Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes

Eric van den Akker¹, Catherine Fromental-Ramain², Wim de Graaff¹, Hervé Le Mouellic³, Philippe Brület³, Pierre Chambon² and Jacqueline Deschamps¹,*

¹Hubrecht Laboratory, The Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
²Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, BP 163-67404 Illkirch-Cedex, CU de Strasbourg, France
³Unité d’Embryologie Moléculaire, Institut Pasteur, URA 1947 du CNRS, 25 rue du Dr Roux, 75724 Paris Cedex 15, France

Accepted 26 February; published on WWW 19 April 2001

SUMMARY

We present a detailed study of the genetic basis of mesodermal axial patterning by paralogous group 8 Hox genes in the mouse. The phenotype of Hoxd8 loss-of-function mutants is presented, and compared with that of Hoxb8- and Hoxc8-null mice. Our analysis of single mutants reveals common features for the Hoxc8 and Hoxd8 genes in patterning lower thoracic and lumbar vertebrae. In the Hoxb8 mutant, more anterior axial regions are affected. The three paralogous Hox genes are expressed up to similar rostral boundaries in the mesoderm, but at levels that strongly vary with the axial position. We find that the axial region affected in each of the single mutants mostly corresponds to the area with the highest level of gene expression. However, analysis of double and triple mutants reveals that lower expression of the other two paralogous genes also plays a patterning role when the mainly expressed gene is defective. We therefore conclude that paralogous group 8 Hox genes are involved in patterning quite an extensive anteroposterior (AP) axial region. Phenotypes of double and triple mutants reveal that Hoxb8, Hoxc8 and Hoxd8 have redundant functions at upper thoracic and sacral levels, including positioning of the hindlimbs. Interestingly, loss of functional Hoxb8 alleles partially rescues the phenotype of Hoxc8- and Hoxd8/Hoxc8-null mutants at lower thoracic and lumbar levels. This suggests that Hoxb8 affects patterning at these axial positions differently from the other paralogous gene products. We conclude that paralogous Hox genes can have a unique role in patterning specific axial regions in addition to their redundant function at other AP levels.

Key words: Paralogous Hox genes, Vertebral column, Axial skeleton, Vertebræ, Ribs, Mouse, Functional redundancy, Hoxb8, Hoxc8, Hoxd8, Transformation

INTRODUCTION

The paraxial mesoderm-derived axial skeleton of vertebrates comprises part of the skull and the vertebral column, and associated thoracic ribcage. The vertebral column consists of a series of anatomical elements, the vertebrae, which, on the basis of their relative position along the anteroposterior (AP) axis and distinct anatomical features, are grouped in five distinct types: cervical, thoracic, lumbar, sacral and caudal. The relative number and arrangement of these vertebral types is highly variable and is responsible for much of the morphological variation among vertebrate species. For example, the chick has 14 cervical vertebrae while mice and humans have seven. Using quail-chick chimaeras it has been shown that the entire vertebral column as well as the ribs (which can be regarded as vertebral processes) are generated from the somite-derived sclerotomes (Christ et al., 1974; Huang et al., 2000). Heterotopic grafting experiments in chick suggest that positional identity in the paraxial mesoderm is already determined before compaction of the somites; when unsegmented paraxial mesoderm from the future thoracic region is transplanted to the cervical region, the ability to form ribs is retained in the graft (Kieny et al., 1972). Factors certainly involved in this early specification process are the Hox gene products. These homeodomain-containing transcription factors are encoded by the vertebrate homologues of the clustered Drosophila homeotic genes (reviewed by McGinnis and Krumlauf, 1992). In mammals, four linkage groups (a, b, c and d) exist (Scott, 1992) which are thought to have arisen during evolution by two successive duplications of a single ancestral gene cluster (Kappen et al., 1989; Bailey et al., 1997). Both the Hox and homeotic genes are expressed along the AP axis in the same order as the way they are organised on the chromosome (Lewis, 1978; Duboule and Dollé, 1989; Graham et al., 1989). In the developing mouse embryo, the Hox genes are expressed in partially overlapping domains in the mesoderm, neurectoderm and some endodermal structures, from the neck region to the tail. Expression of the most 3’ Hox genes is initiated in the most posterior part of the embryo at the late primitive streak stage during gastrulation, and expression of more 5’ genes progressively later. The expression domains of these genes then spread forward in the nascent mesoderm and the ectoderm of the primitive streak and further rostrally, each gene eventually reaching its specific anterior boundaries (reviewed by Deschamps et al., 1999).

In Drosophila, the homeotic genes act as master switches...
governing the genetic program leading to the correct identity of each parasegment; mutations in these genes result in the partial or complete transformation of the identity of a parasegment into that of a neighbour (homeosis). The type of transformation induced by most, but not all, mutations in Drosophila seems to obey the posterior dominance rule: of all genes expressed in a parasegment at a given position, the most posteriorly restricted gene is the gene governing the developmental program (reviewed by McGinnis and Krumlauf, 1992; Duboule and Morata, 1994). In accordance with this rule, null mutations in homeotic genes generally lead to anterior homeotic transformation of the most rostral segment within the expression domain, and gain-of-function mutations or ectopic overexpression to posterior transformation of the segments that rostrally flank the expression domain; the most crucial functions of the homeotic genes therefore appear to be exerted within their expression domain near their anterior boundary of expression.

In the mouse, gain- and loss-of-function studies of individual Hox genes have demonstrated that changes in Hox expression can lead to changes in the regional identity of mesodermal, neuroectodermal and endodermal derivatives (reviewed by Krumlauf, 1994; for a description of most Hox gene loss-of-function mutants, see Mak, 1998 and references therein). The direction of the transformations is, however, generally less predictable than in Drosophila (Krumlauf, 1994; Crawford, 1995). For example, there are Hox null mutant mice displaying defects indicative of posterior transformation of particular structures. In addition, the AP levels at which the transformations take place are not always near the rostral expression boundary of the gene; in some null mutants, defects have been observed in structures located far more posterior than their anterior boundary of expression. Strikingly, transiently delayed or precocious expression of 5’ Hox genes either owing to deletion of an enhancer (Zákány et al., 1997), or to deletion of a ‘cluster encompassing’ repressor element (Kondo and Duboule, 1999) were shown to lead to, respectively, anterior or posterior skeletal transformations. This points to the importance of a well-timed early activation phase of Hox gene expression for axial patterning (Kondo and Duboule, 1999).

Paralogous Hox genes occupy the same relative position within different Hox clusters and they bear highly homologous sequences both in and outside their homeodomain (Graham et al., 1989; Duboule and DOLLÉ, 1989). Mice which are double or triple mutant for paralogous Hox genes display more severe and more penetrant phenotypes than single mutant mice for any of the two or three genes (Condie and Capecchi, 1994; Davis et al., 1995; Horan et al., 1995b; Fromental-Ramain et al., 1996a; Fromental-Ramain et al., 1996b; CHEN and Capecchi, 1997; MANLEY and Capecchi, 1997; MANLEY and Capecchi, 1998; CHEN et al., 1998; GAVALAS et al., 1998; STUDER et al., 1998). The transformations in the double or triple mutant mice were often more complete and/or found in a larger domain (extending farther from the anterior boundary of expression) than those in the single mutant mice. These results point to a large functional redundancy among Hox genes. Besides evidence for functional redundancy between paralogous genes, evidence for functional redundancy between neighbouring genes (RANCOURT et al., 1995; DE LA CRUZ et al., 1999; Davis and Capecchi, 1996; Zákány and Duboule, 1996) and even non-paralogous genes in separate clusters (Favier et al., 1996) has also been found.

We have studied the axial skeleton of newborn mice that are single, double and triple mutant for members of the Hox paralogous group 8 (Hox8b, Hox8c and Hox8). The three genes have been reported to have different expression boundaries in the mesoderm. At embryonic day 12.5, the most rostral pre-vertebra (pv) expressing Hox8b is pv 7 (DESCHAMPS and Wijgerde, 1993). At this stage, the anterior limits of Hox8c and Hox8 expression in the mesoderm have been reported to be at the level of pv 8 (TIRET et al., 1993) and pv 18 (IZPISUÁ-BELMONTE et al., 1990), respectively.

Hox8 was inactivated by gene targeting, and the mutant phenotype was investigated. These Hox8 loss-of-function mutants, Hox8b- (van den Akker et al., 1999) and Hox8c- (LeMOUELLEC et al., 1992; TIRET et al., 1993) null mice show phenotypical differences. By crossing these mice, and performing bone and cartilage staining on newborn double and triple mutants, we found evidence for interactions between all three genes along a large A-P domain of the vertebral column. Although most skeletal defects in double and triple mutant mice suggest synergistic interactions between these genes, the attenuation of some defects suggests a different contribution of these genes at specific AP levels.

MATERIALS AND METHODS

Generation of single mutant mice and newborns

Hox8b mutant mice were generated using a construct depicted in Fig.1. Briefly, a 4.3 kb XhoI-HindIII 129/Sv genomic fragment containing the Hox8b gene was subcloned in pSL1190 where the EcoRI site is missing. A 1 kb PMC1Neo cassette (Thomas and Capocci, 1987) was inserted in the same transcriptional orientation as Hox8b into the EcoRI site of the homeobox to give pSLXHNeo. This insertion interrupts the Hox8b protein sequence at the level of amino acid 18 of the homeodomain. A 3 kb HindIII-XhoI genomic fragment corresponding to Hox8b 5’ sequences was cloned into bluescript SK+ (Stratagene) and excised by EcoRV-XhoI before subcloning between Snabl and XhoI in pSLXHNeo to give pSLHXXHNeo. A PGK-TK cassette purified from plasmid pD352 (RIJI et al., 1994) was inserted in the KpmI site at the 5’ extremity of the genomic fragment giving the plasmid pTKd8pmc1neo. After elimination of the 5’ HindIII site the vector was linearised by HindIII before electroporation of D3 embryonic stem cells (Gossler et al., 1986). The generation of Hox8b and Hox8c mutant mice has been described previously (van den Akker et al., 1999 and LE MOUELLIC et al., 1992, respectively). In both of these mutant lines, a HoxlacZ fusion protein is expressed instead of the normal Hox protein. Of the three Hox8 mutant lines described (van den Akker et al., 1999), we used the Hoxb8lacZneo- line in which the neo selection cassette has been removed in vivo using the CrelloxP system.

Hox8b8c mice are viable, but display a number of visible defects; they tend to be smaller than control mice, they develop skin wounds, and they show an aberrant claspin reflex and signs of abnormal locomotion (van den Akker et al., 1999). As Hox8b8c males are fertile but appear to have breeding difficulties (which may be linked to the neurological defects observed) and Hox8b8c females often have problems in feeding their offspring (E. A. and J. D., unpublished) this line was maintained mainly using heterozygotes, which are healthy and fertile. The Hox8c8c mutant line was maintained in a similar manner, as most Hox8b8c mice die shortly after birth from a still unknown cause. Viable Hox8b8c mice could, however, be used for further breeding (see also Le Mouellie et al., 1992). The Hox8c and
Paralogous Hox genes and axial patterning

RESULTS

Comparison between the mesodermal expression patterns of the three paralogous group 8 Hox genes

Hoxb8 expression has been reported to be detected from the level of somite 10/11 to more posterior somites (Charité et al., 1994) around day 9.5. Hoxc8 is expressed weakly in somite 15 and more strongly between somites 16 and 24 (pv21, L1) (Le Mouellec et al., 1992). Hoxd8 is expressed caudally to pv 18 (T11, in part originating from somite 21) at day 12.5 (Izpisúa-Belmonte et al., 1990). With a view to anticipate and later interpret the phenotypes of single and compound mutants, we directly compared the expression of the three genes in day 9.5 embryos (between 22 and 26 somites) within the same experiment. Whole-mount in situ hybridisation confirmed that Hoxb8 is expressed weakly in somite 10, and quite strongly in the paraxial mesoderm between somites 11 and 22. (Fig. 1A). Hoxc8 is expressed the most strongly between somites 15 and 23 (Fig. 1B) but very low levels of expression can be detected up to s11 (data not shown). Hoxd8 is expressed at very low levels in the paraxial mesoderm posterior to the forelimb (s11).
to the level of somite 17, at slightly higher levels between somites 18 and 23, and more strongly posterior to somite 23 (Fig. 1C, and data not shown).

Generation and phenotype of Hoxd8-null mice

The Hoxd8 gene was disrupted using a strategy depicted in Fig. 2 (for a detailed description, see Materials and Methods). Southern analysis (not shown) confirmed correct disruption of the Hoxd8 gene in four out of 87 analysed embryonic stem cell clones. Two lines were used to generate chimaeric mice that were able to transmit the clones. Two lines were used to generate chimaeric mice that also had a rudimentary 14th rib at the same side. We also found rib attached to the sternum on one side. One of these animals have been described previously (van den Akker et al., 1999; Le Mouellic et al., 1992; Tíret et al., 1993; Tíret et al., 1998). We extended and repeated these studies, respectively, performing skeletal staining on newborns (Table 1).

In total we studied the skeletons of 61 Hoxb8+/− and 30 Hoxb8−/− newborn mice of the Hoxb8lacZneo− line (see Table 1). The Hoxb8−/− mice show variable defects in the upper thoracic rib cage (Fig. 3B,C,H-J) with a penetrance of 27%. In two Hoxb8−/− newborns, the T1 and T2 ribs fused before attaching to the top of the sternum on one side, while the T1 and T2 ribs had the same attachment point at the top of the sternum on the other side, resulting in an abnormal sternum with a reduced number of segments (Fig. 3C,I,J). In one Hoxb8−/− newborn, the T1 and T2 ribs had the same attachment point at the top of the sternum at both sides, also resulting in a shorter sternum (not shown). Two other Hoxb8−/− newborns showed unilateral shifts of the attachment point of the T2 thoracic and lower ribs (down to T7) resulting in an irregularly patterned ‘crankshaft’ sternum, and fusion of the T1 and T2 ribs (not shown). In three Hoxb8−/− newborns the T1 and T2 ribs fused and split again before attaching to the sternum, resulting in a normal sternum (Fig. 3B,H). The T2 rib defects could be considered as anterior transformation of the T2 vertebra towards the identity of T1, as either the proximal part of the rib or the whole rib (including the attachment point to the sternum) is always shifted anteriorly. Consistent with this, we observed that the spinous process normally present on T2 was shorter in some Hoxb8−/− animals (Fig. 3H) compared with

Different skeletal phenotypes in newborn Hoxb8, Hoxc8 and Hoxd8 loss of function mice

The skeletal phenotypes of Hoxb8 and Hoxc8 mutant mice have been described previously (van den Akker et al., 1999;
Paralogous Hox genes and axial patterning

the long spinous process found on T2 in wild-type animals (Fig. 3G). In one of the Hoxb8−/− animals with a strong phenotype, the long spinous process was clearly shifted to T3 (Fig. 3I,J), suggesting transformation of the T3 vertebra towards a T2 identity in this animal. The T1 rib defects appear to be more ambiguous and only clear shortening of the T1 rib can be easily explained in terms of transformation of the T1 vertebra towards the identity of C7. With low penetrance, we observed an abnormality of the cervical vertebrae in the Hoxb8−/− mice. The anterior tuberculum (AT), a ventral process that is normally found exclusively on the 6th cervical vertebra (C6; Fig. 3G) was found to be present either on the 7th cervical vertebra (C7; Fig. 3J) or on C6 and C7 in 17% of the Hoxb8−/− mice. We interpret presence of an anterior tuberculum on C7 as anterior transformation of the C7 vertebra towards the identity of C6 (Table 1). These results suggest a role for Hoxb8 in patterning the upper thoracic vertebral column.

We analysed 24 Hoxc8+/− and 18 Hoxc8−/− newborns (Table 1). The presence of an extra sternebra between the 6th and 7th thoracic ribs was observed in 67% of the Hoxc8−/− mice (Fig. 3D; Table 1). Some of the Hoxc8+/− and one third of the Hoxc8−/− mice exhibit a complete T8 to T7 transformation (Table 1). In most Hoxc8−/− mice one or two (rudimentary or
fully developed) ribs were present on vertebra L1 (Fig. 3D,E). Six mice out of the 18 examined had a fully developed pair of ribs on L1 (Fig. 3D). These abnormalities of the Hoxc8 mutants have been described previously and suggest a role for Hoxc8 in specifying the identity of elements forming the ventral part of the thoracic vertebral column at least from the sixth thoracic to the first lumbar vertebra (Le Mouellic et al., 1992; Tiret et al., 1993). We also observed defects that have not been described before, possibly owing to differences in genetic background between this and previous studies. Thoracic vertebrae normally carry a dorsal process that points posteriorly from T3 to T9, and anteriorly from T11 and more caudally. T10 is therefore called the transitional vertebra. Although in wild-type mice T10 was always the transitional vertebra (Fig. 3K), T11 was in one of the Hoxc8−/− mice, and T12 was in all 18 Hoxc8−/− mice (Fig. 3L). Furthermore, a partial or complete transformation of the 1st sacral vertebra towards the identity of the 6th lumbar vertebra was observed in Hoxc8−/− mice (Fig. 3M-P). This transformation results in a unilateral or bilateral posterior shift in the position of the hindlimb, which is always associated with the position of the sacrum. This strongly suggests that Hoxc8 is involved in positioning the hindlimbs. In addition, we observed a subtle defect in the appendicular skeleton of Hoxc8 mutants: in all studied Hoxc8−/− newborn mice, the deltoid crest of the humerus appeared slightly malformed (not shown). These results suggest that Hoxc8 has a minor role in forelimb morphogenesis.

In conclusion, all available data indicate that Hoxc8 is participating in patterning mesoderm-derived structures from the lower thoracic to sacral areas, and is involved in forelimb patterning and positioning of the hindlimbs.

Enhanced penetrance of Hoxb8 and Hoxc8 specific mutant phenotypes in double mutants

Double mutant mice were generated as described in Materials and Methods. Defects in the upper thoracic rib cage, which are specific for the Hoxb8 mutation, were observed much more

Fig. 4. Typical examples of double and triple null mutant skeletons. (A-C) Hoxb8−/−/Hoxc8−/+ newborn with bilateral fusion of the first and second ribs (in this case resulting in fusion of the first two sternebral segments). As in most Hoxc8−/− newborns, an extra sternebra is visible between the sixth and seventh ribs (arrow), but only seven pairs of ribs are attached to the sternum (as in wild types) and only one rudimentary rib is present on L1 (L1′). The S1 vertebra however is completely transformed to a lumbar identity (S1′). As in the Hoxc8−/− newborns, the transitional vertebra (see text) is T12. (D-F) Hoxb8−/−/Hoxd8−/+ newborn with unilateral fusion of the first and second rib. No abnormalities are present in more posterior regions. (G-I) Hoxc8−/+/Hoxd8−/+ newborn with extra sternebra between the sixth and seventh pairs of ribs, bilateral attachment of an eighth rib to the sternum, bilateral presence of a 14th rib on L1 (L1′) and full transformation of S1 towards a lumbar identity (S1′). The position of the transitional vertebra (asterisks) is as in the Hoxc8−/− newborns shifted to T12 (now designated T12′). (J-L) Triple mutant newborn with bilateral fusion of the first and second thoracic ribs before the sternum. The number of sternebrae is normal due to the presence of an extra sternebra between the sixth and seventh pairs of ribs. Seven pairs of ribs attach to the sternum and two rudimentary ribs are present on L1. S1 is transformed to a lumbar identity (L1′) and the transitional vertebra (asterisks) is T12′.

E. van den Akker and others
frequently in \(\text{Hoxb8}/\text{Hoxc8}\) double mutants than in \(\text{Hoxb8}\) single mutants (Table 2A). We also observed an increase in the percentage of \(\text{Hoxc8}\) null mice with an extra lumbar vertebra causing a shift in the position of the hindlimbs upon additional loss of one or two functional \(\text{Hoxb8}\) alleles (compare Table 2A with Table 1). This \(\text{S}1\) to \(\text{L}6\) transformation was partial in some \(\text{Hoxc8}^{+/+}\) mice missing one or two \(\text{Hoxb8}\) alleles (Table 2A), in spite of the fact that it was never observed in single \(\text{Hoxc8}^{+/+}\) mice (Table 1).

\textit{Hoxc8} mutant phenotypes at lower thoracic levels are attenuated by additional loss of \(\text{Hoxb8}\)

Interestingly, we did not observe an increase in the percentage of animals with an 8th rib attached to the sternum or with an extra (pair of) rib(s) attached to the first lumbar vertebra (hallmarks of the \(\text{Hox8}\) loss-of-function mutation) in \(\text{Hoxb8}/\text{Hoxc8}\) double mutants. A decrease in the frequency and an even stronger decrease in the severity of the defects at these levels were found in \(\text{Hoxb8}^{+/+}/\text{Hoxc8}^{+/+}\) double mutants compared with the \(\text{Hoxc8}^{+/+}\) mice (compare Table 2A with Table 1). Thus, the \(\text{Hoxb8}\) mutation appears to attenuate the effects of the \(\text{Hoxc8}\) mutation at this level of the vertebral column. A representative \(\text{Hoxb8}^{+/+}/\text{Hoxc8}^{+/+}\) double mutant skeleton is shown in Fig. 4A-C.

Enhancement of \(\text{Hoxc8}\) mutant skeletal phenotypes by additional loss of \(\text{Hoxb8}\)

\(\text{Hoxb8}\) loss-of-function mutants exhibited upper thorax defects with a much higher frequency upon additional loss of functional \(\text{Hox8}\) alleles (compare Table 2B with Table 1). This was unexpected given the fact that \(\text{Hox8}\) is expressed at considerably low levels in the somites and pre-vertebrae at that AP level. We tested the possibility that the lower penetrance of upper rib cage defects in \(\text{Hoxb8}^{+/+}\) single mutant compared with \(\text{Hoxb8}^{+/+}/\text{Hoxc8}^{+/+}\) double mutant mice could be due to an increased expression of \(\text{Hoxd8}\) in the \(\text{Hoxb8}\) null mutant, resulting in a partial rescue of the \(\text{Hoxc8}\) null mutant phenotype. No significant difference in \(\text{Hox8}\) mRNA distribution was however apparent between \(\text{Hoxb8}^{+/+}\) and wild-type embryos at day 9.5 and 11.5 (not shown). \(\text{Hoxc8}\) expression was also normal in the \(\text{Hoxb8}\) null mutants (not shown). We conclude that the low expression of both \(\text{Hox8}\) alleles is important for correct patterning at upper thoracic levels when \(\text{Hoxb8}\) is fully inactivated.

No defects were found in the appendicular skeleton of \(\text{Hoxb8}/\text{Hoxd8}\) double mutants. An example of a \(\text{Hoxb8}^{+/+}/\text{Hoxd8}^{+/+}\) double mutant skeleton is shown in Fig. 4D-F.

Enhancement of \(\text{Hoxc8}\) mutant skeletal defects by additional loss of \(\text{Hoxd8}\)

\(\text{Hox8}\) mutant mice carrying one or two mutant alleles of \(\text{Hoxd8}\) (Table 2C) showed an increased penetrance and severity of the T8 to T7 transformation, compared to \(\text{Hoxc8}\) single mutants (compare Table 2C with Table 1). In addition, we observed twice as many mice with a fully developed pair of ribs on L1 when \(\text{Hoxc8}\)-null mice lacked both functional \(\text{Hoxd8}\) alleles (compare Table 2C with Table 1). Moreover,
Table 2. Penetrance (%) of vertebral column defects in Hox paralogous group 8 double and triple mutants

<table>
<thead>
<tr>
<th>Type of transformation</th>
<th>C7 to C6</th>
<th>T1 to C7</th>
<th>T2 to T1</th>
<th>T7 to T6</th>
<th>T8 to T7</th>
<th>T12 to T10</th>
<th>T11 to T10</th>
<th>L1 to T13*</th>
<th>S1 to L6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>AT on C7</td>
<td>Abnormal T1 rib</td>
<td>Abnormal T2 rib</td>
<td>Extra sternebra between T6 and T7 ribs</td>
<td>Eighth rib at sternum</td>
<td>TV=T11 of T12</td>
<td>14th rib on L1</td>
<td>S1 loose from sacrum</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxc8+/+ (n=25)</td>
<td>0</td>
<td>8 (0)</td>
<td>8 (8)</td>
<td>12</td>
<td>24 (12)</td>
<td>0</td>
<td>0</td>
<td>4 (0)‡†</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxc8+/+ (n=14)</td>
<td>0</td>
<td>7 (7)</td>
<td>14 (7)</td>
<td>71</td>
<td>50 (21)</td>
<td>100</td>
<td>86 (36)</td>
<td>57 (50)</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=29)</td>
<td>14 (3)</td>
<td>41 (10)</td>
<td>45 (31)</td>
<td>7</td>
<td>10 (7)</td>
<td>0</td>
<td>3 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=10)</td>
<td>10 (0)</td>
<td>70 (30)</td>
<td>80 (80)</td>
<td>80</td>
<td>40 (20)</td>
<td>100</td>
<td>70 (0)</td>
<td>67 (56)§ §</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (5)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=30)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=11)</td>
<td>9 (0)</td>
<td>27 (0)</td>
<td>27 (0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxd8+/+ (n=19)</td>
<td>16 (0)</td>
<td>74 (16)</td>
<td>79 (68)</td>
<td>5</td>
<td>5 (5)</td>
<td>5</td>
<td>5 (5)</td>
<td>5 (5)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+ (n=23)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>52 (39)</td>
<td>13</td>
<td>4 (0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+ (n=23)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>57 (26)</td>
<td>14† §</td>
<td>13 (0)</td>
<td>22 (17)</td>
<td></td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+ (n=5)‡</td>
<td></td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+ (n=18)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61</td>
<td>83 (67)</td>
<td>100</td>
<td>94 (67)</td>
<td>100 (100)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxc8+/+Hoxd8+/+ (n=21)</td>
<td>5 (0)</td>
<td>14 (0)</td>
<td>24 (14)</td>
<td>14</td>
<td>33 (10)</td>
<td>0</td>
<td>10 (0)</td>
<td>38 (19)</td>
<td></td>
</tr>
<tr>
<td>Hoxb8+/+Hoxc8+/+Hoxd8+/+ (n=16)</td>
<td>6 (0)</td>
<td>81 (6)</td>
<td>100 (88)</td>
<td>94</td>
<td>88 (50)</td>
<td>100</td>
<td>88 (31)</td>
<td>94 (94)</td>
<td></td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+Hoxd8+/+ (n=12)</td>
<td>18 (18)‡‡</td>
<td>83 (67)</td>
<td>100 (100)</td>
<td>25</td>
<td>17 (8)</td>
<td>0</td>
<td>0</td>
<td>17 (8)</td>
<td></td>
</tr>
<tr>
<td>Hoxc8+/+Hoxd8+/+Hoxd8+/+ (n=11)</td>
<td>45 (9)</td>
<td>91 (82)</td>
<td>100 (100)</td>
<td>64</td>
<td>50 (20)§§</td>
<td>100</td>
<td>70 (0)§§</td>
<td>90 (90)§§</td>
<td></td>
</tr>
</tbody>
</table>

The percentage of animals with bilateral presence of phenotypes is indicated between brackets.
*For the L1 to T13 transformation the numbers between brackets represent the percentage of animals with 2 fully developed ribs on L1.
‡‡n=24.
§§n=5.
††n=9.
‡‡n=21.
**Abnormalities in the Hoxc8+/+Hoxd8+/+ mutants are expressed in a fraction because of the low number of animals examined.
\\(\ddagger\ddagger)n=11.
§§n=10.

The anterior transformation of vertebra S1 into L6 and the associated caudal shift in the position of the hindlimb, another feature of the Hoxc8 null mutation, increased in frequency in genetic combinations comprising one or two Hoxd8 mutant alleles (compare Table 2C with Table 1). This phenotype became fully penetrant in Hoxc8/Hoxd8 double null mice. This points to a contribution of Hoxd8 in vertebral morphogenesis at axial levels where Hoxc8 is the main patterning gene, in spite of the normal phenotype at this level in single Hoxc8 mutants. The malformation of the humerus, present in Hoxc8 single null mutants, was not more severe in any of the Hoxc8/Hoxd8 double mutants. A summary of defects in Hoxc8/Hoxd8 double mutants is given in Table 2C and a representative Hoxc8+/+Hoxd8+/+ double mutant is shown in Fig. 4G-I.

Skeletal phenotypes in triple mutant mice
An increase in the penetrance of upper ribcage abnormalities (and associated malformations of the sternum, a hallmark of the Hoxb8 mutation) was observed in the triple mutant mice compared with the double and single mutants (compare Table 2D with Tables 1 and 2A-C). These upper thorax defects are fully penetrant in mice that totally lack or only possess one functional paralogous group 8 Hox allele (Table 2D). The most severe upper thorax defects were observed in the triple null mutants. In 45% of the triple null mutants the anterior tuberculum was positioned abnormally, suggesting transformation of the C7 vertebra towards C6. This is a clear increase compared with all other genotypes (see Tables 1 and 2).

Interestingly, the T8 to T7 transformation was observed with a decreased frequency in triple mutants compared with Hoxc8/Hoxd8 double null mice (Table 2C,D). The severity of the phenotypes (percentage of bilateral transformations) was even lower. A threefold decrease in the percentage of animals with bilateral attachment of an extra rib to the sternum was observed in triple null mutants compared to Hoxc8/Hoxd8 double null mutants (Table 2C,D). Loss of functional Hoxb8 alleles therefore seems to partially rescue the phenotype at this level. In addition, a decrease in the percentage of mice with an extra (pair of) rib(s) on L1, and an even more striking decrease in severity of this phenotype was observed when Hoxc8/Hoxd8 double null newborns lost one or both functional Hoxb8 alleles (Table 2C,D). Thus, the Hoxb8 mutation clearly appears to attenuate some of the aspects of the Hoxc8/Hoxd8 double mutant phenotype.
and a representative example of a triple null mutant skeleton is shown in Fig. 4J-L. A schematic representation of the defects observed in the different single, double and triple mutants is shown in Fig. 5.

DISCUSSION

The present study contributes new data concerning the genetic basis of axial patterning by paralogous mouse Hox genes. We describe the phenotype of Hoxd8 loss-of-function mice, and present novel features of Hoxc8-null mutants, suggesting involvement of the gene in positioning the hindlimbs, and in morphogenesis of the forelimbs. In addition, we provide evidence for genetic interactions between the three paralogous group 8 Hox genes in vertebral patterning along an extensive AP domain of the axis.

Each of the Hox paralogous group 8 single mutant mice exhibits distinct phenotypical abnormalities at specific AP levels

The Hoxd8 loss-of-function mutation leads, at low penetrance, to the attachment of an extra rib to the sternum (T8 to T7 transformation) and to development of a rudimentary rib at the first lumbar vertebra (L1 to T13 transformation). These abnormalities resemble a subset of defects that have already been found with much higher penetrance in Hoxc8 mutant mice, suggesting an overlap in function between the two genes. In the Hoxc8-null mutants, in addition to the phenotypical abnormalities at lower thoracic (T7 to T6 and T8 to T7 transformations) and lumbar levels (L1 to T13 transformations) (Le Mouellec et al., 1992; Tiret et al., 1993; this paper), we observed a fully penetrant shift in the position of the transitional vertebra (T12 instead of T10). In addition, we occasionally observed the partial or complete transformation of the first sacral into a lumbar vertebra (S1 to L6). These results show that Hoxc8 has a patterning function in a broader domain than suspected before. They also reveal that this gene plays a role in positioning the sacrum and associated hindlimbs. A very similar phenotype has been described in mice carrying a site-directed mutation in an enhancer element with proper AP patterning of the forelimb (Charitè et al., 1994). Nevertheless, neither Hoxb8 loss-of-function mice, nor double and triple null mutants for paralogous group 8 Hox genes exhibit forelimb AP patterning defects, suggesting involvement of other Hox genes for this function. Hoxb8 null animals exhibit irregular attachment of upper thoracic ribs (T1 and T2) and associated defects of the sternum (van den Akker et al., 1999; this paper).

It is unlikely that the phenotype in any of the Hox paralogous group 8 mutant lines is due to an effect of the neo resistance cassette on the expression of neighbouring genes. In the Hoxb8 mutant line the neo cassette has been deleted (van den Akker et al., 1999). The expression of neighbouring genes was found to be unchanged in the Hoxc8 mutants (Tiret et al., 1993), and the very mild phenotypic abnormality that we found in the Hoxd8 mutants occurs at an axial level that is different from the defects in Hoxd4- and Hoxd9-null mutants (Horan et al., 1995a; Fromental-Ramain et al., 1996a).

In conclusion, mice mutant in the three Hox paralogous group 8 genes show different phenotypes in the axial skeleton, like they do in the nervous system (LeMouellec et al., 1992; Tiret et al., 1998; van den Akker et al., 1999; E. v.d.A., W. d.G. and J. D., unpublished). Recent data concerning the Hoxa3 and Hoxd3 genes show that these paralogous genes can totally substitute for each other's functions, suggesting that the differences in phenotype in the single mutants are based only on quantitative differences in expression, and not on qualitative differences between the protein products of these genes (Greer et al., 2000). Overexpression of Hoxb8, Hoxc8 and Hoxd8 in transgenic mouse embryos using the RARβ2 promoter resulted in similar phenotypes in the vertebral column and peripheral nervous system (A. Schouwstra, I. Valarché and J. D., unpublished). It is therefore tempting to suggest that differences in the relative distribution of Hoxb8, Hoxc8 and Hoxd8 mRNA (see Fig. 1) and protein, rather than qualitative differences between the three gene products, underlie the differences in phenotype found between the mutants for each gene. These differences would derive from gene-specific variations in transcriptional regulation. Hoxb8 is the most abundantly expressed of the three proteins at the level of the upper thoracic rib cage, possibly explaining why we only find a phenotype in this region in the Hoxb8 single mutant. Hoxc8 expression is particularly high in the lower thoracic (pre)vertebrae compared with the levels of Hoxb8 and Hoxd8, and it is in this domain that the most penetrant phenotypes are found in the Hoxc8-null mutant. The highest level of Hoxd8 expression in embryos is found at the level of sacral vertebrae (see above), that are very likely to be specified by more additional (5') Hox genes than vertebrae at more anterior levels. The poorly penetrant Hoxd8 mutant phenotype therefore correlates with relatively low levels of gene expression in the paraxial mesoderm, possibly explaining why absence of Hoxd8 protein in this region will in general not lead to a phenotype in Hoxd8 mutants.

Positive and negative interactions between Hoxb8, Hoxc8 and Hoxd8 in patterning the axial skeleton

In spite of the distinct range of action of each of the three paralogous group 8 Hox genes revealed by analysis of the single mutants, phenotypes of double and triple mutant mice suggest that functional interactions between these three genes occur along an extensive domain of the vertebral column, from the level of the cervicothoracic transition to the level of the sacrum. Most of the interactions appear to be synergistic. We observed, for example, a strong increase in the percentage of Hoxb8/Hoxc8 and Hoxb8/Hoxd8 double null mutants with upper ribcage defects compared with Hoxb8 single null mutants. In the triple null mutants, the T1/T2 patterning defects became fully penetrant. Although Hoxc8 had been reported to be expressed weakly up to the level of pv 8 (T1), and T2 defects had been found in an isolated Hoxc8-null mutant (Tiret et al., 1993), the contribution of Hoxc8 to patterning of the upper thoracic vertebrae was rather surprising, as the anterior expression boundary of Hoxd8 had been reported to be far
more posterior in the paraxial mesoderm (Izpisúa-Belmonte et al., 1990) (even though our whole-mount in situ analysis of gene expression revealed that Hoxd8 is expressed in the paraxial mesoderm up to s11 at very low levels). Hoxb8-null mice additionally lacking one or more functional alleles of weakly expressed Hoxc8 and/or Hoxd8 clearly suffered from upper thorax defects with increased penetrance and severity. An alternative explanation might have been that Hoxb8 normally negatively regulates the expression of Hoxc8 and/or Hoxd8 in the upper thoracic region and that these genes are upregulated in the Hoxb8−/− mice, making it possible for their products to compensate for the loss of Hoxb8 function. We could rule out the latter hypothesis, as no differences were observed in Hoxc8 and Hoxd8 mRNA distribution between wild-type and Hoxb8-null embryos. Synergistic actions were also found for the Hoxc8 and Hoxd8 genes. A clear increase in the penetrance and severity of Hoxc8-specific defects was observed upon additional loss of functional Hoxd8 alleles.

Interestingly, we observed apparently antagonistic interactions between Hoxb8 on the one hand, and Hoxc8 and Hoxd8 on the other hand. Loss of functional Hoxd8 alleles in a Hoxc8 null or Hoxc8/Hoxd8 double null mutant background led to a decrease in the penetrance and severity of anterior transformations at the lower thoracic levels (T8 to T7 and L1 to T13 transformations) while at the same time it led to an increase in the penetrance and severity of the upper thorax defects (see above).

The mechanism by which two mutations in paralogous Hox genes partially complement each other is not clear. Apparently mutant prevertebral anlagen missing two functional genes can interpret the remaining positional information as less aberrant than when they miss only one gene. This suggests that different interactions have been disrupted by each mutation, leading to rescue of mutual effects. The balance of target events at the given axial levels in the double and triple mutant situation would correspond to a situation closer to wild types than to single mutants.

Different roles of paralogous Hox products point to qualitative differences between the modes of action of Hox proteins

A model assuming that the sum of the expression levels of equivalent gene products would specify the identity of the prevertebrae can explain some but not all data described in this work. The partial compensation of single and double Hoxc8/Hoxd8 mutant defects by additional mutations in Hoxd8 alleles at lower thoracic levels could be better explained by the existence of qualitative differences between paralogous group 8 Hox proteins, for example in subdomains of the gene products important for protein-protein interactions. Depending on the axial level, the Hox proteins could interact similarly or differently with local protein partners, resulting in similar or different effects on the regulation of target genes. The existence of qualitative differences between the Hoxb8 and Hoxc8 genes has already been suggested by Pollock et al., who showed that ectopic expression of the Hoxb8 and Hoxc8 genes driven by a transcriptional control region of Hoxa4 resulted in an array of common transformations as well as morphological changes unique to each gene (Pollock et al., 1995). The only definitive way to test whether there are qualitative differences between these Hox proteins would be to exchange the gene coding sequences as has been done for the Hoxa3 and Hoxd3 genes (Greer et al., 2000).

We thank Frits Meijlink and Rolf Zeller for comments on the manuscript. D. Duboule for the Hoxd8 probe, P. Gruss for the Hoxc8 probe, M. Capecci for the PMC1Neo cassette, and D. Lohnes for the PGK-TK cassette.

REFERENCES

