (a,c) Wild-type ZYG-9 marks the centrosomes in both AB and P1. Whereas in all two-cell stage wild-type, PAR-2 was absent in the anterior blastomere AB of mutant embryos. (b) ZYG-9 marks the centrosomes in both AB and P1. The centrosome pairs in AB and P1 are parallel to each other, which reveals that the centrosome pair in P1 failed to rotate. In AB the angle between the two centrosomes is about 180° whereas in P1 the angle is reduced to less than 180°. P1 is in prophase. (b) ZYG-9, (d) DNA. Bar, 10 μm.

PAR-3 was evenly distributed around the cortex of P1 in 32-83% of ooc-3 mutant embryos (t1308: 53%, n=13; mn241: 83%, n=38; b310: 32%, n=25; Fig. 6Bc). In contrast, PAR-3 was properly restricted to the anterior cortical domain in P0 in all embryos of mn241 (n=29) and b310 (n=43) and in almost all embryos of t1308 (18% uniformly around the cortex, n=17; data not shown). Furthermore, PAR-3 was correctly distributed throughout the cortex in AB (t1308: n=13; mn241: n=38; b310: n=25) (Fig. 6Bc). Taken together, the mislocalization of PAR-2 and PAR-3 in ooc-3 mutants suggests that ooc-3 is required to restrict PAR-2 and PAR-3 to their respective cortical domains in P1.

ooc-3 is required to restrict PAR-3 to the anterior cortex of the P1 blastomere

In wild-type embryos the localizations of PAR-2 and PAR-3 are mutually exclusive (Etemad-Moghadam et al., 1995; Boyd et al., 1996). In par-2 mutants, PAR-3 expands to fill the PAR-2 cortical domain, while in par-3 mutants, PAR-2 expands to fill the PAR-3 cortical domain. Therefore, ooc-3 could be required for the localization of PAR-2 to the posterior cortex of P1, which in turn would restrict PAR-3 to the anterior cortex. Alternatively, ooc-3 could be required for the localization of PAR-3 to the anterior cortex of P1, which in turn would restrict PAR-2 to the posterior cortex. To distinguish these possibilities, we asked whether PAR-2 mislocalization in ooc-3 mutant embryos required par-3 function. To this end, we examined PAR-2 distribution in ooc-3 mutant embryos in which expression of par-3 was silenced with RNAi. We found that silencing of par-3 expression in ooc-3 mutant embryos
allowed PAR-2 to localize evenly around the cortex in P1 in 100% of the embryos (n=10) (Fig. 6C). This result demonstrates that PAR-2 is restricted to the anterior cortex in an ooc-3 mutant because of PAR-3 mislocalization. Moreover, this result suggests that ooc-3 function is normally required to restrict PAR-3 to the anterior cortex of P1, which in turn restricts PAR-2 to the posterior cortex.

The mislocalization of PAR-3 partially inhibits P1 rotation in ooc-3 mutant embryos

In par-2 mutant embryos, P1 rotation does not take place and PAR-3 is distributed evenly around the cortex of the P1 blastomere, as in ooc-3 mutant embryos. Since rotation can be induced in par-2;par-3 double mutant embryos, it is thought that the even distribution of PAR-3 throughout the cortex prevents P1 rotation (Cheng et al., 1995). We wanted to investigate whether the defect in P1 rotation in ooc-3 mutant embryos was also due to even distribution of PAR-3 on the cortex of the P1 blastomere. To address this question we silenced par-3 expression in ooc-3 mutant embryos by RNAi and scored rotation of the centrosome-nucleus complex in both AB and P1. We used the mn241 allele, which has the most penetrant defect in PAR-3 localization. Silencing of par-3 expression in the ooc-3(mn241) background gave rise to embryos in which first cleavages were symmetric and second cleavages were synchronous, suggesting that both blastomeres had similar identity. P1 rotation in the mn241 single mutant was successful only in 10% of the embryos (Table 2). In contrast, silencing of par-3 expression in the ooc-3(mn241) mutant background lead to rotation in 40% of P1-like blastomeres and 65% of AB-like blastomeres (Table 2). Therefore we conclude that the defect in P1 rotation in ooc-3 mutant embryos is due, at least in part, to even distribution of PAR-3 on the cortex of the P1 blastomere.
OOC-3 is a novel transmembrane protein

To determine the molecular nature of ooc-3, we cloned the gene by cosmid rescue using germline transformation (Fig. 7A). Rescue of the maternal-effect lethality with an approx. 3.2 kb genomic fragment revealed that ooc-3 is encoded by the B0334.11 gene (see Materials and Methods). Silencing of that gene by RNAi inhibited P1 rotation in 100% of embryos examined 22-24 hours post injection (see Materials and Methods). OOC-3 is predicted to encode a 448 amino acid (aa), 51 kDa protein with an isoelectric point (pl) of 5.13. OOC-3 has no significant homology to any known proteins. Sequence analysis suggested the following structural features for the OOC-3 protein: a signal peptide from aa 1-17 and three transmembrane domains from aa 150-166, 175-191 and 294-310, respectively (Fig. 7B). Thus, OOC-3 is a putative transmembrane protein. Sequence prediction suggests a putative membrane topology in which the C-terminus is cytosolic and the N-terminus luminal. Furthermore, OOC-3 contains two putative PEST sequences at its carboxy terminus (from aa 400 to 430), common to rapidly degraded proteins (Rogers et al., 1986). In order to identify the parts of the OOC-3 protein that play an essential role in its function we sequenced the mn241 and the t1308 alleles. This revealed a STOP codon at nucleotide position 777 right after the second transmembrane domain in t1308 and a mutation at position 886 in the 3’splice site before the third transmembrane domain for mn241 (see Materials and Methods). Thus, the predicted cytoplasmic tail, which is missing in both alleles that were sequenced, is essential for ooc-3 function.

OOC-3 probably localizes to the endoplasmic reticulum and its distribution is dynamic in the early embryo

To investigate the localization of OOC-3 we raised a polyclonal C-terminal anti-peptide antibody...
against a peptide spanning aa 432-448 (see Materials and Methods). OOC3Ct2 recognized a band of about 50 kDa by western blotting, similar to the predicted molecular mass of 51.5 kDa. No protein was detected in extracts of t1308 in which the C-terminus is missing and almost no protein was present in extracts of mn241 mutant worms in which ooc-3 is mis-spliced (Fig. 8).

We analyzed the subcellular distribution of OOC-3 using the OOC3Ct2 antibody. Overall, OOC-3 is localized to a membrane compartment that had a dynamic distribution through the cell cycle. From fertilization until the beginning of pronuclear migration OOC-3 is uniformly enriched at the cortex of P0 in 75% of the embryos (n=36) (Fig. 9a). At the beginning of pronuclear migration the cortical staining diminishes and OOC-3 is enriched around pronuclei (n=10) (data not shown). During rotation in P0, OOC-3 redistributes to the asters (Fig. 9c) and in mitosis OOC-3 becomes enriched at the mitotic spindle (Fig. 9e). Towards the beginning of prophase of two-cell stage embryos OOC-3 localizes to a reticular structure spanning the whole cytoplasm, being enriched at the circumference of nuclei (Fig. 10a). In mitosis it again localizes to the mitotic spindle (Fig. 10c). The reticular localization can be more clearly seen in a threefold enlargement taken using a deconvolution microscope (Fig. 10g). The distribution of OOC-3 is reminiscent of the endoplasmic reticulum (ER) in other species (Henson et al., 1989; Terasaki and Jaffe, 1991). We confirmed the ER localization by staining C. elegans embryos with an antibody to HDEL (data not shown), a sequence responsible for retention of proteins in the ER. OOC-3 is slightly enriched at the cell-cell boundary between AB and P1 in 50% of the embryos examined (n=45) (black arrowheads, Fig. 10a) and more strongly at cell-cell boundaries (black arrowhead, Fig. 10e) of 100% of the four-cell stage embryos examined (n=28). We observed no specific staining in ooc-3 (t1308) mutant embryos using the OOC3Ct2 antibody (Fig. 9g), and peptide competition prevented specific staining (Fig. 9i), demonstrating that OOC3Ct2 is an antibody specifically recognizing OOC-3 protein.
This process, but it is thought to occur by capture of the microtubules emanating from one centrosome by a cortical site at the anterior cortex (Hyman, 1989; Strome and White, 1996).

Why does rotation fail in ooc-3 mutant embryos? One of the markers of the cortical site is a ring of actin on the anterior cortex of P1 (Waddle et al., 1994; Skop and White, 1998). Our examination of the distribution of actin on the anterior cortex of P1 suggests that the structure of the cortical site itself may be disturbed. While we cannot say for sure that rotation fails because of a change in the cortical site, it is interesting that the centrosomes in ooc-3 mutants are positioned around the nucleus closer to the anterior cortex. This raises the possibility that force is being exerted on both centrosomes rather than just one, as in wild type. The mechanism by which force generation during rotation in wild type is limited to one centrosome only is unknown. One possibility is that it depends on restricting the size of the cortical site. According to this model rotation in ooc-3 mutants would fail because an enlarged cortical site captures many microtubules from both centrosomes. Thus pulling forces, instead of exerting torque on the centrosome-nucleus complex to execute rotation, would pull the centrosome-nucleus complex towards the anterior cortex, eventually pulling both centrosomes around the nuclear envelope. A similar phenotype, in which centrosomes move around the nuclear envelope towards the anterior cortex, can sometimes be seen in wild-type embryos when rotation fails (see Hyman, 1989, Fig. 7).

DISCUSSION

OOC-3 is required for the orientation of the mitotic spindle in P1 blastomeres

One of the most striking phenotypes of ooc-3 mutants is the failure to correctly align the division axis at the two-cell stage. In the P1 blastomere of wild-type embryos, orientation of the mitotic spindle along the antero-posterior axis depends on a 90° rotation of the centrosome-nucleus complex (Hyman and White, 1987; Hyman, 1989). Not much is known about this process, but it is thought to occur by capture of the microtubules emanating from one centrosome by a cortical site at the anterior cortex (Hyman, 1989; Strome and White, 1996).

Why does rotation fail in ooc-3 mutant embryos? One of the markers of the cortical site is a ring of actin on the anterior cortex of P1 (Waddle et al., 1994; Skop and White, 1998). Our examination of the distribution of actin on the anterior cortex of P1 suggests that the structure of the cortical site itself may be disturbed. While we cannot say for sure that rotation fails because of a change in the cortical site, it is interesting that the centrosomes in ooc-3 mutants are positioned around the nucleus closer to the anterior cortex. This raises the possibility that force is being exerted on both centrosomes rather than just one, as in wild type. The mechanism by which force generation during rotation in wild type is limited to one centrosome only is unknown. One possibility is that it depends on restricting the size of the cortical site. According to this model rotation in ooc-3 mutants would fail because an enlarged cortical site captures many microtubules from both centrosomes. Thus pulling forces, instead of exerting torque on the centrosome-nucleus complex to execute rotation, would pull the centrosome-nucleus complex towards the anterior cortex, eventually pulling both centrosomes around the nuclear envelope. A similar phenotype, in which centrosomes move around the nuclear envelope towards the anterior cortex, can sometimes be seen in wild-type embryos when rotation fails (see Hyman, 1989, Fig. 7).

OOC-3 is required for the correct localization of PAR-2 and PAR-3 at the two-cell stage

Why are rotation and the organization of the cortical site defective in OOC-3 mutants? The fact that downstream events of embryonic polarity such as P-granule segregation and P1 rotation fail suggests a general defect in polarity. In the P1 blastomere, establishment of the antero-posterior axis depends upon the localization of PAR-2 to the posterior cortex and PAR-3 to the anterior cortex, forming two cortical domains (Rose and Kemphues, 1998). Our analysis has shown that the localization of the PAR proteins is defective in ooc-3 mutants: PAR-3 is evenly distributed on the cortex and PAR-2 is confined to the anterior cortex, so that on the anterior cortex, PAR-2 and PAR-3 overlap. Thus in ooc-3 mutants, these mutually exclusive cortical domains fail to form.

Therefore it is possible that rotation fails in ooc-3 mutants because of defects in cell polarity. However we know that ooc-3 is required to organize the cortical actin cytoskeleton at the cell-cell boundary. Furthermore, it is known that the actin cytoskeleton is required for correct polarity and rotation (Hill and Strome, 1988, 1990). Therefore, we do not know whether in ooc-3 mutants, this disruption of cortical actin staining is due to mislocalization of the PAR proteins, or whether ooc-3 mutants cause misorganization of the actin cytoskeleton, preventing correct PAR localization, or whether the two processes are independent of each other.

Some insight into this issue has come from our analysis of whether rotation of the centrosome-nucleus complex in P1 fails because of the symmetric localization of PAR-3. Silencing of par-3 expression in ooc-3 mutant embryos allowed rotation to occur in at least one blastomere in most embryos lacking ooc-3 and par-3 function. This clearly demonstrates that rotation partially fails in ooc-3 mutants because of the symmetric distribution of PAR-3, but that this is not the only factor. This
Establishment of cortical domains is mediated through ooc-3

Our data have implications for the mechanisms of PAR localization. Previous studies of the localization of the PAR proteins have suggested that PAR-2 and PAR-3 mutually exclude each other from the cortex (Etemad-Moghadam et al., 1995). These studies have not addressed whether PAR-2 or PAR-3 is the primary cue for establishing cortical domains. Does PAR-2 localize first and then exclude PAR-3, or does PAR-3 localize first and exclude PAR-2? Our results suggest that at least in the two-cell stage, mislocalization of PAR-3 in ooc-3 mutants confines PAR-2 to the anterior cortex. If PAR-3 is removed in an ooc-3 mutant, PAR-2 is now free to localize around the cortex. These results suggest a model in which, following the first cell division in wild type, OOC-3 is required to create a cortical domain of PAR-3 on the anterior cortex. This in turn excludes PAR-2 from the anterior cortex.

How could OOC-3 restrict PAR-3 to the anterior cortex? The bulk of OOC-3 protein localizes to a membrane compartment that resembles the endoplasmic reticulum in other organisms (Henson et al., 1989; Terasaki and Jaffe, 1991; Ioshii et al., 1995) and is similar to the distribution of proteins carrying the HDEL sequence. One possibility is that OOC-3 is an ER resident protein with an ER function. Trafficking of proteins required for correct polarity may be thus affected in ooc-3 mutant embryos. The OOC-3 protein, however, does not contain any known sorting signals that restrict localization of proteins to the ER (Nilsson et al., 1989; Schutze et al., 1994; Munro and Pelham, 1987). Another possibility is that OOC-3 would direct proteins required for polarity by accompanying them to the correct place in the cell. This model would be consistent with the emerging paradigm for proteins that localize to the ER and are involved in targeting polarity proteins to the correct place in the cell. In S. cerevisiae, Axl2, a protein required for bud site selection and subsequent establishment of polarity is delivered to nascent bud tips via Erv14, an ER-vesicle protein. In erv14 mutants, Axl2 accumulates in the ER and axial budding pattern is disturbed (Powers and Barlowe, 1998). In C. elegans embryos, members of the p24 family of proteins, which have been implicated in cargo selectivity of ER to Golgi transport, are involved in trafficking of LIN-12 and GLP-1, proteins required for mediating cell-cell interactions during the specification of cell fate (Levitan and Greenwald, 1998). Therefore it is clear that specific targeting of transmembrane proteins during their passage through the ER is important for the establishment of polarity.

A distinct mechanism for establishing polarity following cell division

Our analysis shows that ooc-3 is required for establishment of cortical domains in P1 and not in P0. We have noted that the late anaphase spindle in P0 of ooc-3 mutant embryos is located more to the cell center than in wild type, resembling the spindle position observed in par mutant embryos. However, in contrast to par mutant embryos, the first division is not fully symmetric, and the divisions of AB and P1 are not synchronous in ooc-3 mutant embryos. Moreover, the segregation of P granules and the expression of PAR-2 protein is never altered in P0, while that of PAR-3 is altered in a minority of embryos in a single allele. Taken together, these observations suggest that ooc-3 is largely dispensable for establishment of cortical domains in P0, but may be required for communication between the polarity and the cytoskeleton in that cell.

In contrast, the data presented in this paper clearly demonstrate that ooc-3 is required for the establishment of cortical domains in P1. Why would ooc-3 be differentially required for establishment of polarity in P0 and in P1? In P0, the establishment of the antero-posterior axis, and therefore localization of the PAR proteins, is mediated by the entry of the sperm and this appears to be an ooc-3-independent process. However, polarity must be re-established after each cell division, and this mechanism cannot involve the sperm entry point. We do not know what the polarity cues are following cell division, but cell-cell boundaries have been suggested to serve as intrinsic cues for the establishment and maintenance of cortical domains in epithelial cells (Böhm et al., 1997). In axial budding of S. cerevisiae, the cell division remnant serves as an initial asymmetric cue for the recruitment of the bud-site selection and polarity-establishment proteins. Since a subset of the OOC-3 protein is localized at the cell-cell boundary in two-cell stage embryos, one could imagine that in C. elegans the cell-cell boundary serves as the intrinsic cue. A caveat is that isolated P1 blastomeres appear to be able to polarize on their own (Goldstein, 1993); however, the blastomeres cannot be separated until the division is complete and the two cells are no longer connected, by which time polarity may be established.

The authors thank Ken Kemphues, Bruce Boweman and James Waddle for generous gifts of antibodies, Arshad Desai, Suzanne Eaton, Chris Echeverri, Leslie Rose and Kai Simons for helpful discussions and critical reading of the manuscript and Sean Munroe for antibodies to HDEL and helpful conversations.

REFERENCES

the roles of lineage-dependent mechanisms and cell interactions. Development 118, 1267-1277.

