sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development

Craig T. Miller1,*, Thomas F. Schilling2, Kyu-Ho Lee3, Jewel Parker1 and Charles B. Kimmel1

1Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
2Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
3Cardiology Department, Children’s Hospital, Boston; and Biochemistry, Cell and Molecular Pharmacology Department, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA

*Author for correspondence (e-mail: miller@uoneuro.uoregon.edu)

Accepted 20 June; published on WWW 9 August 2000

SUMMARY

Mutation of *sucker* (*suc*) disrupts development of the lower jaw and other ventral cartilages in pharyngeal segments of the zebrafish head. Our sequencing, cosegregation and rescue results indicate that *suc* encodes an Endothelin-1 (*Et-1*). Like mouse and chick *Et-1, suc*/et-1 is expressed in a central core of arch paraxial mesoderm and in arch epithelia, both surface ectoderm and pharyngeal endoderm, but not in skeletalogenic neural crest. Long before chondrogenesis, *suc*/et-1 mutant embryos have severe defects in ventral arch neural crest expression of *dHAND*, *dlx2*, *msxE*, *gsc*, *dlx3* and EphA3 in the anterior arches. Dorsal expression patterns are unaffected. Later in development, *suc*/et-1 mutant embryos display defects in mesodermal and endodermal tissues of the pharynx. Ventral premyogenic condensations fail to express *myoD*, which correlates with a ventral muscle defect. Further, expression of *shh* in endoderm of the first pharyngeal pouch fails to extend as far laterally as in wild types. We use mosaic analyses to show that *suc*/et-1 functions nonautonomously in neural crest cells, and is thus required in the environment of postmigratory neural crest cells to specify ventral arch fates. Our mosaic analyses further show that *suc*/et-1 nonautonomously functions in mesendoderm for ventral arch muscle formation. Collectively our results support a model for dorsoventral patterning of the gnathostome pharyngeal arches in which *Et-1* in the environment of the postmigratory cranial neural crest specifies the lower jaw and other ventral arch fates.

Key words: *sucker*, Zebrafish, Endothelin, Pharyngeal arch, Cranial neural crest

INTRODUCTION

In all vertebrate embryos, segmental streams of cranial neural crest cells migrate to form the pharyngeal arches and differentiate into cartilages and bones of the head skeleton. In gnathostomes, the head skeleton has a dorsoventral (DV) polarity from its first appearance: dorsal and ventral cartilages of different shapes (such as the upper jaw and lower jaw in the first arch) are separated by joints. Fate-mapping studies in the avian embryo have shown that these dorsal and ventral skeletal elements arise from different anteroposterior levels of midbrain and hindbrain neural crest (Köntges and Lumsden, 1996), suggesting that before migration, the cranial neural crest is prepatterned with respect to its DV fate. Since the cranial neural crest has been shown to pattern morphogenesis of the paraxial mesodermally derived pharyngeal musculature (Noden, 1983a,b; Schilling et al., 1996), patterning information in the head periphery could be primarily contained within the premigratory neural crest. However, other experiments have established that neural crest cells are patterned by their environment after migration. For example, cartilage histogenesis of the neural crest requires contact with pharyngeal endodermal epithelium (reviewed in Hall, 1978) and chondrification of the lower jaw is inhibited by surface ectoderm (Kollar and Mina, 1991; Mina et al., 1994). Thus, pharyngeal arch development requires bidirectional signaling between the cranial neural crest and its environment.

Targeted mutations in mice have revealed a signal present in the environment of the cranial neural crest which is required for ventral neural crest-derived skeletal fates. Inactivation of genes encoding either the 21-amino-acid secreted ligand Endothelin-1 (*Et-1*), the Endothelin type A receptor (*EdnrA*), or the Endothelin converting enzyme (*Ece-1*), produces an identical craniofacial phenotype in which cartilages in the first and second arches are deleted or mispatterned (Kurihara et al., 1994; Clouthier et al., 1998; Yanagisawa et al., 1998). This common phenotype of the *Et-1* and *EdnrA* mutant mice is remarkable given the complementary expression profiles of these genes in the arch primordia. While *Et-1* is expressed in a central mesenchymal core of arch paraxial mesoderm, *EdnrA* is expressed in a surrounding shell of mesenchymal postmigratory neural crest cells. *Et-1* is also expressed in epithelia (both surface ectoderm and pharyngeal endoderm) surrounding this entire concentric arrangement of mesenchyme (Maemura et al.,...
mature mutants. Together these results indicate that the suc mutant rescues et-1 (Piotrowski et al., 1996; Kimmel et al., 1998). Relatively unaffected dorsal cartilages of the same arch cartilages are drastically reduced, misshapen and fused to the severe phenotype of the four: the lower jaw and other ventral tissues also requires suc/et-1 since ventral premyogenic condensations, ventral pharyngeal muscles and the hyomandibular pouch are all mispatterned in suc/et-1 mutants. With mosaic analyses, we demonstrate that suc/et-1 is nonautonomously required in cranial neural crest cells for both early dHAND and EphA3 expression, and for later formation of ventral pharyngeal cartilages. suc/et-1 is also nonautonomously required in mesoderm to make correctly patterned ventral muscles. Our findings show that Et-1 signaling plays an essential role in lower jaw formation, which has been widely conserved within gnathostomes. Further, the results support a model in which the signaling occurs during a conserved transient anatomical arrangement: hollow neural crest cylinders surround central cores of paraxial mesoderm, and ventral neural crest requires Et-1 from its surrounding environment to make a lower jaw and other ventral arch fates.

MATERIALS AND METHODS

Maintenance of fish

Fish were raised under standard conditions (Westerfield, 1995) and staged as described (Kimmel et al., 1995). suc2216b mutants (Piotrowski et al., 1996) were outcrossed to the Oregon ABC strain for phenotypic analyses. For some of the analyses at larval stages, mutants were outcrossed to golden (gol) (Streisinger et al., 1981) to obtain double mutant embryos with reduced pigmentation. No additional phenotypic differences were observed between suc mutants and suc; gol double mutants.

Tissue labeling procedures

Cartilage staining, dissection and flat-mounting were done as described (Kimmel et al., 1998).

In situ hybridization was performed essentially as described (Thistle et al., 1993) with the following modifications: probes were not hydrolyzed, the glycine stop step was omitted, hybridization temperature was 66.5°C, two 30 minute 0.1× SSC washes were done after the 0.2× SSC washes, and older embryos were permeabilized by treating with 10 μg/mL Proteinase K treatment for 1 to 30 minutes depending on age. Probes used were: dlx2 and dlx3 (Akimenko et al., 1994), dHAND (Angelo et al., 2000), mxE (Ekker et al., 1997), gsc (Schulte-Merker et al., 1994), EphA3 (Xu et al., 1995), MyoD (Weinberg et al., 1996), and shh (Krauss et al., 1993). For suc/et-1 in situ, probe was made from EST clone fbl4d01 (see below). Deyolking was done manually with tungsten insect pins. Embryos were cleared in 70% glycerol, mounted on bridged coverslips and photographed on a Zeiss Axioskop microscope. Occasionally, embryos were raised in 0.003% PTU (1-phenyl 2-thiourea) to inhibit melanogenesis (Westerfield, 1995). Two-color in situ were done as described (Jowett and Lettice, 1994) with the modifications of Hauptmann and Gerster (1994) and the same modifications as above. For sectioning, embryos were embedded in Epon and sectioned at 5 μm.

Larval muscles were stained with the 1025 anti-myosin antibody (generous gift of Drs S. Hughes and H. Blau) as described by Schilling and Kimmel (1997).

Mapping

We mapped suc to LG19 using a single large early pressure (EP)-derived gynogenetic clutch (Streisinger et al., 1981) obtained from a suc heterozygote female, which was generated by crossing suc heterozygotes to the WIK mapping strain (Knapik et al., 1996). Of 95 total diploid animals, 18 were by morphology suc mutants. DNA was prepared from each of these animals essentially as described (Johnson et al., 1996; Clouthier et al., 1998). The germ layer derivations of the mesenchymal populations expressing these genes are inferred from fate-mapping studies, which have established that paraxial mesoderm occupies the core of an arch and is surrounded by neural crest (Trainor et al., 1994; Trainor and Tam, 1995; Hacker and Guthrie, 1998). In both Et-1 and EdnRA mutant mice, skeletal defects are preceded by much earlier defects in gene expression; for instance, dHAND, which encodes a bHLH transcription factor, is not expressed as it normally would be in ventral arch presumptive postmigratory crest (Thomas et al., 1998). Hence, the mutant phenotypes and expression patterns suggest a model in which Et-1 in the environment of the cranial neural crest specifies ventral crest fates.

This model is further supported by work in avian embryos, which has shown that pharmacological inactivation of EDNRA results in severe ventral arch one and two deletions, creating a chicken with no lower beak (Kempf et al., 1998). As in mice, chick Et-1 and EdnRA are expressed in arch cores and epithelium, and postmigratory neural crest, respectively (Nataf et al., 1998; Kempf et al., 1998). Thus, both this anatomical arrangement of EdnRA-expressing cylinders of neural crest cells surrounding a central core of Et-1-expressing paraxial mesoderm and a required function for EDNRA in lower jaw development have been conserved between birds and mammals and, thus, likely date back at least 350 million years to the Carboniferous, the time of the last common ancestor of both mammals and the diapsids from which birds derive. The appearance of jaws earlier in vertebrate evolution, around 450 million years ago in the Ordovician, sparked the gnathostome radiation, which generated most of the vertebrates alive today (reviewed in Mallatt, 1997). The conservation of Et-1 signaling for lower jaw development in chicks and mice raises the possibility that Et-1’s requirement for lower jaw development is much more ancestral and shared within all gnathostomes. If so, Et-1 should be required for lower jaw development in the most divergent gnathostomes, sharks and bony fish.

Genetic screens in the zebrafish have revealed a large number of loci required for pharyngeal arch development (reviewed in Schilling, 1997). Four recessive loci isolated in the Tübingen screen were placed into a single phenotypic class based on their similar mutant phenotypes (Piotrowski et al., 1996; and see Discussion). sucker (suc) mutants have the most severe phenotype of the four: the lower jaw and other ventral cartilages are drastically reduced, misshapen and fused to the relatively unaffected dorsal cartilages of the same arch (Piotrowski et al., 1996; Kimmel et al., 1998).

Here we present molecular and phenotypic characterization of suc. We show that a missense mutation in the secreted domain of an et-1 ortholog cosegregates with the suc mutant phenotype, and wild-type, but not mutant, et-1 rescues suc mutants. Together these results indicate that the suc mutant phenotype is due to this mutation in et-1. Injection of human ET-1 into an arch at stages after neural crest has migrated also rescues the suc mutant phenotype; thus, suc/et-1 is not required for migration of most, if not all, neural crest. Rather, suc/et-1 is required in the postmigratory environment of the neural crest where, like chick and mouse Et-1, suc/et-1 is expressed in arch cores and epithelium. Zebrafish, like mice, require et-1 signaling for the ventral arch expression of dHAND, mxE, gsc and dlx3.

We find that ventral expression of dlx2 and EphA3 also requires suc/et-1, while dorsal domains of dlx2 and gsc are suc/et-1-independent. Patterning of cranial mesodermal and endodermal tissues also requires suc/et-1 since ventral premyogenic condensations, ventral pharyngeal muscles and the hyomandibular pouch are all mispatterned in suc/et-1 mutants.
Cells were transplanted into unlabeled sibling hosts either at late blastula (mesoderm) or 3 to 5 somites (neural crest), by mounting them in 3% methyl cellulose and transferring cells using a suction micropipette as described previously (Hatta et al., 1990 for mesoderm transplants; Schilling et al., 1996 for crest transplants). Donor cells were detected with an ABC kit (Vestostain) using either a DAB substrate, or a tyramide substrate, which was detected by fluorescence (Moens and Fritz, 1999). Images were captured on a Zeiss Axiosplan 2 fluorescence microscope using a CCD camera and Macintosh G3 equipped with Improvision imaging software.

RESULTS

Ventral cartilage defects in sucker mutants

sucker (suc) is one of a class of four mutations that disrupts patterning in the two anteriormost pharyngeal arches, the mandibular and hyoid. In homozygous suc mutant larvae, ventral cartilages (Meckel’s cartilage in the mandibular arch and the ceratohyal in the hyoid) are severely reduced and fused to the dorsal cartilages of the same arches (Fig. 1, Piotrowski et al., 1996; Kimmel et al., 1998). Quantification of this phenotype shows that the expressivity of severe ventral reductions in the first two arches is 100% in suc mutants (Table 1). The ventral cartilages in arches 3 and 4 are also dramatically reduced with high expressivity in suc mutants, while cartilages in the three most posterior arches are spared (Table 1).

A mutation in an endothelin-1 ortholog cosegregates with sucker

The ventral pharyngeal cartilage reduction seen in suc mutants is reminiscent of the phenotype seen in mice with targeted mutations in Endothelin-1 (Et-1), where homologous ventral (distal) skeletal elements (such as Meckel’s cartilage) are dramatically reduced (Kurihara et al., 1994). As an initial step towards the molecular identification of the sucker locus, we mapped suc to linkage group 19 (LG19) (Fig. 2A), to three previously mapped zebrafish genes that are homologs of human genes on chromosome 6 (Fig. 2B). In humans, ET-1 maps to chromosome 6, distal to the synteny region described above (Fig. 2B). Based on the phenotypic similarities between the Et-1 mutant mice and suc mutants, as well as this potential synteny, we tested a zebrafish et-1 as a candidate for suc. An EST

| Table 1. Ventral cartilage defects in suc mutants |
|---|---|---|
| Arch | % Severe ventral reductions |
| 1 (mandibular) | 100 (100/100) |
| 2 (hyoid) | 100 (100/100) |
| 3 | 100 (100/100) |
| 4 | 94 (94/100) |
| 5 | 4 (4/100) |
| 6 | 0 (0/100) |
| 7 | 0 (0/100) |

100 mutants from 3 clutches (uninjected siblings of injected fish in Table 2) were Alcian stained and scored for ventral cartilage. Severe reductions were defined as both ventral cartilages being less than half the size of their wild-type counterparts (as in Figs 1D and 3B). In mutants, ventral cartilage was defined as cartilage attached to the dorsal cartilage, and in all mutants, joints were absent in both arch one and two. In addition to this ventral cartilage, each mutant had from 1–7 small ectopic ventral cartilages (see Fig. 3D; and Piotrowski et al., 1996), including at least one in the position of the basihyal (but never a correctly patterned basihyal), and each had, on average, 3.7 ectopic cartilage nodules in the anterior arches.
encoding a predicted protein highly similar to mammalian ET-1 (Fig. 2C) was generated by Washington University Zebrafish Genome Resources (http://zfish.wustl.edu) and mapped close to \textit{suc} on LG19. Eighteen of the 21 amino acids in the predicted secreted domain are conserved between human and zebrafish (Fig. 2C,D). Sequencing of the \textit{et-1} cDNA and genomic coding regions in \textit{suc} mutant embryos revealed a missense mutation which replaces aspartate with valine at the highly conserved 8th residue of the 21 amino acid secreted domain (Fig. 2D,E). This transversion creates a \textit{Mse}I site, which cosegregated with the \textit{suc} phenotype in over 500 diploid animals (Fig. 2F and data not shown). The cosegregation places this \textit{Mse}I RFLP and \textit{suc} within 0.2 cm of one another, suggesting that the \textit{suc} mutant phenotype is due to this Asp8-to-Val8 missense mutation.

Et-1 orthologs rescue \textit{suc} mutants

Supporting the hypothesis that \textit{suc} is \textit{et-1}, injection of wild-type \textit{et-1} DNA rescued pharyngeal defects in \textit{suc} mutants. Injection of a genomic fragment containing the entire wild-type \textit{et-1} locus (PAC 16A1) asymmetrically into 2- to 4-cell embryos rescued ventral cartilage defects unilaterally in \textit{suc} mutants (Table 2). Similar injections of a construct driving expression of wild-type \textit{et-1} RNA (pCS2-ET1) also unilaterally rescued the cartilage phenotype in \textit{suc} mutants (Fig. 3A-F and Table 2). Despite the inherent mosaicism of DNA injections (see Westerfield et al., 1992; Kroll and Amaya, 1996), injections of pCS2-ET1 rescued ventral cartilage formation in a high percentage (nearly one-quarter, Table 2; Fig. 3G) of \textit{suc} mutants. An otherwise identical construct with the Asp8-to-Val8 missense mutation in \textit{et-1} (pCS2-ET1D8V) did not rescue ventral cartilage formation under similar injection conditions (Table 2). These data, together with our sequencing and cosegregation results indicate that the \textit{suc} mutant phenotype is due to this missense mutation in \textit{et-1}, and for clarity in this paper we refer to this gene as \textit{suc/et-1}.

The \textit{Et-1} signal might be required early for migrating precartilaginous neural crest or later within the arch primordium. To determine if \textit{Et-1} is sufficient to rescue ventral cartilage...

Fig. 1. \textit{suc} mutants have reduced ventral cartilages. (A,B) Lateral views of live wild-type (A) and \textit{sucker} mutant (B) larvae at 4 days. Mutants lack lower jaws and do not form swim bladders (asterisk in A). (C,D) Alcian-stained cartilages from a wild type (C) and \textit{suc} mutant (D) dissected from the arches and flat-mounted. In wild types, dorsal and ventral elements in the first arch (pq, palatoquadrate; M, Meckel’s) and second arch (hs, hyosymplectic; ch, ceratohyal) are separated by joints (arrows). In mutants, ventral cartilages are reduced and fused to dorsal cartilages at what we interpret to be the sites of the missing joints (arrows). Scale bars: 100 μm.

Fig. 2. A mutation in \textit{et-1} cosegregates with the \textit{suc} mutant phenotype. (A) \textit{suc} maps to LG19. Genetic distances proximal to \textit{suc} are reduced since half tetrads were used (Streisinger et al., 1986; see Materials and Methods). (B) Zebrafish LG19/human chromosome 6 synteny (not to scale) (Postlethwait et al., 1998; Auffrey et al., 1983; Almasan et al., 1994; Edwards et al., 1996; Hoehe et al., 1993; Gates et al., 1999). (C) Amino acid alignment of zebrafish Suc/Et-1 with human and mouse ET-1. Predicted 21-amino-acid secreted domain is overlined, dibasic residues flanking the big Et-1 domain are underlined, intron/exon boundaries of Suc/Et-1 are marked with arrowheads. (D) Alignment of 21-amino-acid secreted domains of Suc/Et-1 and other vertebrate Endothelins and two divergent \textit{asp} toxins (after Janes et al., 1994). The conserved Asp8 residue is in bold. (E) Sequence of Et-1 amino acid positions 7-9 in wild type and \textit{suc} mutant. In \textit{suc} mutants, an A-to-T transversion results in an Asp8-to-Val8 missense mutation in \textit{et-1}, and also creates an \textit{Mse}I site. (F) This Asp8-to-Val8 mutation cosegregates with the \textit{suc} mutant phenotype. Animals were sorted by jaw morphology, then genotyped for the \textit{Mse}I RFLP by PCR using intronic primers flanking exon 2 and subsequent \textit{Mse}I digestion (see Materials and Methods). The first and last wild-type lanes are homozygous wild types, while the middle six lanes are heterozygous for the \textit{suc} mutant \textit{Mse}I RFLP.
formation at a stage after neural crest migration, we injected human recombinant ET-1 protein into sucyet-1 mutant arch primordia at 20 or 28 hours, two stages after most cranial neural crest has migrated (Schilling and Kimmel, 1994). Injections at both time points rescued formation of first and second arch ventral cartilages (Meckel’s and ceratohyal) (Table 2, Fig. 3H). Thus, even though this experiment does not reveal the critical period when sucyet-1 normally functions, it suggests that Et-1 is not required for ventral neural crest migration, but rather for correct specification of ventral postmigratory neural crest.

suc/et-1 is expressed in cores of arch mesenchyme and arch epithelia

To determine the spatiotemporal profile of embryonic sucyet-1 expression, we examined sucyet-1 mRNA distribution by whole-mount in situ hybridization. Whereas cranial neural crest first begins to migrate at about 12 hours in zebrafish (Schilling and Kimmel, 1994), sucyet-1 expression in the head periphery was not detected until 16-18 hours. At this stage, small bilateral groups of mesenchymal cells adjacent to the midbrain and hindbrain express sucyet-1 (Fig. 4A,B). Expression persists in mesenchymal cells in this location at 24 hours and, by this time, appears segmental, with one sucyet-1-expressing cluster of cells in each of the first two arches (Fig. 4C). At this stage, expression is also detectable in ventral pharyngeal endodermal epithelia of the second and third pharyngeal pouches (Fig. 4C) and in ventral surface ectodermal epithelium (data not shown).

In each of the first two arches at 30 hours, the sucyet-1-expressing mesenchyme has coalesced into a discrete cluster located ventrally (Fig. 4D). Ventrals views and horizontal sections show that these mesenchymal clusters lie in a central ‘core’ position (Fig. 4E,F; see Introduction). By 30-32 hours, a mesenchymal cluster of sucyet-1-expressing cells is also detected in the core of arch 3 (Fig. 4D,F). These arch mesenchymal cores of sucyet-1-expressing cells are surrounded by non-expressing mesenchymal cells (Fig. 4E,F), which by position appear to be neural crest (see below). Epithelial expression persists and, at 30 hours, expression is present in pharyngeal pouches 2 and 3 and is now detected in the fourth pharyngeal pouch (Fig. 4D). At these stages, sucyet-1 expression in ventral surface ectoderm appears continuous with expression in the pharyngeal pouches (Fig. 4F).

At 36 hours, the ventral mesenchymal cores of the arches continue to express sucyet-1 and appear to have elongated in the mediolateral direction (Fig. 4H). Epithelial expression in both ventral surface ectoderm and pharyngeal pouches 2-4 is still detectable at this stage (Fig. 4G). Within the pharyngeal pouches, expression is restricted to posterior, ventral epithelia (Fig. 4G).

Table 2. Et-1 rescues ventral cartilage formation in sucyet mutants

<table>
<thead>
<tr>
<th>A. Injected DNA</th>
<th>DNA/embryo (pg)</th>
<th>% Rescue</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC16A1</td>
<td>100</td>
<td>24 (13/54)</td>
</tr>
<tr>
<td>pCS2-ET1</td>
<td>20</td>
<td>21 (20/97)</td>
</tr>
<tr>
<td>pCS2-ET1D8V</td>
<td>2</td>
<td>8 (5/59)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0 (0/61)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0 (0/55)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Injected human ET-1</th>
<th>Stage</th>
<th>% Rescue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 hour</td>
<td>28 (13/47)</td>
</tr>
<tr>
<td></td>
<td>28 hour</td>
<td>47 (15/32)</td>
</tr>
</tbody>
</table>

See Materials and Methods for description of DNA constructs and injection, genotyping, and cartilage staining protocols. Animals were considered rescued if they were homozygous sucyet-1 mutant by PCR/MseI digestion genotyping yet had ventral arch one or two cartilages (M and CH) that were correctly patterned and as large in size as their wild-type counterparts (see Fig. 3).
At 48 hours, we no longer detect *suc/et-1* expression in central arch mesenchymal domains. However, expression persists in pharyngeal pouches 2-4 and is now detected weakly in the first pharyngeal pouch (data not shown).

suc/et-1 is also expressed in other tissues, including many associated with the developing vasculature. From 24 to 36 hours, *suc/et-1* is expressed in cells lining the paired dorsal aortas and transverse sections show many of these have an endothelial morphology (Fig. 4I and data not shown). At 48 hours, *suc/et-1* expression was detected in cells lining blood vessels around the eye and in the midbrain (data not shown).

suc/et-1 expression is also detectable in cells of the otic vesicle from 24 to 48 hours (Fig. 4C,D, data not shown), in anterior cells of the pectoral fin rudiment at 48 hours (Fig. 4J), and in discrete bilateral clusters of cells adjacent to the boundary of the yolk ball and yolk extension at 24 hours (Fig. 4K).

In PCR-genotyped *suc/et-1* mutants, the onset of *suc/et-1* mRNA expression at 18 hours appears normal and expression is detectable through 48 hours, although the expressing tissues are disorganized at later stages. At 30 hours in *suc/et-1* mutant embryos, the mesenchymal core domains express *suc/et-1*, as does both ventral surface ectoderm and pharyngeal pouches 2-4 (Fig. 4L,M). Expression in other tissues such as the otic vesicle is also not noticeably reduced in *suc/et-1* mutant embryos (Fig. 4L and data not shown).

suc/et-1 is required for ventral, but not dorsal, postmigratory neural crest cell fates

Since the pharyngeal cartilages affected in *suc/et-1* mutants are derived from cranial neural crest (Schilling and Kimmel, 1994), we analyzed expression of neural crest markers to determine at what stage this population is mispatterned in *suc/et-1* mutant embryos. Early stages appear normal: three markers of presumptive premigratory cranial neural crest, *fkd6* (Odenthal and Nüsslein-Volhard, 1998), *sna2* (Thissen et al., 1995) and *dlx2* (Akimenko et al., 1994) showed no defect in *suc/et-1* mutants from 10-14 hours (data not shown).

Two genes encoding transcription factors that are required for pharyngeal arch development in mice and expressed in postmigratory cranial neural crest are *dlx2* and *dHAND* (Qiu et al., 1995; Thomas et al., 1998). In wild-type zebrafish, orthologs of these genes are also expressed in postmigratory arch crest (Akimenko et al., 1994; Angelo et al., 2000). *dHAND* expression is confined to a ventral subset of *dlx2*-expressing cells (Fig. 5A). Horizontal sections of *dlx2* expression at 28 hours reveal that, within each arch, *dlx2*-expressing cells surround a central core of non-expressing cells (Fig. 5B). Similarly, viewing whole-
mount embryos from a ventral aspect reveals that, in each arch, dHAND-expressing cells are also arranged cylindrically and surround a non-expressing core of cells (Fig. 5C). Ventrally, dHAND expression is strikingly complementary to suc/et-1 expression: core mesenchyme expresses dHAND but not suc/et-1 (Fig. 5C,D). The surrounding epithelia (both ventral surface ectoderm and pharyngeal endoderm) also express suc/et-1, but not dHAND (Fig. 5D).

No dlx2 expression defect was detected in suc/et-1 mutants at early premigratory stages (see above). However, by 28 hours, we could unambiguously sort mutants (verifying genotypes by PCR, see above) by a reduction in the dorsoventral length of the dlx2 expression domains in the mandibular and hyoid arches (Fig. 5E,F). Dorsal cells in suc/et-1 mutant arches express dlx2 at normal levels (Fig. 5E,F). Hence the reduction is of the ventral domain, due to either an absence of cells ventrally, or a failure of ventral cells to express dlx2. The latter appears to be the case, since in sections of dlx2 expression in suc/et-1 mutants, ventral first and second arch crest cells appear to be present but fail to express dlx2 (Fig. 5G,H). In accord with this interpretation, in suc/et-1 mutants, unlabeled mesenchymal cells surround the suc/et-1-expressing cores (Fig. 4M). Furthermore, preliminary TUNEL labeling (data not shown) revealed no significant cell death in the arches of suc/et-1 mutants. Therefore three lines of evidence suggest that postmigratory neural crest cells are present in the ventral arches of suc/et-1 mutants.

dHAND arch expression is severely reduced in the Et-1 mutant mice (Thomas et al., 1998). Similarly, in zebrafish, the expression of dHAND in ventral arch mesenchyme is dramatically reduced in suc/et-1 mutant embryos at 28 hours (Fig. 5I-L). Expression of dHAND is often maintained at a low level in the posterior half of the second arch in suc/et-1 mutants (Fig. 5K-L), suggesting additional genes are required for arch dHAND expression. In wild types, while dHAND is also expressed in the developing heart and fin, neither of these domains are noticeably affected in suc/et-1 mutants.

Two other transcription factors, Msx1 and Gsc, are required for mammalian craniofacial development (Satokata and Maas, 1994; Yamada et al., 1995; Rivera-Perez et al., 1995). gsc, like dHAND, requires Et-1 signaling for expression in mouse arch primordia (Cloutier et al., 1998). In contrast, msx1 arch expression is unaffected in the Et-1 mutant mice, although msx1 has been indirectly shown to be downstream of Et-1 signaling (Thomas et al., 1998; and see Discussion). To test if
this genetic hierarchy has been conserved between fish and mammals, we examined expression of msxE and gsc in suc/et-1 mutant embryos. In wild-type zebrafish embryos at 24 hours, msxE is expressed similarly to dfHAND, in ventral but not dorsal postmigratory arch neural crest (Ekker et al., 1997; Fig. 6A). Expression in suc/et-1 mutants is severely reduced, although other non-arch domains are unaffected (Fig. 6B).

goosecoid (gsc) expression in zebrafish marks a complex pattern of dorsal and ventral arch mesenchyme from 26-42 hours (Schulte-Merker et al., 1994; Fig. 6C and data not shown). In the hyoid arch of 30 hour wild types, these dorsal and ventral gsc-expressing domains of cells are separated by a non-expressing domain, which seems to prefigure the joint between the dorsal and ventral cartilages (Fig. 6C). While gsc is expressed dorsally in suc/et-1 mutant embryos, ventral expression is largely abolished (Fig. 6D).

The homeobox transcription factor dlx3 (Akimenko et al., 1994) and the ephrin receptor tyrosine kinase EphA3 (Xu et al., 1994) are also expressed in zebrafish ventral arch postmigratory neural crest and we find that expression of both requires suc/et-1 function (Fig. 6E-H). In wild types, arch expression of dfHAND, msxE, ddx3, and EphA3 are all initiated from 18-24 hours, well after ddx2 (Ekker et al., 1997; Akimenko et al., 1994; data not shown). Defects in msxE, ddx3 and EphA3 were detected at 24 hours, while the gsc defect was apparent at 26 hours, when its ventral arch expression is first initiated in wild types (data not shown). dfHAND, msxE, ddx3 and EphA3 are also expressed in ventral postmigratory neural crest in more posterior arches (Figs 5, 6). In suc/et-1 mutants at 24 hours, gene expression defects are usually localized to the first two arches but, by 36 hours, severe defects are also seen in the third and fourth arches (data not shown).

suc/et-1 is required for cranial muscle and endodermal patterning

To assay potential requirements for suc/et-1 in cranial development outside of the neural crest, we examined arch muscles and endodermal derivatives in suc/et-1 mutants. In wild types, both dorsal and ventral pharyngeal muscle precursors are detectable at 54 hours by expression of myoD (Schilling and Kimmel, 1997). However, in suc/et-1 mutants at the same stage, the first and second arch ventral myoD-expressing muscle precursors were severely reduced (Fig. 7A-D). A few scattered myoD-expressing cells are present in the ventral arches of suc/et-1 mutants, but the ventral premyogenic condensations fail to form (Fig. 7B,D). In contrast, forming dorsal muscles of the mandibular and hyoid arches express myoD and appear unaffected in suc/et-1 mutants (data not shown).

Differentiated ventral arch muscles are also severely reduced in suc/et-1 mutant larvae, as determined by immunostaining of 5-day-old larvae with the 1025 antibody to muscle myosins (Fig. 7E-H). The ventral first arch muscles (intermandibularis anterior and posterior) are reduced to a few fibers that span the midline (Fig. 7F), and the ventral second arch muscles (interhyoideus and hyohyoideus) fail to extend to the midline as they do in wild types and are greatly reduced in size. In contrast to these ventral disruptions, dorsal muscles are relatively unaffected and, as normal, attach to the dorsal cartilages (Fig. 7G,H).

Defects are also present in the pharyngeal endoderm of suc/et-1 mutants. sonic hedgehog (shh) is expressed in wild-type pharyngeal endodermal cells beginning around 33 hours (Krauss
sucker encodes a zebrafish Endothelin-1

suc/et-1 functions nonautonomously in cranial neural crest for ventral arch fates and nonautonomously in mesendoderm for ventral arch muscle formation

Since ventral arch neural crest is severely mispatterned in suc/et-1 mutant embryos, yet suc/et-1 expression was not detected in the neural crest, we predicted neural crest cells would require suc/et-1 function nonautonomously. To test this prediction, we performed mosaic analyses, transplanting labeled suc/et-1 mutant premigratory cranial neural crest cells into unlabeled wild-type hosts (Fig. 8A). Neural crest cells from suc/et-1 mutants grafted into wild-type crest at early somite stages migrated into the peripheral, dlx2-expressing region of the arches and, when located ventrally, expressed ventral makers such as dHAND and EphA3 (Fig. 8C,E; Table 3). In similar suc/et-1 mutant-to-wild type neural crest transplants, suc/et-1 mutant cells also contributed to normal ventral cartilages in wild-type larvae (Fig. 8G, Table 3). Thus suc/et-1 functions nonautonomously in the neural crest, and the skeletal defects apparently arise indirectly because of a missing signal in the crest environment.

Since we previously fate-mapped head mesoderm on the zebrafish gastrula (Kimmel et al., 1990), we could test a mesodermal role for suc/et-1 by performing mesodermal transplants between wild-type and suc/et-1 mutant embryos at the gastrula stage (Fig. 8B). Both wild-type and suc/et-1 transplanted mesendodermal cells spread widely throughout the mesendoderm of a wild-type host and cells in the arches tend to occupy the central region of the arch primordium at 24 hours (Fig. 8D, data not shown), consistent with the hypothesis that paraxial mesoderm occupies the core of each arch. Transplanted cells that contributed to posterior branchial arches, which are developmentally younger, suggest that initially within the arch primordium, the neural crest is located lateral to the paraxial mesoderm (Fig. 8F).

Although these mesendodermal transplants might have contained a few pharyngeal endoderm cells, we did not observe induction of ventral neural crest markers dHAND or EphA3 in suc/et-1 mutant hosts in response to the presence of wild-type mesendoderm (Table 3). Furthermore, in the converse transplant, transplanted suc/et-1 mutant mesodermal cells were able to form normal ventral muscles in a wild-type host (Fig. 8H, Table 3) and did not result in abnormal cartilage development. Thus, suc/et-1 appears to also function nonautonomously in the paraxial mesoderm.
We have cloned and characterized zebrafish sucker (suc), mutation of which results in severe reduction of the lower jaw and other ventral pharyngeal arch cartilages. Our sequencing, cosegregation and rescue experiments indicate that the suc mutant phenotype is due to a missense mutation at a conserved residue within the secreted domain of Endothelin-1. Like mouse and chick Et-1, suc/et-1 is expressed in pharyngeal arch mesenchymal cores and epithelia. These mesenchymal cores are surrounded by dlx2 and dHAND-expressing putative neural crest cells, suggesting that the cores consist of paraxial mesoderm. Like mouse Et-1, suc/et-1 is required for ventral arch fates, including expression of dHAND, msxE, gsc and dlx3. Additionally, in zebrafish ventral expression of dlx2 and EphA3 also requires suc/et-1. Dorsal expression of dlx2 and gsc is suc/et-1 independent, and later patterning of arch mesodermal and endodermal derivatives also requires suc/et-1 function. Lastly, our mosaic analyses demonstrate that suc/et-1 functions nonautonomously in both neural crest cells and paraxial mesoderm. Collectively our results support a model (Fig. 9) in which ventrally-restricted Et-1 expression in both paraxial mesodermal arch cores and surrounding epithelia specifies ventral arch crest fates, including the ventral expression of dlx2, dHAND, msxE, gsc, dlx3 and EphA3 and the later formation of ventral cartilages.

Table 3. Fates of transplanted cells in mosaic embryos

<table>
<thead>
<tr>
<th>Transplant</th>
<th>Phenotypes</th>
<th>Crest genes in xpl. cells</th>
<th>Fates scored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Donor</td>
<td>Host</td>
<td>dHAND</td>
</tr>
<tr>
<td>Neural crest in ventral arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>wt</td>
<td>100 (24/24)</td>
<td>100 (13/13)</td>
</tr>
<tr>
<td>suc−</td>
<td>wt</td>
<td>44 (4/9)</td>
<td>33 (1/3)</td>
</tr>
<tr>
<td>wt</td>
<td>suc−</td>
<td>0 (0/7)</td>
<td>0 (0/3)</td>
</tr>
<tr>
<td>Mesendoderm in arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>wt</td>
<td>0 (0/20)</td>
<td>0 (0/6)</td>
</tr>
<tr>
<td>suc−</td>
<td>wt</td>
<td>0 (0/10)</td>
<td>0 (0/8)</td>
</tr>
<tr>
<td>wt</td>
<td>suc−</td>
<td>0 (0/18)</td>
<td>0 (0/14)</td>
</tr>
</tbody>
</table>

Fig. 8. suc/et-1 functions nonautonomously in neural crest and mesoderm. (A) Schematic of neural crest transplants. Premigratory neural crest cells from biotin-labeled donors were transplanted into unlabeled hosts at the 5 somite stage. (B) Schematic of mesodermal transplants. Cells from the head muscle domain of biotin-labeled gastrulas (Kimmel et al., 1990) were transplanted into the marginal region of unlabeled hosts. (C-F) Superimposed fluorescent and bright-field images to colocalize the biotin lineage tracer with dHAND expression in whole-mount embryos. (C,E) suc/et-1 mutant neural crest cells migrate into the dHAND-expressing region of arch one (C) and two (E). In both of these mosaic animals, suc/et-1 mutant ventral neural crest expressed dHAND (see Table 3). Both wild-type (not shown) and suc/et-1 mutant mesoderm (D) fills the non-dHAND-expressing central core in a wild-type host. Initially, neural crest cells lie lateral to mesoderm (F). (G) Mosaic larva in which suc/et-1 mutant neural crest cells, labeled in brown, contributed to a normal ventral cartilage (the ceratohyal) in an unlabeled wild-type host. (H) Mosaic larva in which labeled suc/et-1 mutant mesodermal cells have contributed to a normal ventral muscle (interhyoideus) in a wild-type host. bh, basihyal; ch, ceratohyal; ih, interhyoideus.

Fig. 9. A model for pharyngeal arch patterning. Postmigratory cranial neural crest is subdivided into dorsal (red) and ventral (blue) populations. Ventral neural crest cells require environmental suc/et-1 (black) for expression of dlx2, dHAND, msxE, gsc, dlx3, and EphA3 and later formation of ventral cartilages. Dorsal arch cores, which do not express suc/et-1, are not drawn. The axis we refer to as dorsoventral is sometimes called proximodistal.
sucker encodes a zebrafish Endothelin-1

Biochemical evidence indicates that the Asp8-to-Val8 missense mutation in suc/et-1b is likely to be a loss-of-function mutation. Alanine scanning of the 21-amino-acid human mature ET-1 showed that Asp8 is one of only five residues which, when replaced with alanine, resulted in a nonfunctional protein (Tam et al., 1994). Hence, replacing this highly conserved charged residue of zebrafish Et-1 with a noncharged residue such as valine would be expected to create a nonfunctional protein. Our rescue experiments also suggest tf216b is a loss-of-function mutation, since injection of pCS2-ET1 (wild-type Et-1), but not pCS2-ET1D8V (Et-1 with Asp-to-Val missense mutation at residue 8 of secreted domain) rescued ventral cartilage formation in suc mutants. Further testing of the strength of the tf216b allele will be possible once additional alleles of suc are found, or a Df(suc) becomes available. Since suc/et-1 is still expressed in suc/et-1 mutants, this missense mutation does not appear to result in fewer or more unstable transcripts, and suggests that suc/et-1 does not indirectly autoregulate its own transcription.

Mutations of three other ‘anterior arch’ loci (schmerle, sturgeon and hoover) cause similar craniofacial defects as those seen in suc/et-1 mutants (Piotrowski et al., 1996). We subsequently described a common phenotypic spectrum of flat-mounted larval hyoid cartilage shapes in sucker, schmerle and sturgeon mutants and noted the resemblance of these mutant phenotypes to phenotypes seen in mice with mutations in Et-1 signaling components (Kimmel et al., 1998). In mice, mutation of Et-1, Ednra or Ece-1 produces similar craniofacial defects, suggesting that, in zebrafish, some of the other anterior arch loci represent ednra or ece-1 genes, a possibility that we are currently exploring. However, the Ece-1 mutant mice also have pigment and enteric neuron defects (Yanagisawa et al., 1998) that have not been reported for any of the zebrafish anterior arch mutants. Furthermore, the Ednra and Ece-1 mutant mice have defects in cardiac neural crest-derived tissues such as the outflow tract (Clouthier et al., 1998; Yanagisawa et al., 1998), while no circulatory system defect has been reported for any of the anterior arch mutants. Two of the other anterior arch mutations (schmerle and hoover) result in shorter pectoral fins (Piotrowski et al., 1996), which is interesting in light of suc/et-1 expression in the developing pectoral fin. Although suc/et-1 mutants display no obvious defects in the pectoral fin or other non-arch suc/et-1-expressing tissues, these tissues have not been examined comprehensively in suc/et-1 mutants. suc/et-1 mutants live up to 9 days, long enough to detect defects in derivatives of these suc/et-1-expressing tissues. These tissues in zebrafish might not require Et-1 signaling. Alternatively, the additional genomic duplication in the teleost lineage (Postlethwait et al., 1998; Amores et al., 1998) might have generated genes redundant for these developmental requirements. Redundant functions can be revealed by double mutant analyses and further motivates the isolation of more anterior arch mutants. Forward genetic screens in zebrafish could also reveal genes that have not yet been implicated in the Et-1 signaling pathway in mice. Our ongoing head cartilage screen has uncovered a fifth anterior arch locus (C. T. M. and C. B. K., unpublished), yet no more alleles of the existing four, suggesting that the screens have not approached saturation.

Conserved neural crest/mesodermal arrangements during gnathostome arch development

Trainor and Tam (1995) showed that, in mammalian embryos, neural crest surrounds the paraxial mesodermal core of the arch. In chick embryos, Noden (1983b) demonstrated that head paraxial mesoderm makes most of the muscles of the pharynx and Hacker and Guthrie (1998) described the migration of cranial paraxial mesoderm into the center of each pharyngeal arch. Our mosaic analyses support a neural crest origin for peripheral mesenchyme as well as a paraxial mesodermal origin for the central arch mesenchymal core.

Gene expression patterns in amniote embryos also reveal separate central and peripheral arch mesenchymal populations. In mice and chicks alike, Et-1 is expressed in a central arch core surrounded by non-Et-1-expressing mesenchyme (Maemura et al., 1996; Clouthier et al., 1998; Nataf et al., 1998). In the arches of mice, dlx2 is expressed in mesenchyme surrounding a central non-expressing core (Bulfone et al., 1993). We show that, in zebrafish, suc/et-1 is expressed in central arch mesenchyme, while dlx2 is expressed in peripheral mesenchyme. Thus, the general spatial arrangement of Et-1 and dlx2 expression in arch mesenchyme has been conserved between fish and amniotes. A higher resolution analysis of dlx2 and Et-1 expression, with serial sections and double-labeling experiments, would further test this model of distinct arch mesenchymal populations revealed by expression of these two genes. We propose that the suc/et-1-expressing ventral arch cores in the first two arches correspond to the premyogenic condensations intermandibularis and constrictor hyoideus ventralis, respectively, described by Edgeworth (1935). According to this proposal, suc/et-1 expression marking ventral muscle precursors parallels engrailed expression marking dorsal muscle precursors (constrictor dorsalis) in the first arch (Miyake et al., 1992; Hatta et al., 1990; Edgeworth, 1935).

Together, our expression and mosaic analyses support a model (Fig. 9) in which arch postmigratory neural crest cells form a hollow cylinder surrounding central cores of paraxial mesoderm. Within each arch, ventral paraxial mesoderm expresses suc/et-1 and is surrounded by ventral postmigratory neural crest. dlx2 and gsc are expressed in both dorsal and ventral postmigratory arch crest, although only the ventral domains are suc/et-1-dependent. dHAND, msxE, dlx3 and EphA3 expression is ventrally-restricted and also requires suc/et-1. Both these gene expression patterns and these tissue arrangements argue for a conserved anatomical arrangement of arch mesenchyme that occurs transiently during arch development in all gnathostomes.

Conserved genetic network of gnathostome pharyngeal arch patterning

The Et-1 mutant mice have reduced dHAND arch expression while the dHAND mutant mice have no arch msx1 expression, leading Thomas et al. (1998) to propose a pathway involving these three genes. Surprisingly, the Et-1 mutant mice have normal msx1 expression, possibly due to low levels of dHAND expression, which are sufficient to activate msx1 at normal levels (Thomas et al., 1998). Our results demonstrate that, in zebrafish, both dHAND and msxE expression require suc/et-1. The orthologies of the five zebrafish msx genes and the three mammalian msx genes are unclear (Ekker et al., 1997).
However, since msx2 expression in both the Et-1 and dHAND mutant mice is normal (Thomas et al., 1998), we propose that, in the arches, msxE is the functional equivalent of mammalian msx1 and that, in zebrafish, expression of this msx gene more directly requires suc/et-1.

In zebrafish, gsc expression requires suc/et-1 ventrally, but not dorsally. Similarly, gsc expression is undetectable in E10.5 EdnrA mutant mice (Clouthier et al., 1998). Although no ventral specificity to this defect has been reported in mice, later in development, gsc is expressed in dorsal arch tissues (Gaunt et al., 1993) and gsc mutant mice have both dorsal and ventral craniofacial defects (Yamada et al., 1995; Rivera-Perez et al., 1995). Perhaps a later dorsal gsc expression domain in mice is homologous to the unaffected dorsal domain that we see in suc/et-1 mutants. Alternatively, a second zebrafish et-1 might activate dorsal gsc expression. A third possibility is that the suc/et-1-independent dorsal gsc domain is not homologous to any mammalian gsc expression domain. Regardless, the abolished ventral domains of gsc in suc/et-1 mutant embryos show that, in zebrafish and mice alike, some expression of gsc requires et-1.

Interestingly, these dorsal and ventral domains of zebrafish gsc expression, separated by a non-expressing intermediate region, combined with ventrally restricted gene expression patterns (e.g. dHAND), suggest that at this early precondensation stage, at least three arch mesenchymal fates have been specified: dorsal, intermediate or presumptive-joint, and ventral. This apparent specification of joints at a stage before they form is reminiscent of Gdf5 expression in the mouse, which prefigures joints in the axial and appendicular skeleton (Storm and Kingsley, 1996). Since the joints between dorsal and ventral arch cartilages in suc/et-1 mutants are also eliminated (Piotrowski et al., 1996; Kimmel et al., 1998; Fig. 1), we predict that markers discovered to be expressed in these presumptive-joint regions will be downregulated in suc/et-1 mutants.

dlx2 expression in cranial neural crest cells in suc/et-1 mutant embryos is unaffected until a postmigratory stage, when ventral neural crest cells fail to express dlx2. Likewise, the EdnrA mutant mice have no early dlx2 expression defects. However, at later stages, the EdnrA mutant mice fail to maintain dlx2 expression specifically in the second arch (Clouthier et al., 2000). Thus, while these results suggest that neither fish nor mice require et-1 signaling for early dlx2 expression, at later stages, fish and mice require et-1 signaling for dlx2 expression in different subpopulations of postmigratory arch neural crest.

In zebrafish, dlx3 arch expression is ventrally-restricted and requires suc/et-1. Similarly, in mice, dlx3 arch expression is ventrally-restricted and requires EdnrA (Robinson and Mahon, 1994; Qiu et al., 1997; Clouthier et al., 2000). Qiu et al. (1997) suggest that the phenotypes of the Dlx2 and Dlx1;Dlx2 mutant mice are specific to the dorsal arches because Dlx3 compensates for Dlx1 and Dlx2 ventrally. Although Dlx3 mutant mice die too early to assess a craniofacial requirement (Morasso et al., 1999), humans with a missense mutation in Dlx3 have tricho-dento-osseous (TDO) syndrome (Price et al., 1998), which includes a craniofacial component (Kula et al., 1996).

Expression of the zebrafish ephrin receptor tyrosine kinase EphA3 is also ventrally restricted and requires suc/et-1. Similarly, a mouse EphA3 gene is expressed in Meckel’s cartilage (Kilpatrick et al., 1996), although no function for EphA3 has been demonstrated in ventral arch development. We described a ventral arch morphogenesis defect in suc mutants (Kimmel et al., 1998). Since all other genes thus identified as downstream of suc/et-1 are transcription factors, EphA3 promises to help connect this hierarchy of transcription factors with the more immediate ‘effectors of morphogenesis’ (Holder and Klein, 1999).

Since dHAND, msx1 and dlx3 are all also ventrally-restricted within mouse arches, it seems that much of the genetic network that specifies ventral arch postmigratory neural crest (Fig. 9) has been largely conserved between mice and fish. Once mutations are found in each of the six zebrafish genes whose ventral expression requires suc/et-1, these genes can be ordered into genetic pathways by examining the time course of expression of the other ventral arch markers in each mutant. Furthermore, by examining the mutant phenotypes, the specific functional requirements of each of these genes for craniofacial development can be determined.

Neural crest specification and the timing of suc/et-1 function in the arches

The ability of suc/et-1 mutant neural crest cells to adopt ventral arch fates (e.g. express dHAND or EphA3 or contribute to normal ventral cartilages) in a wild-type host shows that the defects in suc/et-1 mutant neural crest cells are nonautonomous. Our results show that, beginning at approximately 12 hours, transplanted suc/et-1 mutant neural crest cells migrate into the arches of a wild-type host, mixing extensively with host cells. Thus, suc/et-1 is not required in neural crest cells for their ventral migration. Furthermore, markers of premigratory and migratory neural crest are unaffected in suc/et-1 mutant embryos, and injections of human ET-1 protein into arch primordia rescue defects in suc/et-1 mutant embryos. Therefore, suc/et-1 appears to function after neural crest migration, to specify ventral fates in the postmigratory arch primordia. Similarly, since the EdnrA mutant mice also lack defects in markers of migratory neural crest, Clouthier et al. (2000) conclude that EdnrA is required not for neural crest cell migration, but for postmigratory fates. This later requirement for Et-1/EdnrA function at a postmigratory stage contrasts to the earlier role of EdnrB in neural crest migration demonstrated in mouse embryos by Shin et al. (1999).

Mosaics, suc/et-1 expression and later mesodermal and endodermal defects suggest multiple tissue interactions during arch development

Transplants of wild-type mesendodermal cells fail to rescue the suc/et-1 mutant phenotype, indicating that either small numbers of transplanted wild-type mesendodermal cells are not sufficient to induce ventral markers or rescue cartilage or alternatively, the surface ectoderm domain of suc/et-1 expression is required for ventral arch fates. Tissue-specific promoters that drive suc/et-1 expression in one or a subset of its expression domains could be used to assay which suc/et-1-expressing tissues control craniofacial development.

Conversely, the ability of suc/et-1 mutant mesodermal cells to contribute to normal ventral muscles (which are mispatterned in suc/et-1 mutants) of a wild-type host suggests that paraxial mesoderm does not autonomously require suc/et-1 for the ability to form normal ventral muscles. To explain this, we propose bidirectional signaling occurs during arch development. First, Et-1 in the postmigratory neural crest environment specifies ventral arch neural crest fates. Later,
neural crest-derived cells signal back to the paraxial mesoderm to allow correct formation of ventral muscles. This signal would be independent of Et-1, since neural crest does not express et-1 (Maemura et al., 1996; Clouthier et al., 1998; Nataf et al., 1998; this paper). Consistent with this, Ednra is not expressed in arch paraxial mesoderm in mice and chicks (Clouthier et al., 1998; Kempf et al., 1998; Nataf et al., 1998). Likewise, the endodermal defect in suc/et-1 mutants suggests a similar suc/et-1-dependent feedback to the hyomandibular pouch, a tissue that in mice and chicks does not express Ednra (Clouthier et al., 1998; Kempf et al., 1998; Nataf et al., 1998).

In this model, both arch mesodermal and endodermal defects in suc/et-1 mutants are secondary to earlier defects in neural crest specification. However, the specificity of both the mesodermal and endodermal defects in suc/et-1 mutants suggests that these defects are revealing specific intertissue signaling events, ultimately dependent on suc/et-1 and required for proper pharyngeal arch development.

Potential implications for arch evolution

Our findings, combined with the pharmacological inhibition of the avian EDNRA receptor (Kempf et al., 1998) and the Et-1/Ednra/Ece-1 mutant mice (Kuribara et al., 1994; Clouthier et al., 1998; Yanagisawa et al., 1998) suggest that Et-1's requirement for jaw development is evolutionarily ancient and dates back to the common ancestor of teleosts and amniotes. Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.

We thank Angel Amores and Bruce Draper for generously providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; John Postlethwait, Don Kane, and Rachel Warga for mapping advice; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.

We thank Angel Amores and Bruce Draper for generously providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; John Postlethwait, Don Kane, and Rachel Warga for mapping advice; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.

We thank Angel Amores and Bruce Draper for generously providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; John Postlethwait, Don Kane, and Rachel Warga for mapping advice; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.

We thank Angel Amores and Bruce Draper for generously providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; John Postlethwait, Don Kane, and Rachel Warga for mapping advice; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.

We thank Angel Amores and Bruce Draper for generously providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; John Postlethwait, Don Kane, and Rachel Warga for mapping advice; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Hervé Kempf, Dave Raible, and Debbie Yelon for helpful discussions, providing PAC DNA pools; Yan-Ling Wang for DNA sequencing; Perhaps recruitment or modification of et-1 signaling in the anterior arches of agnathans played a role in the appearance of jaws during evolution. Examining expression of et-1 signaling components, and other genes like dlx, msx and dHAND in lamprey anterior arches, could shed light on the homologies of agnathan skeletal elements and hence on jaw evolution itself.