Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo

Alexander Dick¹,*, Marc Hild¹,*, Hermann Bauer¹,*, Yoshiyuki Imai², Heike Maifeld¹, Alexander F. Schier³, William S. Talbot², Tewis Bouwmeester⁴ and Matthias Hammerschmidt¹,‡

¹Hans-Spemann Laboratory, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
²Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305-5329, USA
³Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA
⁴Developmental Biology Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany

*These authors contributed equally to the work
‡Author for correspondence (e-mail: hammerschmid@immunbio.mpg.de)

Summary
Bone morphogenetic proteins (Bmps) are signaling molecules that have been implicated in a variety of inductive processes. We report here that zebrafish Bmp7 is disrupted in snailhouse (snh) mutants. The allele snh²¹ is a translocation deleting the bmp7 gene, while snh⁵⁶⁸ displays a Val→Gly exchange in a conserved motif of the Bmp7 prodomain. The snh⁵⁶⁸ mutation is temperature-sensitive, leading to several fold reduced activity of mutant Bmp7 at 28°C and non-detectable activity at 33°C. This prodomain lesion affects secretion and/or stability of secreted mature Bmp7 after processing has occurred. Both snh²¹ and snh⁵⁶⁸ mutant zebrafish embryos are strongly dorsalized, indicating that bmp7 is required for the specification of ventral cell fates during early dorsoventral patterning. At higher temperature, the phenotype of snh⁵⁶⁸ mutant embryos is identical to that caused by the amorphic bmp2b mutation swirl swirl² and similar to that caused by the smad5 mutation somitabun sbn²⁴. mRNA injection studies and double mutant analyses indicate that Bmp2b and Bmp7 closely cooperate and that Bmp2b/Bmp7 signaling is transduced by Smad5 and antagonized by Chordin.

Key words: Bmp7, Bmp2b, Prodomain, Dorsoventral patterning, snailhouse, swirl, Zebrafish

INTRODUCTION
Members of the family of Bone morphogenetic proteins (Bmps) are involved in the regulation of a variety of processes during vertebrate development (reviewed in Hogan, 1996). Bmps are generated as precursors that are secreted after dimerization and proteolytic processing (Hogan, 1996). Homodimers and heterodimers of different Bmps are formed. Studies with Bmp hybrids consisting of the prodomain of one and the mature region of another Bmp protein suggest that the prodomain can influence the final activity of the mature protein by regulating the efficiency and rate of the various maturation steps and its final stability (Dale et al., 1993; Thomsen and Melton, 1993, Constam and Robertson, 1999). In target cells, Bmp signaling is transmitted by a complex of type I and type II serine-threonine transmembrane receptors. Upon ligand binding, the receptors phosphorylate and activate members of the Smad family, Smad1, Smad5 and/or Smad8, which form complexes with Smad4 and translocate to the nucleus where they participate in transcriptional complexes to regulate target gene expression (reviewed by Kretschmar and Massagué, 1998).

The biological functions of Bmps have been investigated in different species, tissues and processes (reviewed in Hogan, 1996). In Xenopus laevis embryos, analysis has focused on the roles of Bmp2, Bmp4 and Bmp7 during dorsoventral (DV) patterning of both the ectoderm and the mesoderm. Overexpression of bmp2, bmp4 or bmp7 and of the Bmp signaling transducers smad1 and smad5 (Graff et al., 1996; Suzuki et al., 1997a) leads to ventralized phenotypes, while disruption of Bmp signaling by the expression of cleavage-resistant, dominant negative ligands (Hawley et al., 1995; Suzuki et al., 1997b) or truncated, dominant negative type I receptors (Graff et al., 1994; Suzuki et al., 1994) causes dorsalization, characterized by an enlargement of dorsal mesoderm at the expense of ventral mesoderm, and an enlargement of neural tissues at the expense of epidermis. In dorsal regions, Bmp action is attenuated by secreted proteins like Follistatin, Noggin and Chordin emanating from the Spemann organizer, which bind and inactivate Bmp4 (Piccolo
et al., 1996; Zimmerman and Harland, 1996). The function of Chordin, on the contrary, is attenuated by the metalloprotease Bmp1/Tolloid, which cleaves Chordin protein, thereby promoting Bmp action (Piccolo et al., 1997; Blader et al., 1997).

Genetic data that support and extend the findings in Xenopus have been obtained in the zebrafish, Danio rerio. Large-scale mutant screens have uncovered a collection of mutants with specific defects in DV patterning (Hammerschmidt et al., 1996a; Mullins et al., 1996). Subsequent identification of the molecular nature of the mutations has revealed that the strong dorsalization of swirl and somitabun mutants is caused by mutations in the zebrafish bmp2b and smad5 genes, respectively (Kishimoto et al., 1997; Nguyen et al., 1998; Hild et al., 1999), while the ventralized phenotype of dino mutants is due to a null mutation in zebrafish chordino, designated chordino (Schulte-Merker et al., 1997), and the weak dorsalization of minifin mutants due to mutations in the Chordin inhibitor Tolloid (Conners et al., 1999). Here, we investigate the role of Bmp7 during DV patterning of the zebrafish. In contrast to mouse (Dudley et al., 1995; Luo et al., 1995), bmp7 mutant embryos display a phenotype very similar to those caused by mutations in bmp2b and smad5. Bmp7 appears to be particularly required during early phases of zebrafish DV patterning when it acts in close cooperation with Bmp2b. In addition, results obtained for the mutant allele snh st1 point to a crucial role of the Bmp7 prom domain to confer proper secretion and/or stability to mature Bmp7 protein.

MATERIALS AND METHODS

Cloning of zebrafish bmp7

A subtractive cDNA library, enriched in ventral-specific gene products, was generated by preparing a pool of cDNAs from swirl/bmp2b mutant embryos at the tailbud stage, and subtracting it from a pool of cDNAs derived from their wild-type siblings, using the Clontech PCR Select kit according to manufacturer’s instructions. One of the clones isolated from this library, carrying a 590 bp insert, was used as a probe to screen a gastrula cDNA library at high stringency. The contig assembled from three independent clones revealed strong homology to vertebrate bmp7 genes. S’ RACE was used to clone additional 262 bp not covered by the bmp7 contig. RT-PCR with total RNA isolated with Trizol LS reagent (Gibco/BRL) from wild-type or additional 262 bp not covered by the mapping of bmp7 and bmp7-snailhouse (snh68) linkage analysis

Mapping of bmp7 and bmp7-snailhouse (snh68) linkage analysis

bmp7 was mapped on a panel comprising 48 individual progeny of a Tü × TL female (Gates et al., 1999), using the bmp7 SSCP described below. Direct linkage analysis was carried out with the F2 offspring of a snh68/Tü × WIK (Rauch et al., 1997) cross, using a bmp7 SSCP (single-strand conformational polymorphism) identified between the P0 parents of the linkage cross. SSC analysis was essentially carried out as previously described (Kishimoto et al., 1997), using the following PCR conditions and primers for amplification of a bmp7 fragment from genomic DNA of single embryos: 4 minutes 94°C – 30s (30 seconds 94°C. 1 minute 59°C. 30 seconds 72°C) – 2 minutes 72°C. sense primer, GAGCCTTGCGATGCGACATACT; antisense primer, AACACTTGCTCTCTGTGCA.

Identification and analysis of snh68

The snh68 allele was identified in a genetic screen for N-ethyl-N-nitrosourea (ENU)-induced mutations that disrupt patterning during embryogenesis (Y. I., A. F. S. and W. S. T., unpublished). In the haploid progeny of the original F1 female carrying the snh68 mutation, 6% (13/217) of the embryos displayed a C5 dorsalized phenotype (Mullins et al., 1996). After recovery of snh68+/F2 individuals, additional analysis showed that snh68 fails to complement snh st1 and is transmitted in non-Mendelian ratios; crosses between snh68+/ and snh st1+/+ adults gave 4.8% (84/1738) dorsalized progeny (expected 25%). The snh68 mutation was mapped using standard methods (Talbot and Schier, 1999) to analyze simple sequence length polymorphism (SSLP) markers (Knapik et al., 1998) in wild-type and snh68/ mutant haploid siblings.

Genotyping of swirl2, sbndtc24, dinnt250, snh68 and snh68

Genotyping of embryos and adult fish for the bmp2b mutation swirl2 was as previously described (Hild et al., 1999). The genotyping of the chordino allele dinnt250, which contains a G→A exchange in the splice donor site of the intron (TAGGCCGgattgg → TAGGCCGgattgg; capital letters exon, small letters intron), downstream of the 104 bp exon deleted in dinnt250 cDNA (Schulte-Merker et al., 1997), and the genotyping of the snailhouse alleles snh68/ and snh68/+, is described in the ZFIN database (http://zfish.uoregon.edu/ZFIN/), ‘SEARCH mutants’ application, under the corresponding allele names (tt250; ty68; st1).

Generation of constructs

For the transcription constructs, pCS2-bmp7 and pCS2-bmp7(snh), the coding region of wild-type and snh68/ bmp7 was cloned into pCS2+ (Rupp et al., 1994) after introducing an upstream Kozak sequence (ACC) via PCR. The snh68 mutation was introduced into pXβm-Xbmp7 (Hawley et al., 1995) by PCR-based site-specific mutagenesis, essentially as described in Hild et al. (1999). N-terminally flag-tagged wild-type and snh mutant Xbmp7 were generated as described in Hawley et al. (1995) and cloned into pC2S+ via EcoRI and XhoI restriction sites introduced by PCR. For C-terminally flag-tagged versions, wild-type and snh Xbmp7 were PCR-amplified and cloned via EcoRI into pCS2flagC (A. D., unpublished).

RNA synthesis, injection of zebrafish and Xenopus embryos, and Xenopus explant assays

For synthesis of capped mRNA with the Ambion message machine kit, pXβm-based constructs (Xbmp7) were linearized with XhoI, pSp64TS-based constructs (bmp2b, smad5) with Smal, and pCS2-based constructs (bmp7, smad1, hsmad4) with NotI. For Xenopus animal cap experiments, synthetic RNAs were injected into both blastomeres at the 2-cell stage. At stage 9, animal caps were explanted and cultured until sibling embryos reached the indicated stage. For activin treatment, caps were cultured in 0.5X MMR; 0.5% BSA with 200 U/ml activin A. Intact caps were harvested and processed for RT-PCR analysis as previously described (Bouwmeester et al., 1996). For dorsal marginal zone (DMZ) analysis, synthetic RNAs were injected marginally into both dorsal blastomeres at the 4-cell stage. DMZs were cut at stage 9-10 and cultured until sibling embryos reached the indicated stage. Primer sequences were derived from the Internet XMMR homepage.

Xenopus oocyte experiments and western blots

Stage VI oocytes were manually defolliculated and injected with 10-20 ng of mRNA, encoding N-terminally and C-terminally tagged versions of Bmp7 or the point mutant Bmp7(snh68). After 1 day incubation in 0.3X MBS, 0.1% BSA, conditioned medium (CM) and whole oocytes (WO) were harvested. WO lysates were prepared by homogenization in RIPA buffer (10 μl/oocyte) and removal of lipids by centrifugation. Equal amounts of CM and WO fractions were applied to 12.5% SDS-PAA gel electrophoresis (one WO equivalent...
RESULTS

Cloning of zebrafish \textit{bmp7}

A 590 bp region of zebrafish \textit{bmp7} was initially isolated from a wild type-\textit{swirl} subtractive library as a clone giving strongly reduced signals in in situ hybridized \textit{swirl} mutant embryos (Fig. 1A). The complete \textit{bmp7} coding region was subsequently cloned as described in Materials and Methods (GenBank accession number AF201379). Alignment of the deduced amino acid sequence of unprocessed zebrafish Bmp7 precursor protein with Bmp7 of \textit{Xenopus}, mouse and human revealed moderate similarity in the prodomains and high similarity in the regions of the mature protein (Fig. 1B).

Expression pattern of zebrafish \textit{bmp7}

The expression pattern of zebrafish \textit{bmp7} was investigated via developmental northern and RT-PCR analysis (Fig. 1C and not shown) and whole-mount in situ hybridization (Fig. 2). In contrast to \textit{Xbmp7} in \textit{Xenopus} (Nishimatsu et al., 1992; Hawley et al., 1995), zebrafish \textit{bmp7} is not maternally expressed. Zygotic \textit{bmp7} message was detectable from midblastula stages onwards (sphere stage), similar to \textit{bmp2b}. In contrast, zygotic expression of \textit{bmp4} is initiated slightly later (30\% epiboly stage; Fig. 1C).

Fig. 1. (A) \textit{bmp7} expression in wild-type and \textit{bmp2b}-mutant \textit{swirl} embryos, \textit{swr} mutant lacks ventral \textit{bmp7} expression, while expression in the anterior dorsal domain (arrowhead) and the yolk syncytial layer (arrows) is present. (B) Deduced amino acid sequence of zebrafish Bmp7 precursor protein aligned to Bmp7 of mouse, human and \textit{Xenopus}. Conserved amino acid residues in black, start of mature region indicated by arrowhead. Amino acid identities of mature zebrafish Bmp7 are 79.1\% to mouse and human Bmp7, 70.1\% to \textit{Xenopus} Bmp7, 69.7\% to mouse Bmp5, 68.9\% to mouse Bmp6, 47.5\% to zebrafish Bmp2b and 51.8\% to zebrafish Bmp4. (C) Temporal expression pattern of zebrafish \textit{bmp7}, determined by developmental northern analysis, in comparison to \textit{bmp2b}, \textit{bmp2a} and \textit{bmp4} (Martínez-Barberà et al., 1997). Loading control (ctr) shows ethidium-bromide-stained large rRNA.
At the sphere stage, *bmp7* is expressed broadly in the entire blastoderm with the exception of the dorsolomost regions where the fish equivalent of Spemann’s organizer will form (Fig. 2A). This pattern of early *bmp7* expression appears identical to that of *bmp2b* (Nikaido et al., 1997; Hild et al., 1999). At shield stage, shortly after the onset of gastrulation, *bmp7* expression is graded, with high levels detected ventrally and progressively lower levels seen laterally and dorsally (Fig. 2B), similar to the pattern of *bmp2b* and *bmp4* (Fig. 2C,D). At this stage, *bmp7* is also expressed in cells of the fish organizer at the dorsal side of the embryo (Fig. 2B), similar to the dorsal expression of *bmp4* (Fig. 2D). In addition, *bmp7* is expressed in the yolk syncytial layer (YSL; Fig. 2B). In contrast to the ventral region, anterior-dorsal and YSL expression is not affected in the various dorsIALIZED and ventralized mutants (Fig. 1A and data not shown).

At midgastrula stages (Fig. 2E,F) and at the end of gastrulation (Fig. 2G,J), *bmp7* is expressed in ventral marginal and ventral animal regions (presumptive ventral mesoderm and non-neural ectoderm, respectively) in a pattern very similar to that of *bmp2b* (Fig. 2H), but different from the expression pattern of *bmp4* whose transcripts are restricted to marginal regions (Fig. 2I). In DV pattern mutants (*swr*^{ta72}, *sbn*^{dtc24}, *sbn*^{h284}, *sbn*^{ad24}, *din*^{tt250}, *din*^{ta250}) the ventral *bmp7* expression is altered as previously reported for other ventral marker genes such as *bmp2b* (Nguyen et al., 1998; Hild et al., 1999). At the sphere stage, *bmp7* expression appears normal in all investigated mutants. However, during late blastula and gastrula stages, *bmp7* transcripts are progressively lost in the dorsIALIZED *swr*, *snh* and *sbn* mutants, whereas the expression domain is dorsally expanded in the ventralized *din* mutant (Fig. 1A and data not shown).

At the 15-somite stage, *bmp7* displays strong expression throughout the epithelium lining the yolk sac (Fig. 2K). In addition, it is expressed in cells of the presumptive pineal gland (Fig. 2K), in the posterior neuroectoderm (Fig. 2K) and the developing endoderm (Fig. 2L). Expression in the pineal gland persists during further development (Fig. 2M,N). In addition, *bmp7* expression is maintained in ventralmost cells of the head region (Fig. 2M), and is initiated in a few epithelial cells in ventral posterior regions of the otic vesicle (Fig. 2M,O).

bmp7 is mutated in the dorsalized mutant snailhouse snh^{ty68}

By scoring a single-strand conformational polymorphism (SSCP) in a panel of haploid siblings (Gates et al., 1999), zebrafish *bmp7* was mapped to LG 11, between the markers z13395 and z13411 (Fig. 3A). As a first step to investigate whether the phenotype of any of the thus far unresolved dorsализed zebrafish mutants (*snailhouse*, piggy tail, lost-a-fin) might be due to a mutation in *bmp7*, direct linkage analysis between these mutations and the *bmp7* gene was performed. The *bmp7* gene was linked to *snailhouse*, and we found no recombination between *snh*^{ty68} and *bmp7* in 247 mutant F₂ offspring (Fig. 3C).

Sequencing of *bmp7* cDNA from *snh*^{ty68} mutant embryos revealed a GTG→GGG mutation leading to a Val→Gly exchange at amino acid position 130 in the proregion of Bmp7 protein (indicated in Fig. 3D). This Val¹³⁰ is conserved or replaced by an Ile in all currently known Bmp proteins, including the *Drosophila* proteins Dpp, Screw and 60A (Fig. 3D).

Fig. 2. Spatial expression pattern of *bmp7*, in comparison to *bmp2b* and *bmp4*. Unless stated otherwise, panels show *bmp7* staining. (A) *bmp7*, sphere stage, lateral view, dorsal right; dorsal side indicated by arrowhead (identified in co-stainings for *chordino* mRNA, not shown). (B-D) Shield stage, lateral view, dorsal right; (B) *bmp7*, arrow to staining in the dorsal yolk syncytial layer underlying the shield; (C) *bmp2b*; (D) *bmp4*. (E,F) *bmp7*, 80% epiboly stage, (E) animal pole up, dorsal right, optical cross section through plane indicated in F by arrow; (F) lateral view, dorsal right; arrowhead in F to anterior regions of the anterior-dorsal expression domain, arrows in E and F to posterior regions. (G-I) Tailbud-stage, lateral view, dorsal right; (G) *bmp7*, arrow to anterior-dorsal expression domain; (H) *bmp2b*; (I) *bmp4*. (J) *bmp7*, tailbud stage, animal view, dorsal right; arrow to the anterior-dorsal expression domain. (K,L) *bmp7*, 15 somite-stage; (K) lateral view, anterior left, arrowhead to presumptive pineal gland, arrow to the posterior neural tube; (L) optical cross section through trunk, arrows to two bilateral ventral stripes, most likely the endoderm. (M-O) *bmp7*, 24 hpf; (M) lateral view on head; star indicates strong expression in ventralmost cells of head region; arrowhead to expression in pineal gland; arrow to expression in a few posterior-ventral epithelial cells of the otic vesicle (indicated by bars); (N) magnified view of expression in pineal gland; arrow to ventral border of the tectum; (O) optical cross section through posterior region of otic vesicle.
347 Zebrafish bmp7 mutants

snh ty68 can be rescued by exogenous bmp7 and has no maternal effect

As previously shown for Xenopus bmp7 (Nguyen et al., 1998), injection of zebrafish bmp7 mRNA can lead to a complete rescue of mutant snh ty68 embryos, while the rescuing potential of other bmps was significantly lower (Fig. 4E; Table 2). Rescued snh ty68 homozygous fish could be grown to adulthood and bred. snh ty68 homozygous mutant females, when crossed to snh ty68 heterozygous males, gave 50% dorsalized embryos indistinguishable from mutant offspring of two heterozygous parents (C4; Fig. 4D). When crossed to wild-type males, all offspring of snh ty68 homozygous mutant females appeared wild-type (not shown). This indicates that the snh ty68 mutation has no maternal effect.

snh ty68 is a temperature-sensitive hypomorph of bmp7

Several experiments were carried out to investigate the activity of snh ty68 mutant Bmp7 protein. Assessed in injections of zebrafish embryos, snh ty68 bmp7 RNA had significantly less ventralizing activity than wild-type bmp7. Approximately 25-fold higher amounts of snh ty68 bmp7 RNA were necessary to achieve an effect similar to wild-type bmp7 RNA (36% ventralized embryos with 4 pg wild-type bmp7 RNA; 32% ventralized embryos with 100 pg snh ty68 bmp7 RNA; Table 1). A similar reduction of its ventralizing potential in zebrafish embryos was obtained for Xenopus Bmp7 after introduction of the corresponding Val to Gly mutation (Xbmp7 snh; Table 1). Dorsalized embryos were not obtained upon injection of snh ty68 bmp7 RNA, indicating that the snh ty68 mutation, in contrast to other described mutant alleles of ventralizing agents (Kishimoto et al., 1997; Hild et al., 1999), has no antimorphic effect. In addition, we noted that the ventralizing activity of bmp7 snh is temperature sensitive: ventralizing activity of the mutant form is hardly detectable when injected embryos are incubated at 33°C (200 pg snh ty68 bmp7 RNA: 34% V2/3/4 at 28°C, 2% V2/3/4 at 33°C; Table 1), whereas wild-type bmp7 is fully active under these conditions (Table 1).

The activity of Xbmp7 snh was also severely reduced...
compared to wild-type Xbmp7 in several Xenopus explant assays. First, Xbmp7snh only weakly counteracted the effect of a cleavage-resistant, dominant negative version of Xbmp7, CM-Xbmp7 (Hawley et al., 1995) on neural induction (Fig. 5A). Secondly, Xbmp7snh was less active in its ability to interfere with dorsal mesoderm induction (Fig. 5B,C). Finally, Xbmp7snh displayed a strongly reduced potential to induce ventral mesoderm in animal cap explants (Fig. 5D; Nishimatsu and Thomsen, 1998).

Together, these data indicate that snh ty68 is a strong hypomorph of bmp7 and that the dorsalized phenotype of snh ty68 mutant zebrafish embryos is caused by the observed Val130 → Gly exchange in the proregion of Bmp7.

The snh ty68 mutation affects secretion or stability of secreted mature Bmp7 protein

Bmp proteins are synthesized as precursors that are processed and secreted after dimer formation (see for review Hogan, 1996). The amino acid exchange found in snh ty68 Bmp7 does not reside in the biologically active mature protein, but in the prodomain that is cleaved off during maturation. To elucidate why the snh ty68 mutation nevertheless leads to such a strong reduction in activity, experiments with flag-tagged versions of wild-type and mutant Xbmp7 were carried out in Xenopus oocytes. RNA encoding either N-terminally (prodomain region) or C-terminally (mature region) tagged Bmp7 proteins were injected, and oocyte lysates and conditioned media were analyzed for Bmp7 precursors and processing products in western blots and immunoprecipitations. Upon injection of the RNAs into zebrafish embryos, the N-terminally flagged Bmp7 proteins showed normal ventralizing activity like the untagged versions, whereas the activity of C-terminally tagged proteins displayed strongly reduced activities, suggesting that the tag might interfere with the biological activity of mature Bmp7 (Table 1). When injected in Xenopus oocytes, all four RNAs (C- and N-terminally tagged wild-type and snh mutant bmp7) gave rise to similar amounts of Bmp7 precursor proteins, as revealed on Western blots of oocyte lysates (Fig. 5E, left panel). In addition, identical amounts of tagged mature Bmp7 protein were observed, indicating that snh ty68 mutant Bmp7 is normally processed (Fig. 5E, left panel). In contrast to the lysate, however, strongly reduced amounts of snh Bmp7 processing products (mature protein for C-terminally tagged version and prodomain peptide for N-terminally tagged version) were found in the conditioned medium (Fig. 5E, middle panel). This suggests that the snh ty68 mutation leads to a strongly impaired secretion of Bmp7 or to instability of the secreted Bmp7 processing products. Under non-reducing conditions, both wild-type and snh mutant precursor Bmp7 proteins ran at higher molecular weight, indicating that Bmp7 dimerization is not affected by the snh ty68 mutation (Fig. 5E, right panel; oocyte lysate not shown).

Table 1. bmp7 RNA injections in wild-type embryos

<table>
<thead>
<tr>
<th>RNA</th>
<th>pg/e</th>
<th>Temp. (°C)</th>
<th>n</th>
<th>%wt</th>
<th>%V1</th>
<th>%V2</th>
<th>%V3</th>
<th>%V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmp7</td>
<td>2</td>
<td>28</td>
<td>118</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>4</td>
<td>28</td>
<td>33</td>
<td>64</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>8</td>
<td>28</td>
<td>67</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>83</td>
</tr>
<tr>
<td>bmp7</td>
<td>16</td>
<td>28</td>
<td>153</td>
<td>0</td>
<td>21</td>
<td>6</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>bmp7</td>
<td>100</td>
<td>28</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>bmp7</td>
<td>200</td>
<td>28</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>2</td>
<td>28</td>
<td>57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>4</td>
<td>28</td>
<td>42</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>8</td>
<td>28</td>
<td>48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>16</td>
<td>28</td>
<td>36</td>
<td>94</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>100</td>
<td>28</td>
<td>91</td>
<td>68</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>bmp7snh</td>
<td>200</td>
<td>28</td>
<td>92</td>
<td>57</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Xbmp7</td>
<td>2</td>
<td>28</td>
<td>23</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xbmp7</td>
<td>100</td>
<td>28</td>
<td>88</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>Xbmp7snh</td>
<td>100</td>
<td>28</td>
<td>68</td>
<td>99</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7 Cflag</td>
<td>50</td>
<td>28</td>
<td>28</td>
<td>68</td>
<td>18</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7 Cflag</td>
<td>50</td>
<td>28</td>
<td>96</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7 Nflag</td>
<td>50</td>
<td>28</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>bmp7 Nflag</td>
<td>50</td>
<td>28</td>
<td>36</td>
<td>73</td>
<td>0</td>
<td>17</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>100</td>
<td>28</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>bmp7</td>
<td>100</td>
<td>33</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>bmp7</td>
<td>100</td>
<td>33</td>
<td>34</td>
<td>73</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>100</td>
<td>33</td>
<td>40</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>200</td>
<td>28</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>bmp7</td>
<td>200</td>
<td>33</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>93</td>
</tr>
<tr>
<td>bmp7</td>
<td>200</td>
<td>28</td>
<td>92</td>
<td>57</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>bmp7</td>
<td>200</td>
<td>33</td>
<td>66</td>
<td>86</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Classification of ventralization strength from weak (V1) to strong (V4) was according to Kishimoto et al. (1997). Abbreviations: pg/e, pg injected mRNA per embryo; Temp, incubation temperature of embryos; n, number of scored embryos; wt, wild type.

bmp7 is deleted in the dorsalized mutant snh st1

In the initial large-scale zebrafish mutant screens, only one snailhouse allele was identified (Mullins et al., 1996). We have subsequently isolated additional dorsalized mutants. One of these mutants, designated snh st1, does not complement snh ty68.
crosses of snh^{ty68} and snh^{st1} heterozygous fish gave dorsalized embryos with a slightly stronger phenotype than snh^{ty68} homozygous mutant embryos (Fig. 4B,C). Fragments of bmp7 failed to amplify from genomic DNA of snh^{st1} homozygotes (Fig. 3B), indicating that the bmp7 gene is deleted in snh^{st1}. Testing SSLP markers located on the same linkage group as bmp7 (Knapik et al., 1998) revealed that a >30 cM region of LG11 is deleted in snh^{st1} mutants (Fig. 3A). Additional mapping experiments indicate that snh^{st1} is a translocation (Y. I., A. F. S., and W. S. T., unpublished). The region absent in snh^{st1} mutants is large and includes genes other than bmp7. However, rescue experiments suggest that the dorsalized phenotype of snh^{st1} embryos results from the loss of bmp7: upon injection of wild-type bmp7 mRNA into snh^{st1} mutant embryos, the strong dorsalized phenotype could be rescued to almost wild-type condition or converted to a ventralized phenotype, depending on the amount of injected bmp7 mRNA (Fig. 5F; Table 2). Such rescued homozygous mutant embryos develop later defects including brain necrosis. They die around 48 hours after fertilization, most likely due to the lack of other essential genes removed by the deletion.

The phenotype of snailhouse mutant embryos

snailhouse snh^{ty68} mutant embryos have been previously reported to display a dorsalization slightly weaker (C4) than that of the bmp2b mutant swirl^{ta72} (C5; Mullins et al., 1996; Nguyen et al., 1998). The expression pattern of krox20 (Oxtoby and Jowett, 1993), for instance, reveals an expansion of hindbrain rhombomeres 3 and 5 into ventralmost regions of swirl/bmp2b mutant swirl^{ta72} embryos (Fig. 6C; Nguyen et al., 1998) while, in snailhouse snh^{ty68}, these rhombomeres are only partially expanded (Fig. 6B; Nguyen et al., 1998). A phenotype indistinguishable from that of swirl^{ta72} mutants, however, was obtained for snh^{ty68} mutant embryos, when they were incubated at higher temperature (33°C; Fig. 6D). Wild-type sibling embryos incubated at 33°C developed normally. At 21°C, the snh^{ty68} phenotype was slightly weaker than at 28°C (C3 instead of C4, Mullins et al., 1996; not shown). This temperature sensitivity of the phenotypic strength of snh^{ty68} mutant embryos is consistent with the aforementioned temperature-sensitive effect of snh^{ty68} bmp7 RNA in overexpression studies. The dorsalized phenotype of snh^{st1} mutant embryos is at least as strong as that of swirl^{ta72} and snh^{ty68} at 33°C, with a complete expansion of both krox20 expression domains (Fig. 6E; Table 2). However, compared to the other mutants, the krox20 stripes appear shifted anteriorly, suggesting that the head region of snh^{st1} mutants is compressed (see Discussion). Together, the data suggest that at 33°C, the snh^{ty68} mutation can be regarded as a bmp7 null, and that the phenotype caused by the loss of bmp7 is as strong as that caused by the loss of Bmp2b activity in swirl mutants.

snh^{ty68} acts non-cell autonomously

It has been recently reported that bmp2b, when misexpressed in single cells in ectopic locations, acts cell autonomously to induce epidermal specification during ectoderm patterning of the zebrafish embryo (Nikaido et al., 1999), suggesting that bmp2b action is restricted to cells in which it is expressed.

Fig. 5. (A-D) RT-PCR analyses of RNA-injected Xenopus explants to compare the activity of wild-type (WT) and snh^{ty68} mutant Xbmp7(snh). The stage of control embryos (emb) is indicated in brackets; ctr, un.injected control explants. (A) N-CAM and, as control, Xhis mRNA levels, in animal cap explants. Wild-type, but not snh^{ty68} mutant Xbmp7 RNA attenuates the neural-inducing properties of a cleavage-resistant, dominant negative version of Xbmp7 (CM) in co-injected caps (CM+WT, CM+snh). (B) Mactin and Xhis mRNA levels in animal cap explants treated with the mesodermal-inducer activin (indicated with bar). Injection of 50 pg of wild-type Xbmp7 RNA per embryo (WT 50) is sufficient to repress activin-induced transcription of the dorsal mesodermal marker gene muscle actin, while 200 pg snh mutant RNA (snh 200) are required to achieve the same effect. (C) XChd (Sasai et al., 1994) and Xhis4 mRNA levels in dorsal marginal zone explants. Injected wild-type, but not snh mutant Xbmp7 RNA leads to decreased mRNA levels of the dorsal mesodermal marker gene chordin. (D) Xhox3 and Xhis3 mRNA levels of animal cap explants. Coinjected wild-type Xbmp7 and bmp2b RNA (WT+2b) induce high-level expression of the ventral mesodermal marker gene Xhox3, while co-injected snh mutant Xbmp7 and bmp2b RNA (snh+2b) and the three different RNAs alone do not (snh, WT, 2b). (E) Western blot analysis with anti-flag antibodies of lysates and conditioned media (cond. med.) from Xenopus oocytes injected with RNA encoding N- or C-terminally tagged wild-type (WT-N, WT-C) or snh^{ty68} mutant (snh-N, snh-C) zebrafish Bmp7. ctr, un-injected control oocytes; red., reducing SDS-PAGE conditions; non-red., non-reducing conditions. Tagged precursor protein is marked with NC, cleaved proregion peptide with N and mature protein with C. In the left panel, N could not be addressed, due to a contaminant band of the oocyte lysate. Similar amounts of wild-type and snh NC and C are found in the oocyte lysates, whereas in the conditioned medium, levels of snh-C and snh-N are strongly reduced compared to WT-C and WT-N. Under non-reducing conditions (right panel), NC and C shift to higher molecular weights, while N does not.

Zebrafish bmp7 mutants 349
Here, we investigated the behavior of Bmp7 during ectoderm patterning in snh wild-type chimeras. Labeled cells of sphere stage snh+/+ mutant embryos deriving from a cross of two snh+/+ homozygous parents were transplanted into wild-type (WT) recipients of the same stage, and chimeric embryos were scored after 24 hours of development for the presence of labeled cells in the ventral tail fin, a tissue completely absent in snh+/+ mutants. We found labeled snh mutant cells in the ventral tail fins of 14.5% (16/110) of the examined snh→WT chimeric embryos, in comparison to 20.5% (8/39) in chimeras from WT→WT control transplantsations (Fig. 7). Similar ratios were found for other tissues, such as the central nervous system, which contained labeled cells in 81% (89/110) of the snh→WT chimeras, and in 90% (35/39) of the WT→WT chimeras. This indicates that Bmp7 acts non-cell autonomously during ectoderm patterning of the zebrafish embryo, inducing epidermal specification in neighboring bmp7 mutant cells.

Genetic Interaction of snh/bmp7 with swr/bmp2, snb/smad5 and chordino

Several experiments were carried out to examine the interaction of Bmp7 with other known players of DV pattern formation. In the case of bmp2b, smad5 and chordino, for which zebrafish mutants have been identified (Kishimoto et al., 1997; Nguyen et al., 1998; Hild et al., 1999; Schulte-Merker et al., 1997), double mutants with the bmp7 allele snh+/+ were analyzed. The bmp2b allele swr+/+ and the antimorphic smad5 allele snbdec24 both have a weak dominant zygotic effect, leading to weakly dorsaledized phenotypes of heterozygous embryos (up to C1), characterized by partial loss of the ventral tailfin (Fig. 8A,C; Mullins et al., 1996). The phenotype of swr/snh and snb/snh

<table>
<thead>
<tr>
<th>RNA</th>
<th>pg/e</th>
<th>Cross</th>
<th>Temp (°C)</th>
<th>n</th>
<th>%C1</th>
<th>%C2</th>
<th>%C3</th>
<th>%C4</th>
<th>%wt</th>
<th>%V1</th>
<th>%V2</th>
<th>%V3</th>
<th>%V4</th>
<th>% resp mut</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmp2b</td>
<td>0.25</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>148</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp2b</td>
<td>0.25</td>
<td>snh+/+ x snh+/+</td>
<td>33</td>
<td>97</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>47</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp2b</td>
<td>1</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>8</td>
<td>28</td>
<td>37</td>
<td>100</td>
</tr>
<tr>
<td>bmp2b</td>
<td>2</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>76</td>
</tr>
<tr>
<td>bmp2b</td>
<td>0.25</td>
<td>swr+/+ x swr+/+</td>
<td>28</td>
<td>174</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>66</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>bmp2b</td>
<td>1</td>
<td>swr+/+ x swr+/+</td>
<td>28</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>35</td>
<td>11</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>bmp2b</td>
<td>2</td>
<td>swr+/+ x swr+/+</td>
<td>28</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>70</td>
<td>0</td>
<td>26</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp2b</td>
<td>1</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>20</td>
<td>6</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>bmp7</td>
<td>2</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>335</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>76</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>4</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>43</td>
<td>8</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>bmp7</td>
<td>2</td>
<td>swr+/+ x swr+/+</td>
<td>28</td>
<td>192</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>75</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>4</td>
<td>swr+/+ x swr+/+</td>
<td>28</td>
<td>80</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>43</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>bmp7</td>
<td>16</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>35</td>
<td>0</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>2</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>18</td>
<td>0</td>
<td>67</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>4</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>52</td>
<td>0</td>
<td>23</td>
<td>46</td>
<td>19</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>bmp7</td>
<td>16</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>237</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>snh+/+ EP (+)</td>
<td>28</td>
<td>86</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>2</td>
<td>snh+/+ EP (+)</td>
<td>28</td>
<td>62</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmp7</td>
<td>50</td>
<td>snh+/+ EP (+)</td>
<td>28</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>smad1</td>
<td>50</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>39</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>18</td>
<td>28</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>smad1</td>
<td>50</td>
<td>snh+/+ x snh+/+</td>
<td>33</td>
<td>55</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>8</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>smad5</td>
<td>50</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>smad5</td>
<td>50</td>
<td>snh+/+ x snh+/+</td>
<td>33</td>
<td>54</td>
<td>39</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>smad5</td>
<td>100</td>
<td>snh+/+ x snh+/+</td>
<td>33</td>
<td>86</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>39</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>hsmad4</td>
<td>100</td>
<td>snh+/+ x snh+/+</td>
<td>28</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Used alleles, unless stated otherwise, were smallhouse snh+/+, swirl swr+/+ and somitoban snh+/+. Classification of dorsalization (strong C5-weak C1) and ventralization (weak V1-strong V4) strength was according to Mullins et al. (1996) and Kishimoto et al. (1997).

% resp mut, frequency of mutant embryos showing a response to the injected RNA. Response was defined as a shift of the mutant phenotype to an at least two steps stronger level, i.e., until C1 in the case of snh or C2 for swr at 28°C.

* epoxy embryos were generated by early pressure treatment of haploid offspring of a heterozygous snh+/female. The low frequency of obtained mutant embryos in the control (11% instead of 50%) is due to non-Mendelian segregation of the mutation and the distance between deletion and centromere. Injected embryos were subjected to genotyping at 36 hours after fertilization.

(4) V4 phenotypes obtained after injection of bmp7 mRNA into snb mutant embryos appear slightly different from the regular V4 phenotype described in Kishimoto et al. (1997) and obtained in all other injections. Like regular V4 embryos, they lack head and notochord and form large, blocky somites. However, all structures develop at the former animal pole of the embryo, and no tail grows out.

Abbreviations: f, female; m, male; see also Table 1. hsmad4, RNA encoding human Smad4, as described in Hild et al. (1999), which in contrast to snb mutants (Hild et al. 1999) was ineffective in snh.
double heterozygotes kept at 33°C was significantly stronger, up to C4 dorsalization, characterized by completely coiled tails and trunks (Fig. 8A–D; *swr*/*+*/*snh*/*snh* at 33°C; *n* = 121; in this background, *swr*/*+* itself had no visible dominant effect; *sbn*/*+*/*snh*/*snh* at 33°C; *n* = 72).

At 28°C, *swr*, *snh* double heterozygotes developed much weaker phenotypes and could be raised to adulthood. Intercrosses of *swr*, *snh* double heterozygotes yielded 45% C5 embryos at 33°C, which in contrast to C4 embryos display a rupture of the yolk sac around the 15-somite stage (Mullins et al., 1996; *n* = 525, 4 crosses). Fifteen of those C5 dorsalized embryos with indistinguishable phenotypes were genotyped after photography at the 5-somite stage (not shown). 2/15 were *snh*, *swr* double homozygous, 7/15 homozygous for *swr* and heterozygous or wild type for *snh*, and 6/15 homozygous for *snh* and heterozygous or wild type for *swr* (expected ratio 1:3:3), indicating that the phenotype of *snh*, *swr* double mutants is not stronger than that of *snh* and *swr* single mutants (expected frequency for C5 embryos: 43.75%). We also investigated the phenotype of *bmp7*, *chordino* double mutant embryos from a cross of two *snh*/*snh*, *din*/*+* double heterozygous parents. Loss of Chordino function normally leads to strongly ventralized embryos (V3; Fig. 8F; Hammerschmidt et al., 1996a; Schulte-Merker et al., 1997). *snh*/*+*, *din*/*+*, with C4 dorsalization (wound up tail and trunk; Mullins et al., 1996); (D) putative *sbn*/*+, with C4 dorsalization. (E-H) *snh*/*+*, *sbn*/*+*, with C4 dorsalization, genotyped as *snh*/*snh*, *din*/*+* (G) and *snh*/*snh*, *din*/*din* (H). (I) Rescued *snh*/*+* mutant embryo with C1 dorsalization (arrow to ventral tail fin) after injection of *smad5* mRNA (50 pg/embryo) and incubation at 33°C, 36 hpf.

We also investigated the phenotype of *bmp7*, *chordino* double mutant embryos from a cross of two *snh*/*+*, *din*/*+* double heterozygous parents. Loss of Chordino function normally leads to strongly ventralized embryos (V3; Fig. 8F; Hammerschmidt et al., 1996a; Schulte-Merker et al., 1997). *snh*/*+*, *din*/*+* double homozygous, however, displayed a strongly dorsalized phenotype (C4) which was indistinguishable from that of *snh*/*+* homozygous embryos (Fig. 8G,H; found (and expected) segregation pattern: 25.2% (25%) C4, 17.4% (18.75%) V3, 57.4% (56.25%) wild type; *n* = 389; 4 crosses). This indicates that *bmp7* is epistatic to *chordino*, suggesting that Chordino acts as an inhibitor of Bmp7, similar to previous findings for Chordino and Bmp2b (Hammerschmidt et al., 1996b).

snh mutant embryos can be rescued by exogenous *bmp2b*, *smad1* or *smad5* mRNA

To investigate the order of gene functions in the pathway of ventral specification, *bmp2b*, *bmp7*, *smad1* and *smad5*, all of
which have ventralizing activities, were overexpressed in the various dorsalized mutants (compare Nguyen et al., 1998). Amounts of injected mRNAs were varied to allow a direct comparison of their activities in the different mutants. At 28°C, bmp2b rescued snhh68/bmp7 as well as its own mutant swpa72 (76-80%; Table 2) while, at 33°C, the rescue frequency of snh mutants was lower (30%; Table 2). Similarly, bmp7 was more effective in its own mutant snhh68 than in the bmp2b mutant swr (Table 2). Thus, it appears that, although both exogenous bmp2b and bmp7 RNA are most effective in mutants in their own genes, excessive amounts can also compensate for the loss of the other. Rescue of the smad5 mutant somitabun by bmp7, however, was approximately 4-fold-less efficient than for bmp2b/swr mutants and 8-fold-less efficient than for bmp7/snh mutants (Table 2; 4 pg/e), while bmp2b rescued bmp2b/swr and smad5/sbn mutants similarly well (Table 2; 1 pg/e).

We also compared the rescuing potentials of Smad1 and Smad5, the two putative receptor-activated transducers of Bmp signaling. We have previously shown that sbn mutants can be rescued by both smad1 and smad5 (Hild et al., 1999), whereas swr mutants only respond to smad1, but not to smad5 mRNA (Dick et al., 1999). snh mutants, like sbn, but unlike swr, responded equally well to exogenous smad1 and smad5 mRNA at both 28°C or 33°C (Table 2; Fig. 8i).

DISCUSSION

We have identified the Bone morphogenetic factor Bmp7 as an essential protein of zebrafish DV patterning. Two alleles are described, snailhouse snhh68, which was isolated during the Tübingen large scale mutant screen (Mullins et al., 1996), and the newly isolated allele snha71. While snhh68 contains a temperature-sensitive point mutation, snha71 appears to be a translocation which removes approximately 30 cM of LG 11, including the bmp7 gene. Our finding that the snha71 DV phenotype can be rescued by injection of bmp7 RNA might indicate that it is solely caused by the loss of the bmp7 gene. However, overexpression of bmp7 also leads to a rescue of other dorsalized mutants like the bmp2b mutant swr (LG 20) and the smad5 mutant sbn (LG 14). Thus we cannot rule out that the snha71 rescue is due to a combined compensation for bmp7 and additional, thus far unidentified essential genes deleted in the snha71 chromosome. Such a loss of additional DV regulators could explain why snha71 mutant embryos display a compression of the head region compared to snhh68 mutants at 33°C and swpa72 mutants. A similar head compression was also observed for another dorsalized mutant with a stronger phenotype than that of swpa72 (unpublished observation). Therefore, all epistasis analyses were carried out with snhh68, which appears to serve as a null allele at 33°C.

Bmp7 function in zebrafish

snailhouse mutant embryos are strongly dorsalized, indicating that bmp7 is required to specify ventral cell fates during early DV patterning of the zebrafish embryo. Several observations suggest that Bmp7 fulfills this role in close cooperation with Bmp2b: both genes show very similar temporal and spatial expression patterns, null mutations in both genes (snhh68 at 33°C and swpa72) cause indistinguishable phenotypes, and both genes are epistatic to the Bmp antagonist chordino.

Furthermore, the two mutations interact genetically with each other and with the smad5 mutation sbnh6824, and the phenotype of bmp2b, bmp7 double homozygous mutants is not stronger than that of bmp7 or bmp2b single mutants. Thus, bmp2b and bmp7 appear to act at similar positions of the same pathway, maybe as Bmp2b/Bmp7 heterodimers, as has been shown for Bmp2 and Bmp7 in several other instances (Sampath et al., 1990; Nishimatsu and Thomsen, 1998, and references therein). Alternatively, Bmp2b and Bmp7 could signal via parallel pathways, which converge at the level of Smad5. This, however, would mean that signaling via each of the two pathways is absolutely essential for Smad5 activation.

We also detected differences between bmp7/snh and bmp2b/swr. First, bmp2b mRNA could more efficiently rescue the smad5/sbn mutant phenotype than bmp7 mRNA, consistent with previous results obtained in a comparison of bmp2b with *Xenopus* Xbmp7 (Nguyen et al., 1998). In addition, bmp7/snh mutant embryos could be equally well rescued by smad1 and smad5 mRNA (this paper), while bmp2b/swr mutants only responded to smad1 (Dick et al., 1999). For bmp2b/swr, this differential response to Smad1 and Smad5 had let us propose a model with distinct functions of Bmps and Smads during different phases of DV patterning. During an early phase, the putative morphogenetic Bmp gradient is set up, involving positive Bmp autoregulation mediated by Smad5 and Bmp inhibition by Chordin signaling from the organizer. Later, this Bmp gradient is interpreted and cell fates are specified independently of Smad5, involving Bmp signal transduction by Smad1 (Hild et al., 1999; Dick et al., 1999). According to this model, exogenously supplied Smad5 is sufficient to compensate for the loss of essential upstream Bmp signaling during the early, but not during the late phase of DV patterning. Thus, our finding that snhh68, in contrast to swpa72, can be rescued by smad5 RNA injection suggests that bmp7, in contrast to bmp2b, is dispensable for the late phase of DV patterning. Rather, bmp7 (together with bmp2b) appears to be required for the early, Smad5-dependent phase to set up the putative Bmp gradient. It remains unclear how such a shift from a bmp7-dependent to a more bmp7-independent state could be achieved. Recruitment of a new receptor with higher affinity to Bmp2b homodimers could be one mechanism. Such differences in the specificity to the various ligands has been reported for the Bmp type I receptors ALK-2, ALK-3 and ALK-6 in COS cell culture studies (ten Dijk et al., 1994).

Bmp7 function in other vertebrates

A similar function during early ventral cell fate specification has been proposed for Xbmp7 in *Xenopus* embryos. Xbmp7 is expressed throughout the presumptive ectoderm and mesoderm of blastula and gastrula stage embryos. Overexpression studies and studies with a cleavage-resistant, dominant negative version (CM) indicate that Xbmp7 is involved in ventral specification of ectoderm and mesoderm (Hawley et al., 1995; Suzuki et al., 1997b; Nishimatsu and Thomsen, 1998). However, these studies, in contrast to the zebrafish data presented here, did not allow any conclusions about the requirement of Xbmp7 during DV patterning, since CM-Xbmp7 in addition to Xbmp7 itself also inhibits proper processing of other Bmps like Xbmp4 (Hawley et al., 1995).

In early mice and chicken embryos, *bmp7* is most prominently expressed in dorsal regions, corresponding to the
expression in prechordal plate and anterior notochord in zebrafish, while ventral expression, in contrast to zebrafish and *Xenopus*, is initiated later and at much weaker levels (Lyons et al., 1995; Dale et al., 1997). During later stages of mouse development, *bmp7* is most prominently expressed in distinct regions of the neural tube, optic and otic vesicles, heart, gut, mesonephros, limb buds, and developing cartilage and bone (Lyons et al., 1995), again different from the later expression pattern of *bmp7* in zebrafish. In addition, *bmp7*-deficient mouse embryos display a rather normal early DV pattern (Dudley et al., 1995; Luo et al., 1995). Thus, *bmp7* in mouse and chicken, although acting in concert with Bmp2 and antagonized by Chordin like in fish and amphibia (Sampath et al., 1990; Lyons et al., 1995; Dale et al., 1999), is apparently not involved in early ventral specification, but in other developmental processes like midline signaling (Dale et al., 1997), nephrogenesis, skeletogenesis and eye development (Dudley et al., 1995; Luo et al., 1995).

The Bmp7 prodomain

The mutant Bmp7 allele *snh*^{768} with its Val→Gly exchange in the prodomain also allows some insights into the importance of the prodomain for the biological activity of the mature protein. Bmp precursor proteins are supposed to be processed intracellularly, after dimer formation and before secretion (Hogan, 1996). For *snh*^{768} mutant Bmp7, normal levels of the precursor and the mature protein were found in *Xenopus* oocyte lysates, indicating that stability and processing of the precursor are not affected by the mutation. However, we found dramatically reduced amounts of both the prodomain peptide and the mature protein in the conditioned medium, which could be due either to impaired secretion or to reduced stability of the processing products after they have been secreted. The fact that intracellular levels of mutant mature protein are unaltered might argue against a defect in the secretion process itself, although additional experiments will be necessary to clarify this point. A similar effect of prodomains on the stability of secreted mature protein has been recently reported for two other TGF-β-family proteins, mouse Bmp4 and Nodal (Constam and Robertson, 1999). Our data provide genetic evidence for an essential role of the prodomain on the secretion and/or turnover of mature TGFβ polypeptides.

We thank Beate Fischer for technical help during the analysis of the *dim^{250}* mutation on genomic DNA level, Andrea Meier for carrying out in situ hybridizations, Dr Trevor Jowett for *krox20* in situ probe, Dr David Grunwald for cDNA libraries, and Dr Mary Mullins for communicating data prior to publication. This work was supported by the Max-Planck Gesellschaft, fellowships from the Boehringer Ingelheim Fonds, Stuttgart (A. D.), the Yamada Science Foundation and the Uehara Memorial Foundation (Y. I.), NIH grants R01GM57825 (W. S. T.), R01GM56211 and R21HG01704 (A. F. S.), and the Pew Scholars Program (W. S. T.). A. F. S. is a Scholar of the McKnight Endowment Fund for Neuroscience.

REFERENCES

