The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development

Deborah Yelon1,*‡, Baruch Ticho2, Marnie E. Halpern3, Ilya Ruvinsky4, Robert K. Ho4, Lee M. Silver4 and Didier Y. R. Stainier1,‡

1Department of Biochemistry and Biophysics and Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA, USA
2Department of Pediatrics, Harvard Medical School, Boston, MA, USA
3Department of Embryology, Carnegie Institution, Baltimore, MD, USA
4Department of Molecular Biology, Princeton University, Princeton, NJ, USA
*Present address: Developmental Genetics Program, Skirball Institute, NYU School of Medicine, New York, NY, USA
‡Authors for correspondence (e-mail: didier_stainier@biochem.ucsf.edu; e-mail: yelon@saturn.med.nyu.edu)

Accepted 29 March; published on WWW 23 May 2000

SUMMARY

The precursors of several organs reside within the lateral plate mesoderm of vertebrate embryos. Here, we demonstrate that the zebrafish hands off locus is essential for the development of two structures derived from the lateral plate mesoderm – the heart and the pectoral fin. hands off mutant embryos have defects in myocardial development from an early stage: they produce a reduced number of myocardial precursors, and the myocardial tissue that does form is improperly patterned and fails to maintain tbx5 expression. A similar array of defects is observed in the differentiation of the pectoral fin mesenchyme: small fin buds form in a delayed fashion, anteroposterior patterning of the fin mesenchyme is absent and tbx5 expression is poorly maintained. Defects in these mesodermal structures are preceded by the aberrant morphogenesis of both the cardiogenic and forelimb-forming regions of the lateral plate mesoderm. Molecular analysis of two hands off alleles indicates that the hands off locus encodes the bHLH transcription factor Hand2, which is expressed in the lateral plate mesoderm starting at the completion of gastrulation. Thus, these studies reveal early functions for Hand2 in several cellular processes and highlight a genetic parallel between heart and forelimb development.

Key words: Lateral plate mesoderm, Forelimb, hands off, tbx5, sonic hedgehog, Zebrafish

INTRODUCTION

In vertebrate embryos, derivatives of the lateral plate mesoderm (LPM) include a number of discrete tissue types such as the heart, endothelium, blood, connective tissue, smooth muscle and chondrogenic portion of the limbs. The genetic regulation of LPM patterning and differentiation is undoubtedly complex, and the precise steps that convert undifferentiated LPM into these distinct organs remain unknown.

The patterning of the cardiogenic region of the LPM is especially intricate. In zebrafish, for example, a number of genes (e.g. gata4, gata5, gata6, hand2 and tbx5) are expressed bilaterally in a large portion of the LPM from the completion of gastrulation (Serbedzija et al., 1998; Reiter et al., 1999; Ruvinsky et al., 2000; Begemann and Ingham, 2000). During early somitogenesis stages, a specific anterior section of the LPM also expresses the NK-class transcription factor gene nkar2.5, considered an early marker of precardiac mesoderm (Chen and Fishman, 1996; Lee et al., 1996). By mid-somitogenesis, an anterior subset of these nkx2.5-expressing cells go on to express myocardial-specific genes (Yelon et al., 1999) and contribute to the myocardium (Serbedzija et al., 1998). These myocardial precursors are further subdivided prior to cardiac fusion into preventricular and preatrial cells, as evidenced by the restricted expression of chamber-specific markers (Yelon et al., 1999). Thus, a detailed pattern of gene expression is established within the anterior LPM well before heart tube formation.

Only a few regulators of pattern formation within the cardiogenic LPM have been identified. The secreted growth factors Bmp2 and Fgf8 and the transcription factor Gata5 contribute to the regulation of nkx2.5 expression (Kishimoto et al., 1997; Schultheiss et al., 1997; Reifers et al., 2000; Reiter et al., 1999). Signals from the embryonic midline may influence the induction of the myocardial precursors from among the nkx2.5-expressing precardiac cells (Goldstein and Fishman, 1998; Serbedzija et al., 1998). Finally, the subdivision of the myocardial precursors into preventricular and preatrial populations is likely to be influenced by the localization of retinoic acid (Chazaud et al., 1999; Niederreither et al., 1999; Xavier-Neto et al., 1999; Yelon and Stainier, 1999) as well as the transcription factor Irx4 (Bao et al., 1999; Bruneau et al., 2000).
In an effort to understand the genetic regulation of pattern formation within the LPM in greater detail, we have identified a number of zebrafish mutations that disrupt myocardial patterning (Alexander et al., 1998). Here, we demonstrate that the zebrafish hands off (han) locus plays an important role in the differentiation, patterning and morphogenesis of two distinct LPM derivatives – the myocardium and the pectoral fin mesenchyme. nkd2.5-expressing precardiac mesoderm forms in han mutants, but these cells cannot differentiate into properly patterned myocardial tissue. Similarly, the pectoral fin buds in han mutants arise but do not differentiate normally and fail to exhibit proper anteroposterior (AP) patterning.

Molecular analysis of two han alleles indicates that the han locus encodes the bHLH transcription factor Hand2, also known as dHAND/Thing-2/Hed (Cross et al., 1995; Hollenberg et al., 1995; Srivastava et al., 1995). hand2 is expressed in the LPM of zebrafish, chick, frog, and mouse embryos (Cross et al., 1995; Hollenberg et al., 1995; Srivastava et al., 1995; Angelo et al., 2000). While targeted gene inactivation in the mouse previously implicated Hand2 in the later differentiation of the right ventricle (Srivastava et al., 1997), its broader role in the early stages of myocardial development as well as its role in forelimb development were not recognized. Thus, our studies reveal several essential early functions of Hand2. Moreover, the phenotypic analysis of han mutants highlights an intriguing genetic parallel between heart and forelimb development.

MATERIALS AND METHODS

Zebrafish
Adult fish and embryos were maintained and staged as previously described (Westerveld, 1995). Mutations were maintained by outcrossing heterozygous adults to standard wild-type strains; homozygous or transheterozygous mutant embryos were generated by intercrossing heterozygotes. Some lines carried the golden mutation, which inhibits melanophore pigmentation and thereby facilitates inspection of internal organs (Streisinger et al., 1986).

The han99 mutation was identified in a screen for ENU-induced mutations affecting MF20 and S46 immunostaining in haploid embryos (Alexander et al., 1998). We used a postmeiotic mutagenesis protocol that can induce an array of genetic lesions, including point mutations, deletions and translocations (Imai et al., 2000). The han99 mutation was identified in an independent screen for gamma ray-induced mutations as part of the Zebrafish Deletion Project. Both mutations behave in a Mendelian recessive fashion with complete penetrance and embryonic lethality. han96 and han99 fail to complement each other: 157/601 embryos from c99/+ × s6/+ matings display the mutant phenotype.

Immunofluorescence and in situ hybridization
Whole-mount immunofluorescence, in situ hybridization and sectioning were performed as previously described (Yelon et al., 1999). The monoclonal antibodies MF20 (Bader et al., 1982) and S46 (generous gift of Dr Frank Stockdale) were used. MF20 was obtained from the Developmental Studies Hybridoma Bank, maintained by the Department of Biological Sciences, University of Iowa, under contract NO1-HD-2-3144 from the NICHD.

Genomic DNA and cDNA analysis
Genomic DNA extraction was performed as previously described (Reiter et al., 1999) or with a Nucleon kit (Scotlab). PCR strategies were standard, except for the use of eLONGase enzyme mix (BRL) for long-range amplification. For cDNA analysis, total RNA was isolated using Trizol (BRL) and reverse transcribed using Superscript II (BRL). 5′ RACE (SMART RACE, Clontech) was performed in order to confirm the 5′ end of the hand2 mRNA and to investigate the splice variants in han99 mutants. All sequencing was performed using an ABI 377 system.

P1 artificial chromosome analysis
A zebrafish P1 artificial chromosome (PAC) library (Amemiya and Zon, 1999) was screened by PCR on pools of clones and by hybridization to high-density filters (RZPD, Berlin). Further analysis of hand2-containing PACs was conducted in an effort to estimate the size of the han99 deletion. For example, we sequenced the ends of the hand2-containing PAC 57N7 and determined by PCR that both ends are present in han99 genomic DNA. Since 57N7 contains a ~100 kb insert (determined by PFGE), we conclude that the han99 deletion removes less than 100 kb of genomic DNA.

Mapping, linkage testing and genotyping
We placed han96 on zebrafish linkage group 1 using half-tetrad analysis (Johnson et al., 1995) and mapped hand2 to the same region (between z9409 and z21548) using the Goodfellow zebrafish radiation hybrid panel (Geisler et al., 1999; see http://wwwmap.tuebingen.mpg.de/). han99 linkage testing was performed using a combination of four PCR primers that simultaneously amplify a hand2 fragment and a fragment of the end of PAC 57N7 from individual diploid or haploid embryos. Oligonucleotides used were 5′-ATAATTGAACTTGAAAACATACAAAGC-3′, 5′-GCTCTATGACTTACCTCTTTTG-3′, 5′-AATT- TCCACTACGGACATTTGGA-3′, and 5′-AGAGACAGAAATAGTA TAATGACGT-3′. han99 linkage testing was performed using a combination of three PCR primers that simultaneously amplify a fragment of hand2 that spans the han99 insertion and a fragment of the insertion from individual diploid or haploid embryos. The locations of these primers are indicated in Fig. 5C and typical results are shown in Fig. 5D. Oligonucleotides used were 5′-TGATACCCGTTAATGGTTCCTG-3′, 5′-CCCATGAAAAGCTAAGAGTGA-3′, and 5′-CGATTCAAGACCAACTGTGCTCTG-3′. The same oligonucleotide mixes were used to genotype han96 or han99 embryos following in situ hybridization.

Microinjection
Capped synthetic hand2 and lacZ mRNA were generated using pCS2:hand2, SP64TK:lacZ and the Message Machine system (Ambion). Embryos were injected with 100-500 pg of hand2 or lacZ mRNA at the 1- to 4-cell stage.

RESULTS

The zebrafish hands off locus
In the course of a screen for zebrafish mutations affecting myocardial development (Alexander et al., 1998), we identified s6, an ENU-induced mutation that causes severe heart, jaw and pectoral fin defects. We named the locus represented by this mutation hands off (han), primarily because of its lack of pectoral fins, which are the teleost equivalents of tetrapod forelimbs (Grandel and Schulte-Merker, 1998). A gamma ray-induced non-complementing allele (see Materials and Methods), han99, causes a very similar array of defects that are generally less severe. Here, we use these two mutant alleles to investigate the role of han in heart and forelimb development; the role of han in jaw development will be discussed elsewhere (C. Miller, D. Y., D. Y. R. S. and C. Kimmel, unpublished data).
han is essential for myocardial differentiation, patterning and morphogenesis

Cardiovascular defects are morphologically apparent in **han** mutant embryos by 24 hours postfertilization (hpf). It is difficult to detect any contracting tissue or circulating blood and a mild pericardial edema is present (Fig. 1A,B). Immunodetection of cardiac myosin heavy chain molecules (Fig. 1C,D) and examination of cardiac myosin light chain 2 (**cmlc2**) (Fig. 1E,F) expression revealed that extremely little myocardial tissue forms in **han** mutants. Furthermore, while wild-type embryos form a single midline heart tube, **han** mutants develop two small lateral clusters of myocardial cells that never fuse together at the midline (Fig. 1C-F). The wild-type heart is clearly divided into two distinct chambers – an anterior ventricle and a posterior atrium – but the **han** myocardial tissue is primarily atrial, as indicated by S46 immunostaining (Fig. 1C,D). Correspondingly, the expression of ventricular myosin heavy chain (**vmhc**) is strongly affected; some **han** mutants do not express vmhc at all, while others show an irregular distribution of vmhc in a few myocardial cells (Fig. 1G,H). These defects in the production and patterning of myocardial tissue are evident from an early stage in **han** mutants. Even at the onset of myocardial differentiation at the 15-somite stage (16.5 hpf), **han** mutants have noticeably fewer **cmlc2**-expressing myocardial cells than their wild-type siblings (Fig. 1I,J). As in older **han** mutant embryos, small myocardial populations are clustered bilaterally and these cells rarely express vmhc (Fig. 1I-L).

Many myocardial genes are expressed robustly within the small populations of **han** myocardial cells, including **bmp4**, **mef2c**, **gata4**, **gata5**, **gata6** and all of the cardiac contractile genes examined except **vmhc** (data not shown). The T-box transcription factor gene **tbx5** (Tamura et al., 1999; Ruvinsky et al., 2000; Begemann and Ingham, 2000) is a notable exception. Expression of **tbx5** in the LPM is initiated normally in **han** mutants during early somitogenesis (data not shown), but the mutant myocardial cells fail to maintain **tbx5** expression. By 24 hpf, **tbx5** expression is significantly reduced in **han** myocardial cells (Fig. 1M,N), while another myocardial T-box gene, **hrt** (Griffin et al., 2000), continues to be expressed at normal levels (Fig. 1O,P).

Thus, specific aspects of myocardial differentiation (production of **cmlc2**-expressing cells and maintenance of **tbx5** expression), patterning (**vmhc** expression) and morphogenesis (heart tube formation) are defective in **han** mutants.

Normal precardiac mesoderm in **han mutants**

Although myocardial development is severely disrupted in **han** mutants, the initial establishment of the precardiac mesoderm appears to proceed normally. **nkx2.5** is normally expressed in bilateral populations of precardiac cells from early somitogenesis stages (Chen and Fishman, 1996; Lee et al., 1996); **han** mutants and wild-type siblings are indistinguishable in this regard (Fig. 2A,B). In wild-type embryos, most, but not all, of these **nkx2.5**-expressing cells go on to express myocardial genes like **cmlc2** (Yelon et al., 1999) and contribute to the myocardium (Serbedzija et al., 1998). However,
in *han*⁶⁶ mutants, very few *nrx2.5*-expressing cells go on to express *cmilc2* or other myocardial genes (Fig. 1I,J). Therefore, the failure of *han*⁶⁶ mutants to produce normal numbers of myocardial cells is not due to a deficiency of precardiac mesoderm. The initiation of myocardial differentiation in a subset of *nrx2.5*-expressing cells represents a specific developmental transition that does not proceed efficiently in *han*⁶⁶ mutants.

Early expansion of the cardiogenic LPM depends on *han* function

During the initiation of myocardial differentiation in zebrafish, the anterior LPM undergoes an apparent expansion. At the completion of gastrulation, LPM markers like *gata4* are expressed in narrow bilateral stripes of cells (Fig. 2C); wild-type and *han*⁶⁶ mutant embryos appear identical in their expression of LPM markers from the tailbud stage until the 10-somite stage (data not shown). Between the 10-somite (14 hpf) and 15-somite (16.5 hpf) stages in wild-type embryos, these gene expression patterns change; the domains of LPM marker expression gradually expand mediolaterally. By the 15-somite stage, LPM genes are expressed in significantly broader bilateral sheets of cells in wild-type embryos (Fig. 2D). This transition from narrow to broader domains of LPM gene expression is profoundly affected in *han*⁶⁶ mutants. For example, at the 15-somite stage, *han*⁶⁶ mutants still exhibit narrow bilateral stripes of *gata4* expression; no expansion has occurred (Fig. 2E). By 24 hpf, this tissue appears narrow and dysmorphic (Fig. 2G) in comparison to the continuous sheet of *gata4*-expressing cells found in wild-type siblings (Fig. 2F).

han is essential for pectoral fin differentiation, patterning and morphogenesis

Having identified significant defects in the cardiogenic portion of the *han*⁶⁶ LPM, we proceeded to examine the formation of other LPM derivatives in *han*⁶⁶ mutants and found profound defects in pectoral fin development. In wild-type embryos, pectoral fin mesenchyme proliferates to form bilateral fin buds (Grandel and Schulte-Merker, 1998), but this process is significantly delayed in *han* mutants (Fig. 3A,B). The wild-type fin gradually elongates and comes to be composed of a central chondrogenic condensation flanked by myogenic mesenchyme (Grandel and Schulte-Merker, 1998); in contrast, *han*⁶⁶ mutants have a small bud of undifferentiated mesenchyme that fails to elongate or form a chondrogenic condensation (Fig. 3C,D). The mutant pectoral fin mesenchyme expresses *tbx5*, although, in comparison to wild type, expression is not well maintained after 24 hpf (Fig. 3A-D and data not shown). The pectoral fin defects are unlikely to be secondary consequences of the lack of circulation, since many zebrafish mutants with severe cardiac defects exhibit normal pectoral fin development (Chen et al., 1996; Stainier et al., 1996).

In zebrafish and other vertebrates, limb outgrowth is dependent upon proper limb bud patterning (Johnson and Tabin, 1997; Martin, 1998). The expression of *sonic hedgehog* (*shh*) in a posterior region of the pectoral fin bud (the zone of polarizing activity, or ZPA) is an important influence on fin AP patterning (Neumann et al., 1999; Schauerte et al., 1998). *han*⁶⁶ mutants never express *shh* in their pectoral fin buds at any stage, but *shh* expression in *han*⁶⁶ endoderm and ventral neuroectoderm is normal (Fig. 3E). It is not known precisely how the posterior restriction of *shh* expression is regulated, although some early indications of limb AP patterning have been shown to be *shh*-independent in the zebrafish (Neumann et al., 1999). For example, initiation of *hoxd-11*, *hoxd-12* and *bmp2* expression in a posterior portion of the pectoral fin mesenchyme occurs normally in zebrafish *sonic you* (*syu*) mutants that lack *shh* activity (Neumann et al., 1999). In contrast, *han* mutants do not display any features of AP patterning within the pectoral fin mesenchyme (Fig. 3F-I and data not shown).

We also examined the pectoral fin-forming region of the LPM at stages prior to fin bud formation. In wild-type embryos, LPM markers such as *tbx5* are first expressed in narrow stripes of the fin-forming region of the LPM (Ruvinsky et al., 2000; Begemann and Ingham, 2000). During segmentation stages, these expression domains expand mediolaterally (Fig. 3J,K), in a manner similar to the expansion of gene expression within the cardiogenic LPM.
expression indicated reduced amounts of ventricular tissue in hanc99 mutants and in \textit{trans}heterozygotes (data not shown), reinforcing the conclusion that \textit{han} is essential for ventricular differentiation.

Phenotypic comparisons also indicated the role of \textit{han} in the regulation of cardiac fusion (Fig. 4A-H). While the bilateral myocardial populations in \textit{han}16 mutants never fuse (Fig. 4D and data not shown), the myocardial cells in \textit{han}c99 mutants (Fig. 4B,F) and \textit{trans}heterozygotes (Fig. 4C,G) fuse slowly in comparison to wild-type embryos and form small heart tubes (data not shown).

Examination of younger embryos demonstrated that \textit{han} function regulates the extent of expansion of \textit{gata4} expression in the LPM (Fig. 4I-L). Slightly expanded domains of \textit{gata4} expression do form in \textit{han}c99 mutants (Fig. 4J) and \textit{trans}heterozygotes (Fig. 4K) show signs of irregular LPM morphogenesis. Furthermore, analysis of \textit{cmlc2} expression at this stage verified that \textit{han} controls the early production of myocardial precursors (Fig. 4M-O). The number of \textit{cmlc2}-expressing cells is clearly reduced in \textit{han}c99 mutants relative to wild type (Fig. 4M,N), although not as dramatically as in \textit{han}16 mutants (Fig. 4O).

In contrast to their distinct cardiac phenotypes, the \textit{han}16 and \textit{han}c99 pectoral fin phenotypes are quite similar. Neither the \textit{han}c99 nor the \textit{han}16 pectoral fins elongate, maintain \textit{tbx5} expression effectively, express \textit{shh}, \textit{hoxd-11} and \textit{hoxd-12}, or exhibit normal expansion of \textit{tbx5} expression in the fin-forming LPM (data not shown). Maintenance of gene expression in the apical epidermal fold of the pectoral fin is regulated by \textit{shh} in the zebrafish (Neumann et al., 1999), so neither \textit{han}16 nor \textit{han}c99 mutants maintain apical fold gene expression well (Fig. 4P-R). Even so, \textit{han}c99 mutants have detectable \textit{dll2} expression in the apical fold more often than \textit{han}16 mutants do (8 of 8 \textit{han}16 cases and only 5 of 10 \textit{han}c99 cases). This distinction suggests that some level of mesenchyme differentiation and/or patterning may be initiated, but not maintained, in \textit{han}c99 fin buds.

Altogether, the relationships between the \textit{han}16, \textit{han}c99 and \textit{trans}heterozygote phenotypes lead to the hypothesis that \textit{han}16 represents a null allele, while \textit{han}c99 retains partial \textit{han} function.

The \textit{han} locus encodes the bHLH transcription factor Hand2

In search of the genetic defect responsible for the \textit{han} mutant phenotypes, we considered candidate genes known to be expressed in the heart, forelimb and jaw. The bHLH transcription factor gene \textit{hand2} is expressed in these tissues in

This process of expansion does not occur efficiently in \textit{han}16 mutants (Fig. 3J,K).

\textbf{\textit{han}c99 mutants have mild heart and fin defects relative to \textit{han}16 mutants}

Examination of the less severely affected \textit{han}c99 mutants confirmed the roles of \textit{han} indicated by the \textit{han}16 phenotype. For example, the role of \textit{han} in the generation of myocardial tissue is evident in \textit{han}c99 homozygotes and \textit{han}16/c99 \textit{trans}heterozygotes (Fig. 4A-D). The lack of myocardial cells is most extreme in \textit{han}16 mutants (Fig. 4D) and most mild in \textit{han}c99 mutants (Fig. 4B), with \textit{trans}heterozygotes affected to an intermediate degree (Fig. 4C). Similarly, the failure to maintain myocardial \textit{tbx5} expression is more severe in \textit{han}16 mutants (Fig. 4H) than in \textit{han}c99 mutants (Fig. 4F) or \textit{trans}heterozygotes (Fig. 4G), confirming that \textit{han} regulates \textit{tbx5} maintenance. Furthermore, comparisons of \textit{vmhc}
mouse and chick embryos (Cross et al., 1995; Hollenberg et al., 1995; Srivastava et al., 1995). Moreover, we mapped the hand\(^{46}\) mutation and a zebrafish hand2 homolog (Angelo et al., 2000) to the same region of zebrafish linkage group 1 (see Materials and Methods). We therefore proceeded to test whether hand encoded zebrafish Hand2.

The genomic structure of zebrafish hand2 is relatively simple: the entire transcribed region (1.6 kb) is contained within two exons separated by a ~200 bp intron (Fig. 5A). Extensive PCR and Southern blot analyses indicate that the entire hand2 locus is deleted from hand\(^{46}\) genomic DNA; no fragment of the hand2 genomic sequence can be amplified from hand\(^{46}\) genomic DNA by PCR (Fig. 5B and data not shown), and no portion of hand2 can hybridize to hand\(^{46}\) genomic DNA on a Southern blot (data not shown). Furthermore, the deletion of hand2 segregates with the hand\(^{46}\) mutant phenotype in 480 meiotic events examined (see Materials and Methods). Analysis of hand2-containing PACs indicates that the hand\(^{46}\) deletion removes less than 100 kb of genomic DNA (see Materials and Methods).

Molecular analysis of the hand\(^{99}\) mutation provided further evidence that a loss of Hand2 function was responsible for the hand mutant phenotypes. The coding and untranslated sequences of the hand2 gene in hand\(^{99}\) genomic DNA are intact, with the exception of a ~5 kb insertion between bases 346 and 347 of the 5’ untranslated region (UTR) (Fig. 5C,D). This insertion segregates with the hand\(^{99}\) mutant phenotype in 480 meiotic events examined (see Materials and Methods). We examined the 5’ end of hand2 mRNA in hand\(^{99}\) mutants by 5’ RACE and identified insertion-containing messages as well as a splice variant not seen in wild-type embryos. This splice variant eliminates 269 bp of 5’ UTR and 76 bp of coding sequence (Fig. 5C) and could encode a truncated Hand2 protein, with the ATG that normally encodes the forty-sixth residue functioning as the initiation codon.

Altogether, these molecular analyses indicate that hand\(^{46}\) is a null allele and hand\(^{99}\) is a hypomorphic allele, consistent with the differences between the hand\(^{46}\) and hand\(^{99}\) mutant phenotypes. In an effort to test the hypothesis that a deficiency of hand2 is sufficient to cause the defects observed in hand\(^{46}\) mutants, we examined the ability of wild-type hand2 mRNA to rescue aspects of the hand\(^{46}\) mutant phenotype. Injecting 100-500 pg of synthetic hand2 mRNA at the 1- to 4-cell stage can enhance the production of myocardial precursors in a small fraction of injected hand\(^{46}\) mutant embryos (9 out of 95 injected mutants; Fig. 5E-G). This phenotype appears to represent a partial rescue of hand function, since we never observed this number of cmlc2-expressing myocardial precursors in hand\(^{46}\) uninjected or lacZ-injected siblings (>150 mutant embryos examined).

hand2 expression pattern correlates with locations of hand function

The early expression of hand2 in the LPM and the later expression of hand2 in the heart and pectoral fins correspond well with the timing and location of the defects observed in hand mutants (Fig. 6). In wild-type zebrafish embryos, hand2 expression begins at the completion of gastrulation (tailbud stage) in a large portion of the LPM, with its anterior extent just posterior to the head and its posterior extent wrapped around the tailbud (Fig. 6A-C). As convergence and extension proceed, hand2 expression persists in the LPM (Fig. 6D,E); during somitogenesis, a small gap in hand2 expression appears (Fig. 6D, arrowheads), producing anterior and posterior expression domains. As the cardiogenic LPM expands, hand2 transcripts are found in mediolaterally wider domains of the anterior LPM (Fig. 6F), and expression persists in the myocardium as the heart tube forms (Fig. 6K). A mediolateral expansion of hand2 expression also occurs in the pectoral fin-forming portion of the LPM (Fig. 6G). In this portion of the LPM and in the pectoral fin buds, hand2
expression appears to overlap with the posterior portion of \(\text{tbx5} \) expression (Fig. 6G-J).

Thus, all of the tissues affected in \(\text{han} \) mutants express \(\text{hand2} \) at the time that defects are apparent. As expected from the molecular analysis of the mutant locus, \(\text{han}^{\text{c99}} \) mutants never express \(\text{hand2} \) at any stage (Fig. 6L and data not shown). \(\text{han}^{\text{s6}} \) mutants exhibit a normal \(\text{hand2} \) expression pattern, although expression levels are significantly and consistently reduced (Fig. 6M and data not shown).

DISCUSSION

The \(\text{han} \) locus encodes \(\text{Hand2} \)

Our phenotypic and molecular analyses of \(\text{han}^{\text{s6}} \) and \(\text{han}^{\text{c99}} \) mutants provide compelling evidence that the \(\text{han} \) mutant phenotypes are caused by disruption of the \(\text{hand2} \) gene. All of the defects identified in \(\text{han}^{\text{s6}} \) mutants are also present in \(\text{han}^{\text{c99}} \) mutants, although \(\text{han}^{\text{c99}} \) mutants are less severely affected. In agreement with the severity of the phenotypes, the \(\text{han}^{\text{s6}} \) deletion removes the entire \(\text{hand2} \) gene and the \(\text{han}^{\text{c99}} \) insertion alters \(\text{hand2} \) splicing. Furthermore, the expression pattern of \(\text{hand2} \) correlates well with the timing and location of the \(\text{han} \) defects. We therefore conclude that the \(\text{han} \) locus encodes \(\text{Hand2} \).

The present data, however, cannot rule out that the \(\text{han}^{\text{s6}} \) and \(\text{han}^{\text{c99}} \) mutations affect other genes besides \(\text{hand2} \). In particular, there could be a neighboring gene that is removed or influenced by the \(\text{han}^{\text{s6}} \) deletion that is also affected at a distance by the \(\text{han}^{\text{c99}} \) insertion. Without additional \(\text{han} \) alleles available at this time, we favor the simplest interpretation that the \(\text{han}^{\text{s6}} \) and \(\text{han}^{\text{c99}} \) phenotypes reflect the role of \(\text{Hand2} \) alone.

\(\text{Hand2} \) mediates cardiac differentiation, patterning and morphogenesis

These studies of \(\text{han} \) mutants provide the first evidence that a \(\text{hand} \) gene is required for specific early transitions during myocardial development. Although a normal number of \(\text{nkh2.5} \)-expressing precardiac cells form without \(\text{Hand2} \), \(\text{Hand2} \) function is essential for their differentiation into \(\text{cmlc2} \)-expressing myocardial precursors. Furthermore, \(\text{Hand2} \) is important for generation of \(\text{vmhc} \)-expressing ventricular cells, maintenance of myocardial \(\text{tbx5} \) expression and formation of a midline heart tube. Additionally, \(\text{Hand2} \) is critical for an early transition of the cardiogenic LPM, during which the expression domains of LPM genes expand mediolaterally. We hypothesize that this expansion of gene expression reflects the morphogenesis of the LPM through a combination of cell movements and proliferation.

Since \(\text{hand2} \) is expressed broadly within the LPM (in more cells than just the myocardial precursors) and appears to influence the morphogenesis of an extensive portion of the LPM, it seems likely that the role of \(\text{Hand2} \) during LPM development begins very early. Even as early as the tailbud stage, \(\text{Hand2} \) activity could mediate the LPM response to intrinsic and extrinsic signals that control its subsequent morphogenesis, differentiation and patterning. It is interesting to consider our results from \(\text{hand2} \) mRNA overexpression in light of this model. Overexpression of \(\text{hand2} \) in wild-type embryos does not notably affect the formation of myocardial precursors (D. Y. and D. Y. R. S., unpublished data); however, overexpression of \(\text{hand2} \) in \(\text{han}^{\text{s6}} \) embryos increases the production of myocardial precursors. These data are consistent with \(\text{Hand2} \) playing more of a permissive, rather than instructive, role during the selection of myocardial precursors within the LPM. Thus, the lack of efficient or complete rescue of myocardial production in \(\text{han}^{\text{s6}} \) mutants could be due to a requirement for

Fig. 5. The \(\text{s6} \) and \(\text{c99} \) mutations disrupt \(\text{hand2} \) genomic DNA. (A) Genomic structure of zebrafish \(\text{hand2} \). The single intron is represented by a thick horizontal line; \(5' \) and \(3' \) UTRs are represented by thin rectangles and the coding regions of the two exons are represented by thick rectangles. A gray rectangle indicates the basic region and a black rectangle indicates the helix-loop-helix domain. (B) No fragment of the \(\text{hand2} \) gene can be amplified by PCR from \(\text{han}^{\text{s6}} \) genomic DNA. Amplifications of a fragment from exon 1, a fragment from exon 2 and a control fragment from the end of a \(\text{hand2} \)-containing PAC are shown; alternating lanes represent reactions performed with wild-type and \(\text{han}^{\text{s6}} \) genomic DNA templates. (C) The \(\text{han}^{\text{c99}} \) mutation is a \(\sim 5 \) kb insertion between bases 346 and 347 of the \(5' \) UTR. The insertion point is shown with a vertical line; the insertion is not drawn to scale. This insertion can lead to the mis-splicing of \(\text{hand2} \) mRNA at cryptic splice sites at bases 233 and 578. The new ‘intron’ in this splice variant is represented by a thick line. Some \(5' \) UTR sequence and some coding sequence are spliced out in this variant. (D) \(\text{han}^{\text{c99}} \) linkage testing was performed using a combination of three PCR primers (shown as red arrows in C, not drawn to scale). When the insertion is absent, the two primers flanking the insertion site amplify a small fragment, as in the case of a homozygous wild-type embryo (first lane). In the presence of the insertion, the flanking primers are ineffective using standard PCR conditions, but the \(5' \) primer and the primer complementary to the insertion can amplify a slightly larger fragment, as in homozygous \(\text{han}^{\text{c99}} \) mutants (second-sixth lanes). (E-G) Dorsal views of \(\text{cmlc2} \) expression in a wild-type embryo (E), a \(\text{han}^{\text{s6}} \) mutant sibling (F) and a \(\text{hand2} \)-injected \(\text{han}^{\text{s6}} \) mutant sibling (G). All panels are shown at the same magnification. Injection of \(\text{hand2} \) mRNA can partially rescue the production of \(\text{cmlc2} \)-expressing myocardial precursors in \(\text{han}^{\text{s6}} \) mutants. Injection of \(\text{hand2} \) mRNA does not seem to affect the production of myocardial precursors in wild-type embryos (data not shown).
Hand2 mediates pectoral fin differentiation, patterning and morphogenesis

Loss of Hand2 function also inhibits pectoral fin outgrowth and differentiation, and Hand2 is essential for *shh* induction in the ZPA. In many respects, the *han* pectoral fin phenotype is similar to that observed in zebrafish *syu* mutants that lack *shh* expression (Neumann et al., 1999; Schauerte et al., 1998). However, there is a clear distinction between the *han* and *syu* phenotypes: Hand2 is essential for an earlier fundamental establishment of AP pattern, as revealed by *hox* gene expression, that is intact in *syu* mutants (Neumann et al., 1999). Additionally, Hand2 function, unlike Shh function (Begemann and Ingham, 2000), is required for the early expansion of the pectoral fin-forming portion of the LPM and for the maintenance of mesenchymal *tbx5* expression from 24 hpf.

The similar themes of the *han* pectoral fin defects and the *han* myocardial defects – early disruption of morphogenesis followed by later defects in differentiation and patterning – reveal parallel roles of Hand2 in heart and forelimb development. Hand2 may promote an analogous state of developmental competence in both the cardiogenic and forelimb-forming portions of the LPM that allows critical morphogenetic portions of the LPM that allows critical morphogenetic transitions, like LPM expansion, to occur. We suspect that these morphogenetic transitions, in turn, would be necessary for proper differentiation. In this regard, it is interesting to note that the influence of Hand2 on pectoral fin development extends beyond the domain of *hand2* expression in the fin-bud mesenchyme. While only a posterior portion of the fin-forming region of the LPM expresses *hand2* (relative to broader *tbx5* expression), reduced Hand2 function affects the morphogenesis of a larger LPM domain and also affects the maintenance of *tbx5* expression throughout the fin bud. This discrepancy suggests that the critical stage for Hand2 function may occur during early somitogenesis, when *hand2* expression extends throughout the fin-forming LPM. Alternatively, Hand2 may play a more specific role in the AP patterning of the fin bud; for example, absence of Hand2 in the posterior of the fin-forming LPM may prevent the localization of posterior determinants from an early stage, and the lack of proper AP coordinates inhibits general morphogenesis and differentiation processes.

The *han* mutant phenotype is more severe than the mouse *hand2* mutant phenotype

Early parallel roles of Hand2 in myocardial development and limb development were not previously revealed by studies of mouse *hand2* mutants (Srivastava et al., 1997). Targeted disruption of the mouse *hand2* gene produces a less severe phenotype than disruption of zebrafish *hand2*. Mouse *hand2* mutants proceed through the early stages of cardiogenesis well, generating a normal number of myocardial precursors that form a midline heart tube. However, at a later stage (E9.5), the right ventricle fails to differentiate, leading to embryonic lethality. No limb phenotypes have previously been reported for the mouse *hand2* mutants.

One possible explanation for this discrepancy is that the bHLH transcription factor gene Hand1, also known as eHAND/Thing-1/Hxt (Cross et al., 1995; Cserjesi et al., 1995; Hollenberg et al., 1995; Srivastava et al., 1995), may compensate for a lack of Hand2 function in mouse *hand2* mutants. Functional redundancy for Hand1 and Hand2 has

Fig. 6. Expression pattern of zebrafish *hand2*. (A–F) In situ hybridization showing expression of *hand2* in wild-type embryos. (A–C) Three views of the same embryo at tailbud stage (10 hpf), demonstrating *hand2* expression in a continuous streak of the LPM. (A) Dorsal view of anterior part of the embryo, head at the top. (B) Dorsal view of posterior part of the embryo, tailbud at the bottom. (C) Lateral view, anterior to the left. (D–E) Two views of the same embryo at the 10-somite stage, demonstrating *hand2* expression in a large portion of the LPM, with a gap (arrowheads in D) between the anterior and posterior expression domains. (D) Dorsal view of anterior part of the embryo, head at the top. (E) Dorsal view of posterior part of the embryo, tailbud at the bottom. (F) Dorsal view of the cardiogenic portion of the LPM, anterior at the top, demonstrating wider domains of *hand2* expression at the 15-somite stage. (G,H) Dorsal views of the embryonic trunk at the 20-somite stage (19 hpf), anterior to the left, showing gene expression in the bilateral pectoral fin-forming regions of the LPM. *hand2* expression (G) appears to overlap with a posterior portion of *tbx5* expression (H). In H, intense expression of *tbx5* in the dorsal retinae is visible through the yolk at the left side of the image. (I,J) Lateral views, anterior to the left, of pectoral fin buds at 32 hpf. Again, *hand2* expression (I) appears to overlap with a posterior portion of *tbx5* expression (J). (K) Dorsal view through the embryonic head at 28 hpf, anterior to the top. *hand2* is expressed in the midline heart tube as well as within the bilateral sets of branchial arches. *hand2* expression is also faintly visible in a broad sheet of LPM analogous to the *gata4*-expressing tissue shown in Fig. 2F. (L,M) Comparisons of *hand2* expression in *han* mutant and wild-type embryos. Dorsal views, anterior to the top. (L) Wild-type (left) and *han* mutant (right) embryos at the 5-somite stage. Wild-type embryos express *hand2* in the LPM; *han* mutant embryos do not express *hand2* at this or any other stage. (M) *hand2* expression at the 3-somite stage. *han* mutants (right) express lower levels of *hand2* than wild-type siblings (left). *hand2* expression levels are always reduced in *han* mutants, but the locations of *hand2* expression are always normal.

Continuous expression of *hand2* within the LPM that cannot be restored by the transient introduction of short-lived mRNA molecules. Complete rescue of *han* mutants may therefore require stable transgenesis using tissue-specific promoters.
been suggested previously by antisense oligonucleotide experiments in chick: oligonucleotides directed against hand1 and hand2, in combination, but not singly, can disrupt cardiac looping (Srivastava et al., 1995). In the mouse embryo, the expression patterns of murine hand1 and hand2 overlap significantly, especially within the cardiogenic LPM (Cross et al., 1995; Cserjesi et al., 1995; Biben and Harvey, 1997; Srivastava et al., 1997). Targeted disruption of the mouse hand1 gene disrupts trophoblast development, making the analysis of cardiac development difficult (Furulli et al., 1998; Riley et al., 1998). However, tetraploid rescue experiments indicate that Hand1 is essential for the morphogenesis and differentiation of the midline heart tube (Riley et al., 1998). Therefore, we speculate that Hand1 and Hand2 can each compensate for the other’s absence during early stages of myocardial development in the mouse. Evidently, no such compensation for the loss of hand2 occurs in zebrafish han mutants, and we have not yet detected a zebrafish hand1-like gene (Angelo et al., 2000; D. Y. and D. Y. R. S., unpublished data).

Based on the phenotype of mouse hand2 mutants, previous models of myocardial Hand2 function have suggested that Hand2 regulates chamber-specific differentiation of the right ventricle (Srivastava et al., 1997) or that Hand2 prevents programmed cell death within the right ventricle (Srivastava, 1999; Yamagishi et al., 1999). Our analyses of zebrafish han mutants suggest that it is necessary to reevaluate these models, taking into account that Hand proteins appear to play a more general and early role in mediating LPM development, especially LPM morphogenesis and differentiation.

hand2, tbx5 and a common pathway for heart and forelimb development

In addition to demonstrating a number of specific functions for Hand2 during zebrafish embryogenesis, our studies also highlight the parallels between heart and forelimb development. Several human congenital syndromes include developmental defects in both the heart and limbs (Wilson, 1998); one of these, Holt-Oram syndrome, is caused by developmental defects in both the heart and limbs (Wilson, 1999; Yamasaki et al., 1999). Our analyses of zebrafish han mutants suggest that it is necessary to reevaluate these models, taking into account that Hand proteins appear to play a more general and early role in mediating LPM development, especially LPM morphogenesis and differentiation.

REFERENCES

a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121, 2513-2522.

