Towards a model of the organisation of planar polarity and pattern in the

Drosophila abdomen

Peter A. Lawrence¹⁺, José Casal¹ and Gary Struhl²

¹MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
²Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA

*Author for correspondence (e-mail: pal@mrc-lmb.cam.ac.uk)

Accepted 11 March 2002

SUMMARY

The abdomen of adult *Drosophila* consists of a chain of alternating anterior (A) and posterior (P) compartments which are themselves subdivided into stripes of different types of cuticle. Most of the cuticle is decorated with hairs and bristles that point posteriorly, indicating the planar polarity of the cells. Here we research the link between pattern and polarity.

Previously we showed that the pattern of the A compartment depends on the local concentration (the scalar) of a Hedgehog morphogen produced by cells in the P compartment. Here we present evidence that the P compartment is patterned by another morphogen, Wingless, which is induced by Hedgehog in A compartment cells and then spreads back into the P compartment. We also find that both Hedgehog and Wingless appear to specify pattern by activating the *optomotor blind* gene, which encodes a transcription factor.

We re-examine our working model that planar polarity is determined by the cells reading the gradient in concentration (the vector) of a morphogen ‘X’ which is produced on receipt of Hedgehog. We present evidence that Hedgehog induces X production by driving *optomotor blind* expression. We tried but failed to identify X and present data that X is not likely to operate through the conventional Notch, Decapentaplegic, EGF or FGF transduction pathways, or to encode a Wnt. However, we argue that Wingless may act to enhance the production or organise the distribution of X. A simple model that accommodates our results is that X forms a monotonic gradient extending from the back of the A compartment to the front of the P compartment in the next segment, a unit constituting a parasegment.

Key words: Planar polarity, Morphogen, Compartment, *Hh, omb*, *Wnt, Drosophila melanogaster*

INTRODUCTION

Planar polarity (Nübler-Jung et al., 1987) refers to the orientation of cells in an epithelium with respect to the axis of the organ (e.g. proximodistal) or to the body (e.g. anteroposterior). The mechanisms responsible for planar cell polarity are little known, yet it is an important phenomenon integral to many aspects of cell structure and function. Polarised structures such as cilia have a directed beat, and hairs and bristles (for example in plants, insects and mammals) are polarised, usually in large fields with concordant orientation. Planar polarity therefore has structural implications for most aspects of cell architecture. Separated cells are often oriented – for example, in a moving fibroblast exocytosis occurs mainly at the leading front (Bretscher, 1984) with the cytoskeleton also being polarised. For recent reviews see Druin (Druin, 2000).

Bonner (Bonner, 1947) first argued that, in *Dictyostelium*, amoebae are able to read the local slope of a concentration gradient, and experimental evidence in Hemiptera suggested that, in insects at least, this local slope (the vector) of a morphogen gradient specifies planar cell polarity (Lawrence, 1966; Stumpf, 1966). More recently it has been shown that single yeast cells, *Dictyostelium* cells and neutrophils are able to detect, and are polarised by, the vector of shallow gradients of substances (varying by only about 1% over the cell diameter) across a wide range of concentrations (Zigmond, 1974; Segall, 1993; Parent and Devreotes, 1999; Druin, 2000). In this view, pattern formation in a developing field depends on a succession of events: first, gradients of morphogens are made that diffuse from localised sources and reach each cell. The concentration of a morphogen at each locale (the scalar) gives information of position that determines cell differentiation and thereby fixes pattern. The concentration landscape may also cause the graded production of other diffusible morphogens, creating secondary morphogen gradients. The vector of one of these secondary morphogens could specify planar polarity (Struhl et al., 1997a). The initial reading of this vector is then progressively elaborated within cells as proteins are localised (compare the CRAC protein in *Dictyostelium*) (Parent et al., 1998). One consequence of this is to place a cell hair in one part of the cell membrane – this hair then grows out in a particular direction (Eaton et al., 1996).
We use the abdomen of adult *Drosophila* because it is particularly well suited to study the global control of cell pattern and planar polarity. Most epidermal cells of the abdomen make a few hairs or a bristle, and these indicate the planar polarity. In addition, epidermal cells at different positions along the anteroposterior axis of each segment make characteristic types of cuticle to form a stratified pattern. Finally, the abdominal epidermis presents the primary body plan of higher invertebrates, being a chain of anterior (A) and posterior (P) compartments that constitute parasegments (Martínez-Arias and Lawrence, 1985) and segments. Hedgehog (Hh), a morphogen produced by P compartment cells, is responsible for organizing both cell pattern and planar cell polarity in the neighbouring A compartments (Kopp and Duncan, 1997; Struhl et al., 1997a; Struhl et al., 1997b; Lawrence et al., 1999a).

Our main aim here is to research how polarity is determined within the context of pattern formation as a whole. We do not try to understand the mechanics of asymmetry within a single cell but instead ask how the cells of the whole epidermal segment know which way to point. For example, we do not know how the graded distribution of Hh is translated into the orientation of hairs and bristles. Hh is made in every P compartment and enters each A compartment from both anterior and posterior directions to form U-shaped concentration gradients (Struhl et al., 1997a; Struhl et al., 1997b). We have shown that Hh somehow directs planar cell polarity throughout the A compartment, causing cells to make hairs and bristles that point posteriorly towards the source. Thus a clone of cells that make Hh ectopically will reorient hairs and bristles that point posteriorly towards the source. At least within the A compartment, Hh appears to govern X production by inducing expression of *optomotorblind* (omb) and perhaps that of the extracellular signal Wingless (Wg) to generate a distribution of X that spreads forward. In an attempt to identify X we have tested the Decapentaplegic, Notch, EGF, FGF and, especially, the Wnt pathways, all without positive result. Hence, the identity of X remains unknown.

Another series of questions relates to the P compartment. The development of this compartment cannot be directly dependent on Hh because P cells are blind to Hh (reviewed by Lawrence and Struhl, 1996). Yet the P compartment is patterned and has oriented hairs. So what determines the scalar response in the P compartment, stratifying it into different types of cuticle? Similarly, what determines the vector, the orientation of its cells?

We present evidence that the P compartment is patterned by another morphogen that acts also through omb – omb appears to be expressed and required in the anterior region of the P compartment. Our results suggest that this morphogen is a Wnt, probably Wg itself. We discuss how the P compartment might be polarized.

MATERIALS AND METHODS

We manipulate the expression of genes in marked clones of cells. We use FLP recombination (Golic, 1991; Struhl and Basler, 1993), as well as the Gal4 (Fischer et al., 1988; Brand and Perrimon, 1993) and Gal80 systems (Lee and Luo, 1999).

To save space and because there are many more landmarks, we have concentrated on the tergites, which are formed by the dorsal epidermis. However, all the clone types have also been studied ventrally in the sternites and pleura – these results are given if they seem to be helpful. Unfortunately the pleura has few distinguishing marks so we could not easily determine the position of pleural clones relative to the compartmental subdivisions.

Mutations and gene constructs

The mutant alleles and transgenes used in this work are as follows (see also FlyBase, 1999; Lawrence et al., 1999a).

Hh pathway

hh–: *hh*
hh.Gal4: an enhancer trap insertion in the *hedgehog* gene which expresses Gal4 (gift from M. Calleja and G. Morata). *hh.lacZ*: *hh*
Pka-C1 E95: a hypomorphic allele of the cAMP-dependent protein kinase 1 gene. *ptc*: *ptc*
ptc.Gal4: the open reading frame of a form of patched lacking the second large extracellular loop (Briscoe et al., 2001).

Omb

omb: *omb*–3198, an amorphic *bifid* allele resulting from a premature stop codon. Kopp (Kopp and Duncan, 1997) isolated alleles of a gene (*Scruffy, Scf*) and suggested that this gene may act in parallel with *omb*. We have made *omb*– clones in a Scf*– background, expecting them therefore to have a stronger phenotype, but they do not do so – they behave as *omb*– clones normally do (not shown). *omb.Gal4*: an enhancer trap insertion isolated by Y. H. Sun (omb-Gal42 according
to Kopp et al. (Kopp et al., 1997]). **UAS.omb**: FLP-out of byScerFRtub>CD2.UAS.

Wnt pathway

arm: *arm*, a strong armadillo allele resulting from a premature stop codon. **UAS.arm**: armDelu.ScerUAS.TubGAL4.BAL1, a constitutively activated form of armadillo. **arr**: arr2, an amorphic arrow allele. **Df(2LR)RF**: a deletion of the chromosomal region containing the genes Wnt4, Wnt6, Wnt10 and wg (Jansen et al., 2001). **sgg**: sgg12, an amorphic sluggy allele. **UAS.Wnt**: The open reading frames of Wnt2, Wnt4 and Wnt5 as well as the putative Wnt6, 8 and 10 genes (FlyBase/BDGP annotated Drosophila genome sequence) (Adams et al., 2000) were amplified and cloned into the pUAST vector (Brand and Perrimon, 1993) using standard techniques, (see Limargas and Lawrence, 2001). Two independent insertions for each Wnt gene were tested. In some experiments a different Wnt4 construct, Wnt10ScerUAS.Gal4 was also used. Apart from Wnt10 all the **UAS.Wnts** were shown to be functional in different tests (Limargas and Lawrence, 2001). **UAS.Nrt**: UAS.Nrt::terminus of the transmembrane protein Nrt.

EGFR, FGFR pathways

argos: argos27, a small deletion removing the 5’ exon and the beginning of the major open reading frame. **Egfr**: Egfr2, an amorphic allele of Hedgehog growth factor receptor. **UAS.Egfr**: UAS.Egfr, an activated form of Egfr. **rho**: rhoD, a small deletion of the rhomboid gene. **spi**: spi4, a strong spitz allele. **UAS.Egfr**: strong allele of sprouty. **UAS.Egfr**: a constitutively activated form of Egfr. **Hsap.RAF1**: Hsap.RAF1.D, a small deletion of the Raf gene.

Notch pathway

N: Notch1, an amorphic allele of Notch.

Clonal analysis

Unless stated otherwise clones were induced by heat shock at 34 or 37.5°C for 60 minutes. Either embryos at blastoderm stage or third instar larvae of the following genotypes were used.

ptc: (i) y w omb sn FRT19A/FRT19A; hs.FLP/+; lacZ/+.; (ii) y w omb sn FRT19A/FRT19A; hs.FLP/p.lacZ. **ombr**: (i) y w omb sn FRT19A/FRT19A; hs.FLP/+/lacZ; (ii) y w omb sn FRT19A/FRT19A; hs.FLP/p.lacZ. **UAS.lacZ**: UAS.lacZ.J312/+.

RESULTS AND DISCUSSION

Previously, we concluded that Hh acts indirectly via another system (a gradient of 'X') to effect polarity (Struhl et al., 1997a). The evidence was based on clones that lacked such downstream genes as patched (ptc) or cAMP-dependent protein kinase 1 (Pka). In the A compartments, Ptc and Pka proteins act within cells to prevent the Hh pathway from being activated inappropriately; if either protein is removed the Hh pathway becomes constitutively activated within the mutant cells themselves. With respect to the type of cuticle (the scalar output of Hh) the results fit the model; the mutant cells make the cuticle normally made by cells responding strongly to Hedgehog and all the cells outside the clone make the normal type of cuticle (a cell-autonomous effect). However, with respect to polarity (the vectorial output of Hh), the results were different; polarity was altered in the wild-type cells up to several cell diameters away from the clone (a cell non-autonomous effect) (Struhl et al., 1997a; Lawrence et al., 1999a). Although we argued that these effects were not due to Hh itself (Struhl et al., 1997a), we did not eliminate the possibility that low levels of ectopic Hh might be produced by the clone and diffuse out, being sufficient to repolarise the cells without changing the scalar. We have now disproved this by making clones that lack both effective Ptc protein and the Hh gene. These clones still caused repolarisation in the back half of the clone and behind it (Fig. 1) arguing strongly that the Hh protein cannot be a component of 'X' and raising again the question, what is X? X should be engendered downstream of Hh receipt, which is where we start our search.
Downstream genes in the Hedgehog pathway – the A compartment

(i) optomotor blind

omb – clones

omb encodes a transcription factor which is activated on receipt of high amounts of Decapentaplegic (Dpp) in both A and the P compartments of the wing and elsewhere (Lecuit et al., 1996; Nellen et al., 1996); it has been studied in the abdomen by Kopp and Duncan (Kopp and Duncan, 1997). We find it is expressed in each segment, both dorsally and ventrally, as a single stripe spanning the AP border and including the rear of the A compartment and the front region of the P (Fig. 3A). Accordingly, omb– clones in other parts of the segment are normal – for a memorandum of omb– clones see Fig. 2.

Within the posterior half of the A compartment, Omb is required for the normal scalar response to Hh. At the extreme back, in the a6 region, where the Hh concentration is highest, the omb– cells develop only a little abnormally; the unpigmented cuticle of that region (a6, see Fig. 2 for nomenclature) is expanded a little anteriorly in the clone (Fig. 3B-E), but sometimes contains small ‘a3’ bristles. Note that specification of a6 cuticle normally requires engrailed activity, which is induced in A cells by peak levels of Hh (Lawrence et al., 1999a). However, in omb– clones that are situated more anteriorly, in the pigmented region at the back of the A compartment (a4, a5), there is a big effect: it appears that Hh acts through omb, because omb– cells never make a4 cuticle or a5 bristles (pattern elements that signal a response to Hh), and in their stead make a3 cuticle [the type of cuticle made where there is little or no response to Hh (Kopp and Duncan, 1997; Struhl et al., 1997a)] (Fig. 3B-E). Also, Hh directly upregulates expression of ptc, which encodes a component of the Hh receptor (Struhl et al., 1997b) and this also occurs in omb– clones (Fig. 3B,D). This finding indicates that Omb is not required for Hh signal transduction per se, but for the appropriate response of cells.

With regard to polarity, the clones confined to the anterior and middle part of the A compartment are normal. However, clones just behind the middle of the A compartment usually show reversal at the front, with normal polarisation at the back. More strikingly, clones confined to the very back of the A compartment, in the a6, a5 and a4 domains can be largely or entirely reversed (Kopp and Duncan, 1997) and this reversal usually extends anterior (Fig. 2, Fig. 3B,E) to the clone.

To explain these polarity changes, we suggest that Hh induces X production through the agency of Omb. It follows that little or no X can be produced within omb– clones and therefore

Fig. 1. Clones that have partial loss of function for ptc and also lack hh. This clone is marked with pawn (the mutant hairs are small and thin and the bristles are depauperate; a dotted line outlines the clone) and shows reversed polarity within the clone and behind it, and therefore eliminates the hypothesis that ectopic Hh is produced by the clone to drive the reversal. The clone makes dark a5 pigment. In this and subsequent figures anterior is upwards. Red arrows indicate the polarity.

Fig. 2. An abdominal segment and effects of omb– clones. Left-hand panel shows a normal segment with nomenclature for the types of cuticle (Struhl et al., 1997b). Right-hand panel is a memorandum for both vectorial and scalar effects of omb– clones (surrounded by red dashed lines) in different positions in both the A and P compartments. The scalar is shown by the colour of the cuticle and the red arrows show the observed polarity of the hairs (which normally point posteriorly), near and within the clones. We imagine the polarity to be a consequence of the concentration landscape for X. For clarity, the hairs have been removed from part of the A compartment on the right. Compare Fig. 3 and Fig. 7.
that the polarities of cells in or near such clones depend on X produced outside. Clones in the middle of the A compartment behave normally because most X is produced behind them and the gradients of X concentration are little changed. Clones located a little further back will have peaks of X both behind and in front and this can cause localised reversal at the front of the clone (Fig. 2, Fig. 4C). For a clone extending back to the AP boundary, the only source of X will be anterior to the clone, presumably because omb+ cells there will ‘see’ Hh protein that has passed through the clone. These cells should make X that spreads backwards into the clone, setting up a gradient of reversed polarity (Fig. 4B). There is corroborating evidence: in some clones there is dark pigmentation and large bristles anterior to the clone (Fig. 3C-E), confirming that Hh has indeed been received there. However, many omb− clones are associated with anterior repolarizations that occur even where there is no dark pigmentation anterior to the clone (Fig. 3B), suggesting that the level of Hh required to stimulate some X production anterior to the clone is less than that needed to make a4 pigment. It follows that, in normal flies, some X is produced by cells anterior to the a4 pigmented zone. Finally, we find that some clones, which extend nearly to the back of A, show reversed territory behind the clone (Fig. 3D), perhaps due to the domination of the X source that is anterior to the clone over any production of X behind it.

We note that the reversed polarity associated with omb− clones located at the back of the A compartment usually extends only to the AP boundary, with polarity in the P compartment being normal (Fig. 3C). This result suggests that the AP boundary coincides with a barrier to the movement or action of X. The existence of such a barrier would provide an explanation for why X normally produced in cells at the back of the A compartment does not spread posteriorly into the P compartment, reversing the polarity in P. However, in rare cases, some reversed hairs were seen in what appeared to be adjacent P compartment cells, as marked independently by ptc.lacZ staining (as in Fig. 3B; data not shown). We do not know whether these rare cases are artifactual, due to a slight posterior shift – during mounting – of the cuticle relative to the underlying epidermis, or are frank reversals of cells within the P compartment. If the reversed cells are indeed P cells, they raise a problem for the notion that the AP boundary constitutes a barrier to X movement.

omb− ptc− clones

If the production of X depends at least in part on omb, then ptc− clones, in which the Hh pathway has been constitutively activated, should produce little or no X if they also lack
omb. To test this we made clones that were both ptc– and omb–; these clones form a6 cuticle as ptc– clones do. However, in the middle of the A compartment and unlike ptc– clones in that position (Lawrence et al., 1999a) they fail to repolarise behind, but reverse polarity in front (Fig. 5A) – as omb– cells do (Fig. 2, Fig. 4B). Similarly, omb– ptc– clones situated at the back of the A compartment behave like omb– clones, the whole being reversed in polarity (and not like ptc– clones in the same location, which have normal polarity). Thus in terms of the type of the cuticle (the scalar), omb– ptc– behave as ptc– clones, but in terms of the vector they behave as omb– clones. These results confirm that Hh induces X production through the action of omb.
The model for X suggests that, if *omb* were ectopically activated in cells at the front of the A compartment, those cells could become a source of X. Indeed *omb*-expressing clones can repolarise the cells behind them (Fig. 3E) – as if there were a local peak in the X distribution (Fig. 4D).

ii) smoothened

smoothened (*smo*), is an essential component of Hh transduction; without it the cells cannot see Hh protein (Alcedo et al., 1996; Chen and Struhl, 1996; van den Heuvel and Ingham, 1996). As regards polarity one would expect neither *omb* nor *smo* clones to produce X and for their phenotype to be the same. Although this is generally the case (Struhl et al., 1997a), the effects of *smo* and *omb* differ for clones located at the back of the A compartment. Polarity within these *omb*-clones is completely reversed, consistent with the model (Fig. 4C), whereas the corresponding *smo* clones are reversed only within the anterior portion of the clone, polarity returning to normal at the very back of the A compartment [see fig. 7 in Struhl et al. (Struhl et al., 1997a)]. Our preferred explanation for this discrepancy is that Smo protein perdures in *smo* clones, allowing partial rescue of the *smo* mutant phenotype, particularly at the back of the A compartment, where Hh is most abundant. This rescue could allow production of X, enough to restore normal polarity at the back of the clone, but not enough to specify a4 cuticle or to upregulate *ptc.lacZ*. For both *smo* and *omb* clones, some Hh would be expected to move forwards across the clone and induce an ectopic peak of X production in more anterior, wild-type cells, accounting for the polarity reversals that are observed in both cases†.

To test this explanation we blocked Hh receipt by a different method that is not so subject to perdurence: we made a marked clone that contained no wild-type *Ptc*, but provided instead a mutant form of *Ptc* that is ineffective at transducing the Hh signal (Briscoe et al., 2001). Such clones behave like *smo* clones in most respects, including making a3 cuticle instead of a4, a5 or a6 cuticle in the back half of the A compartment, and causing polarity reversals both within and anterior to the clone. However,

†We earlier noted polarity reversals associated with *smo* clones located at the front of the A compartment, and concluded tentatively that Hh might also induce X at the front, as well as the back of the A compartment (Struhl et al., 1997b). We have looked at many more clones since then and found that most such clones have normal polarity, even though they form a2 rather than a1 cuticle as a consequence of their failure to transduce Hh. We conclude that, in the anterior region of A, Hh does not trigger X production.
Unlike smo− clones, the polarity at the back of these clones does not return to normal. Instead, in the majority of cases, polarity remains reversed all the way to the back edge of the clone, and sometimes beyond, as observed for omb− clones in the same position (Fig. 5B). These results support the perdurance explanation for the smo− clones and are consistent with the working model, which is based mainly on the results with omb.

What is X?
We have conjectured that X is diffusible and produced in a graded fashion, peaking at the back of A and declining progressively towards the front of A. We first round up the usual suspects: these are signals transduced by the Notch, EGF, FGF, Dpp and Wnt pathways. Briefly, we have discarded all of these except for the Wnt pathway, because we find that removing or overexpressing key elements of each pathway in clones fail to perturb polarity, either inside the clone or nearby.

(1) We removed the Notch gene itself, and although clones of this genotype fail to contribute to bristle forming ('proneural') portions of the adult epidermis (the a3, a4 and a5 regions), they survive elsewhere (such as p3, a6 and a2) where they show normal polarity.

(2) We removed the EGF receptor from clones; such clones do alter the distribution of bristles, but the polarity is normal (cf. Diaz-Benjumea and Garcia-Bellido, 1990). We also made clones that remove spitz, vein, rhomboid, argos and sprouty as well as clones that overexpress Argos and activated Egfr, Raf, Cdc42 and Rac. None of these clones showed any consistent alterations of normal polarity.

(3) We expressed activated forms of the Breathless and Heartless receptor for FGF in clones, without any effect on polarity.

(4) We removed thickveins (tkv), the receptor for Dpp, or overexpressed activated Tkv. These clones had no effects on polarity in the tergites.

There is already circumstantial evidence suggesting that X might be a Wnt (Adler et al., 1997; Struhl et al., 1997a; Shulman et al., 1998). In particular, Wg can be transduced by either of two Wnt receptors (Bhanot et al., 1996; Bhanot et al., 1999; Chen and Struhl, 1999), Frizzled and Frizzled2 (Fz, Fz2), and Fz is somehow involved in polarity (Gubb and Garcia-Bellido, 1982; Vinson and Adler, 1987). Also, Wg is expressed as a gradient as we imagine for X. However, we had shown earlier (Struhl et al., 1997a) that Pka− clones that are also mutant for wg can repolarize neighbouring cells, indicating that they can still serve as ectopic sources of X. Consequently, a simple model in which Wg is X is not tenable. Nevertheless, more complicated scenarios remain. For example, X might be another Wnt, or perhaps, several Wnts might function together to constitute X, or that X might be a broadly expressed Wnt that might cause repolarizations, particularly of cells located posterior to the peak. We performed such experiments for Wg and the other Wnts defined by both genetics and the Genome Project (Adams et al., 2000). We start with Wnts 5, 6, 8 and 10: when they are expressed in clones with a strong Gal4 driver, or under the control of a ptc.Gal4 driver, which should create an ectopic peak of Wnt expression at the front of the A compartment, none of these Wnts cause any changes of polarity or had other effects anywhere in the abdomen (we examined the A and P compartments of both dorsal and ventral cuticle). Similar results were obtained when either Wg or a membrane-tethered form of Wg, Nrt::Wg, were expressed in clones, except that such clones caused a transformation of ventral pleura to tergite (Shirras and Couso, 1996; Kopp et al., 1999). Animals expressing either form of Wg under ptc.Gal4 control do not survive to adults.

Wnt4 also failed to cause any consistent changes of polarity in the abdomen when expressed either in clones or under ptc.Gal4 control. However, we did find that expressing Wnt4 at high temperature under ptc.Gal4 control (Gieseler et al., 2001) occasionally altered wing patterning. Further we observed effects on polarity when Wnt4 was driven in the P compartment of the wing with an en.Gal4 driver: within the A compartment the hairs posterior to vein II tended to turn clockwise to point posteriorly, as if they were aiming towards an ectopic source of the Wnt4 protein emanating from P behind them. However in what ought to be a better test, marked clones expressing Wnt4, driven by tub.Gal4, failed to affect wing polarity. Note that the results with ectopic Wnt4 expression in the wing are equivocal and run counter both to the results of the same experiments in the abdomen, and to experiments in which the gene is eliminated from Pka− clones (see above). Hence, we tentatively discard Wnt4 as a candidate.

Flies carrying clones expressing Wnt2 did not emerge from the puparium and ptc.Gal4 UAS.Wnt2 flies were lethal. However, we examined the abdomens of pharate adults carrying numerous clones expressing Wnt2 and they had undisturbed polarity.

All of these tests argue that neither wg nor any of the other Wnts is X. However, they do not eliminate the possibilities that some combination of Wnts might function together to constitute X, or that X might be a broadly expressed Wnt that is converted from an inert to an active form after transcription.

(3) Activating the Wnt pathway
In apparent contrast to the above results, activating the Wnt pathway, rather than the Wnts themselves, did produce effects on polarity; however, these could also be attributed to unintended effects on the Hh pathway. Clones of cells mutant for the gene shagggy (sgg) constitutively activate the Wg pathway (Wodarz and Nusse, 1998). In the tergites, sgg− clones are abnormally round in shape and have higher than normal bristle densities. In addition, they cause polarity reversals similar to those associated with Pka− clones: hairs and bristles at the back of these clones are reversed (Fig. 6C). However, we
also observed that sgg− clones stain blue when the flies carry ptc.lacZ, indicating that the loss of Sgg leads to ectopic activation of the Hh pathway (Fig. 6C). Under our model this would suffice to cause ectopic production of X in the sgg− clones, which would reverse hairs behind, regardless of whether or not X is a Wnt.

Less easy to understand is the observation that sgg− clones can transform a1 cuticle into a3 cuticle (Fig. 6D) – this appears to be a change of cell identity from the anterior to the posterior subdomain of the A compartment (Lawrence et al., 1999a), perhaps implicating Wg in the definition or determination of these two subdomains.

(4) Blocking the Wnt pathway
We made clones that were mutant for arm or arrow: the Wg pathway in these two types of clones should be blocked (Peifer and Wieschaus, 1990; Wodarz and Nusse, 1998; Wehrli et al., 2000). There were two effects.

The first is that clones in the dorsal epidermis differentiated cuticle characteristic of the ventral epidermis: they made pleural hairs, and patches of sternite with bristles (Fig. 6F). Clones in all portions of the tergite, in both the A and P compartments, were so transformed, indicating a general requirement for Wnt signalling to specify dorsal as opposed to ventral structures. Thus, in the wild type, all dorsal cells are probably exposed to at least low levels of Wg or some other Wnt protein.

The second is that such clones affect polarity: in the tergites, the mutant clones were normal at the rear of the clone but reversed in the front, with reversal extending outside the clone (Fig. 6F). One explanation for these polarity changes could be that, in the tergites, Wg normally acts to enhance the production of X. Thus cells deficient in the Wnt pathway would produce less X than normal, giving a dip in the concentration landscape for X, causing reversed polarity at the front of the clone. In the eye, both arm− and arrow− clones cause equivalent polarity reversals and a similar resolution has been offered: it was suggested that Wg might regulate the production of a secondary polarising factor also dubbed X (Wehrli and Tomlinson, 1998).

Thus, we propose that Wg helps to produce X, but that Wg itself is not X. If Wg were X, both arm− and arrow− clones should not be able to transduce it, and hence, should have random polarity within the clone. Moreover, the effects on polarity should be cell autonomous. Yet, as we have seen, these clones behave as if they have caused an altered distribution of X, rather than any failure to transduce X. Similar arguments apply to sgg− clones. In this case, the Wg pathway should be constitutively activated in all cells within the clone, preventing them from detecting a gradient of Wg protein. However such clones are not randomly polarized, indicating that they can still respond to graded X activity.

It is useful to compare the roles of Omb and Wg on X production. Omb is apparently essential for X production: omb− clones at the back of A show reversed polarity that extends all the way to the posterior edge of the compartment (Fig. 3B,C). By contrast, in arm− and arrow− clones, reversal occurs only in the anterior portions of such clones. Thus, we infer that arm− and arrow− cells located at the back of A can produce some X, even though they cannot activate the canonical Wnt pathway. Thus, it could be that Hh drives X production mainly through Omb, but also adds to the level of X produced through the induction and action of Wg. The combination of both Omb and Wg activity might extend the reach of the X gradient to encompass the whole A compartment, and possibly also further forwards into the neighbouring P compartment.

Downstream genes in the Hedgehog pathway – the P compartment
None of our previous studies has helped us understand how the P compartment is patterned or how its cells are polarised. smo− clones have no phenotype in the P compartment, confirming that Hh has no function there. In the embryo and imaginal discs, Hh crossing over from the P compartment induces the expression of Wg and Dpp in line sources along the back of

1 In the pleura but not in the sternites, Hh induces Dpp rather than Wg (Struhl et al., 1997b; Kopp et al., 1999). We imagine that in the pleura, Dpp replaces Wg and, like Wg in the tergites, enhances the production of X.
Fig. 8. Working model for patterning the chain of A and P compartments. The P compartments are shown in blue. The model applies to the dorsal epidermis of the abdomen, where Hh induces Wg, but can be generalized to the ventral pleuron where Wg is replaced by Dpp, both proteins probably performing the equivalent function. In the first step (at top) Hh is produced in the P compartment and spreads into adjacent A cells, generating a U-shaped gradient. In the A compartment, the concentration of Hh at any point provides a scalar which dictates the type of cuticle formed (a1 to a6). Cells in the anterior and posterior regions of the A compartment respond differently to Hh (Struhl et al., 1997b). In the posterior region, peak levels of Hh induce engrailed, wg and omb expression and specify a6, intermediate levels induce only wg and omb and specify a5 and a4, and low levels or no Hh specify a3. In the anterior region, Hh does not induce engrailed, wg and omb, but high levels induce a1, with a2 being specified by low levels or no Hh. In the P compartment, the scalar is provided by Wg, which is produced by cells at the rear of the A compartment and moves across the AP compartment boundary into the P compartment. Peak levels of Wg induce Omb and thereby specify p3; lower levels or no Wg specify p2 and p1. Planar polarity is controlled by a polarizing morphogen ‘X’, produced largely in posterior A cells by Hh acting through Omb. Wg/Wnt helps X production, apparently to ensure that peak levels are generated in response to Hh. In the model shown X then spreads forward, forming a concentration gradient that extends through the entire compartment and possibly into the P compartment in front. The maximal slope of X at any given position provides a vector which specifies planar polarity. Note the model appears to demand that X cannot spread backwards into the P compartment behind the source. See conclusions for an alternative model.

A. Both proteins then spread back into the P compartment where they act as gradient morphogens to control P growth and pattern (reviewed by Lawrence and Struhl, 1996). Wg and Dpp are also produced at the back of the A compartment in each abdominal segment (albeit in distinct dorsal and ventral domains). Hence, by analogy with the embryo and imaginal discs, these morphogens seem to be the most likely candidates to pattern the P compartment here as well. If so, we would suppose that in the tergites, Hh induces Wg (Kopp et al., 1999; Struhl et al., 1997b) and this Wg moves posteriorly across the AP compartment boundary into the P compartment where it activates expression of omb, thus specifying the zone of hairy cuticle (p3) and distinguishing it from p2 cuticle, which is bald. We have tested this hypothesis in the following experiments.

(1) Omb

Kopp (Kopp and Duncan, 1997) found that loss-of-function omb mutants tend to lose the hairy, unpigmented cuticle characteristic of both posterior A (a6) and anterior P (p3) regions, whereas gain-of-function mutations tend to acquire it. Since we have observed that omb– clones in the A compartment are able to make a6 cuticle, it seems likely that Omb is required specifically for the hairy, unpigmented cuticle (p3) that normally forms at the front of the P compartment. If so, one might expect omb– clones at the front of the P compartment to transform the anterior type of cuticle (p3) into that found more posteriorly (p2). Although most omb– clones were normal in this region, about one third of p3 clones lost some, but not all, of the hairs within the clone (n=94 of which 36 clones had noticeable reduction of hairs) (Fig. 7A). We wondered whether this might be an artefact due, for example to our method of detecting these clones which uses the tub.Gal4 driver to activate UAS.lacZ expression, but control clones (n=47) in sister flies always gave normal hair patterns. Thus it appears that omb may be required in the p3 territory, as it is in the a5 and a4 territories, to specify the type of cuticle secreted.

(2) The Wnt pathway

If Wg activates omb in anterior regions of the P compartment, blocking the Wnt pathway in cells in the P compartment should block expression of omb. We therefore monitored expression of omb in arrow– clones. This experiment proved difficult to do, but we found that omb was sometimes, but not always, turned off autonomously in the clone (Fig. 7B,C). Conversely, ectopic activation of the Wnt pathway should transform bald cuticle (p2) at the back of P into hairy cuticle (p3) normally found at the front of P. Indeed, some clones lacking the sgg gene become hairy if situated in the bald areas of P, apparently causing a transformation from p2 to p3 cuticle (Fig. 6E). But, clones expressing either tethered Wg or activated Arm, which should behave similarly, had no clear effects. Even so the positive results with arrow and sgg give support to the hypothesis that Wg stratifies the P compartment by working through Omb.
(3) fz2.lacZ
We looked at the pattern of fz2.lacZ, because fz2 is thought to be repressed in cells receiving the Wnt signal (Cadigan et al., 1998). Expression is weak all over the A compartment, with a slight tendency to be stronger at the front of A. However, expression is strong at the rear of the P compartment and is graded downwards and anteriorly. Expression is not detected at the front of the P compartment. This pattern is consistent with a gradient of Wnt activity that is high at the front and low at the back of the P compartment.

We are still left with the question: what polarises cells of the P compartment? There are several possibilities. A simple one (see Fig. 8) is that X could extend anteriorly from the A compartment into the adjacent P compartment, forming a monotonic gradient that governs polarity throughout the entire parasegment.

CONCLUSIONS AND SPECULATIONS

We have used a particular model to interpret our results. The heart of this model (Fig. 8) requires that a cell’s polarity be determined by reading the local slope, the vector of a morphogen, X. Within the A compartment, it proposes that X be produced in a gradient with its peak at the back of the A compartment and its minimum at the front. Hh is the primary morphogen that patterns the A compartment, and, at the rear of this compartment, it acts through ombl to produce X. X spreads further anteriorly, forming a monotonic gradient that extends from the back of the A compartment and could go as far as the front of the next P compartment, thus encompassing a parasegment. In this model there might need to be a barrier to the movement of X across the AP (parasegment) border in order to isolate the X gradients in neighbouring parasegments from each other. This model is speculative; for example we have no evidence for X spreading forward into the P compartment. In an alternative scenario, X might be made near the AP border, spreading forwards into A and backwards into P to form a reflected gradient. In that case, cells in the A and P compartments would have to make hairs which point in opposite directions relative to the vector of X, as all hairs point posteriorly.

Although we propose that X is a long range morphogen, our results do not exclude models in which polarity depends on short range interactions between cells. Recent models for planar polarity concentrate mostly on this aspect of how cells become polarized, particularly on how proteins within cells become asymmetrically localized (Usui et al., 1999; Axelrod, 2001; Bellaiche et al., 2001; Strutt, 2001; Winter et al., 2001), and how such molecular polarity might propagate from cell to cell by localised recruitment of other proteins at the abutting cell membranes (Usui et al., 1999; Strutt, 2001). These models can provide explanations for the local, non-autonomous perturbations of polarity which occur along the borders of mutant clones, but they do not readily explain the longer range effects of such clones nor how polarity is determined globally in the wild-type fly – this is what we are trying to do.

The model for X can be further elaborated, for example, polarity could depend on two cooperating morphogens, each operating in different directions. While X could emanate forwards from the back of the A compartment, another polarising gradient, ‘Y’ could be sourced from the front, or from the P compartment, and move backwards. Hairs would be subject to two separate and mutually supportive influences, pointing up the gradient of X and down the gradient of Y. More complex hypotheses of this sort have two main appeals: they might help explain how the polarity is determined across the AP border and they also might help us understand why removal of genes needed for polarity, such as fz or four-jointed still gives near-normal flies with much of their polarity unscathed (Shulman et al., 1998; Usui et al., 1999; Strutt, 2001).

Clearly, it is necessary to identify the polarising factors. We have attempted, albeit unsuccessfully, to identify X, and have evidence against most of the common signalling ligands such as those operating through the Notch, Dpp, EGF and FGF pathways, as well as all of the seven known Drosophila Wnts – none of these experiments are proofs, but they are the best we could do with the available techniques and mutations. Nevertheless, Wnt signalling does appear to be needed for the normal generation of X; hence, it may be that Wnts augment the production or activity of X induced by Hh.

Many other studies on planar polarity have used the wing. The main axes differ between the wing and the abdomen: in the wing, the hairs do not point towards the source of Hh and Dpp, but point distally. Thus, none of these two factors is likely to be directly responsible for inducing the wing equivalent of X. Similarly, ombl expression in the wing is controlled directly by Dpp signaling, suggesting that it, too, is unlikely to be involved in inducing factor X. Nevertheless downstream components such as Fz are needed in the wing, eye and abdomen (Vinson and Adler, 1987; Zheng et al., 1995) (P. A. L., J. C. and G. S., unpublished) indicating that the process of polarizing cells in response to X, and possibly X itself, may be the same in all systems.

Although our focus has been on how Hh organizes both pattern (scalar) and polarity (vector) throughout the abdominal epidermis, growth must also be tightly regulated. If the postulated X gradient spans the parasegment, as diagrammed in Fig. 8, then perhaps X might also be a candidate for the factor controlling size. As argued elsewhere, proliferation and cell death might depend on a cell’s perception of the slope of the gradient responsible for polarity. In the abdomen, it is X and not Hh or Wg that conveys vectorial information, raising the possibility that the X gradient also carries information about dimension (Day and Lawrence, 2000).

We thank T. Casci and J. Wasserman for making sprouty, vein and rhomboid clones, J. L. Mullor and J.-P. Vincent for discussion, A. Sato and A. Saigo for allowing us to use their fz2.lacZ reporter line, and M. Calleja, T. Casci, C.-M. Chen, M. Freeman, G. Morata, A. Sato, Y. H. Sun, J. Wasserman and the Bloomington Stock Center for flies. We thank Atsuko Adachi for making the UAS.Wnt transgenes. Gary Struhl is an Investigator of the Howard Hughes Medical Institute. José Casal and Peter Lawrence are supported by the MRC.

REFERENCES

Adler, P. N., Krasnow, R. E. and Liu, J. (1997). Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr. Biol. 7, 940-949.

