INTRODUCTION

Transcriptional regulation plays a major role in the expression of the genomic information during complex biological processes such as differentiation and development. The effect of binding of transcription factors to cis-acting DNA sequences is transmitted to RNA polymerase by means of co-activators. Although co-activators contribute to the efficiency of transcription, their developmental roles are poorly understood. We used *Drosophila* to conduct molecular and genetic dissection of an evolutionarily conserved but unique co-activator, Multiprotein Bridging Factor 1 (MBF1), in a multicellular organism. Through immunoprecipitation, MBF1 was found to form a ternary complex including MBF1, TATA-binding protein (TBP) and the bZIP protein Tracheae Defective (TDF)/Apontic. We have isolated a *Drosophila* mutant that lacks the mbf1 gene in which no stable association between TBP and TDF is detectable, and transcription of a TDF-dependent reporter gene is reduced by 80%. Although the null mutants of mbf1 are viable, tdf becomes haploinsufficient in mbf1-deficient background, causing severe lesions in tracheae and the central nervous system, similar to those resulting from a complete loss of tdf function. These data demonstrate a crucial role of MBF1 in the development of tracheal and central nervous system.

SUMMARY

During gene activation, the effect of binding of transcription factors to cis-acting DNA sequences is transmitted to RNA polymerase by means of co-activators. Although co-activators contribute to the efficiency of transcription, their developmental roles are poorly understood. We used *Drosophila* to conduct molecular and genetic dissection of an evolutionarily conserved but unique co-activator, Multiprotein Bridging Factor 1 (MBF1), in a multicellular organism. Through immunoprecipitation, MBF1 was found to form a ternary complex including MBF1, TATA-binding protein (TBP) and the bZIP protein Tracheae Defective (TDF)/Apontic. We have isolated a *Drosophila* mutant that lacks the mbf1 gene in which no stable association between TBP and TDF is detectable, and transcription of a TDF-dependent reporter gene is reduced by 80%. Although the null mutants of mbf1 are viable, tdf becomes haploinsufficient in mbf1-deficient background, causing severe lesions in tracheae and the central nervous system, similar to those resulting from a complete loss of tdf function. These data demonstrate a crucial role of MBF1 in the development of tracheal and central nervous system.

Key words: TDF, MBF1, Co-activator, Trachea, CNS, *Drosophila*
and the function of MBF1 remained well conserved during evolution. In nuclear extracts of Drosophila embryos, we identified a bZIP protein Tracheae Defective (TDF; APT – FlyBase) (Gellon et al., 1997; Su et al., 1999; Eulenberg and Schuh, 1997) as a new partner of MBF1. We show that MBF1 mediates transcriptional activation by TDF through directly binding both TDF and TBP. Although mbf1 null mutants can survive to adulthood, tdf becomes haploinsufficient in mbf1-background, resulting in severe tracheal and central nervous system (CNS) defects. These results show that MBF1 acts as a crucial bridging co-activator during tracheal and CNS development.

MATERIALS AND METHODS

Cloning of Drosophila mbf1 cDNA

mbf1 cDNA was cloned from a Drosophila cDNA library prepared from the 3rd instar larval CNS in the lambda gt10 vector (M. J., unpublished). Partial cDNA was initially isolated by screening this library using nested PCR with degenerate antisense primers, corresponding to amino acids 123-129 (ERAIGIK) and 107-114 (YEAGRGIP) in silkmoth (Bombyx mori) MBF1 (Takemaru et al., 1997) (Fig. 1A) in combination with a primer derived from the vector. Hybridization screening of the same library with this PCR product was then used to isolate the full-length cDNA. The longest clone was 1562 bp, containing the entire MBF1 open reading frame plus a ~1 kb long 3′UTR, which ends with a poly(A) tail. Subclones of this cDNA were used to construct expression vectors for producing bacterial fusion proteins and FLAG-MBF1 in transgenic flies.

A 4574-bp genomic EcoRI fragment encompassing the entire mbf1 gene was subcloned from the P1 clone DS05624 into pBluescript II (Stratagene) and sequenced on both strands in its entirety (DDBJ/EMBL/GenBank Accession Number, AB031273). Comparison of this genomic sequence with the mbf1 cDNA reveals that the gene consists of four exons, the first one being non-coding. The clone contains 2.3 kb of DNA upstream of the mbf1 transcription unit and 54 bp downstream of the mbf1 mRNA polyadenylation site.

Fly stocks

Using P-element-mediated germline transformation (Rubin and Spradling, 1982), we made a transgenic Drosophila line expressing a FLAG epitope-tagged MBF1 (FLAG-MBF1) protein under the control of the constitutive hsp83 promoter. Expression levels of the tagged MBF1 protein were comparable with those of endogenous MBF1 during embryogenesis and also in the salivary glands. An mbf1-null mutant was generated by isolating a P-element insertion in the mbf1 locus and its subsequent imprecise excision (M. J., M. Okabe, Y. H. and S. H., unpublished). A rescue construct P[MBF1+], mbf1 was made by P-element-mediated insertion of the 4574 bp mbf1 genomic sequence to the mbf1 mutant chromosome. tdf2 allele corresponds to the P-element insertion line l(2)k15608 (Torok et al., 1993). tdfP55 has a deletion that includes the first exon and 1 kb of the first intron of the tdf gene (Eulenberg and Schuh, 1997). The sgP72Gal4 line has been described by Brand and Perrimon (Brand and Perrimon, 1993). Transgenic lines harboring pE-lacZ or its mutant derivatives have been described elsewhere (Han et al., 1998). Other stocks have been described previously (Lindsley and Zimm, 1992).

Identification of FLAG-MBF1 associated proteins

Embryos 0-20 hours after egg laying (AEL) were collected from a population of the hsp83-FLAG-MBF1 transgenic line reared at 25°C. Nuclear extracts were prepared from the embryos as described previously (Ueda et al., 1990). For isolation of FLAG-MBF1-associated proteins, nuclear extracts (15 ml) were loaded onto a 2 ml column of anti-FLAG M2-Agarose affinity gel (Sigma). The column was washed extensively with TBS (50 mM Tris-HCl, 150 mM NaCl, pH 7.4), until no proteins were detectable in the wash fraction. Bound proteins were then eluted with the FLAG peptide (50 μg/ml) (Sigma). Chromatography was carried out at 4°C.

To identify FLAG-MBF1 associated proteins, the eluted proteins were concentrated by acetone precipitation and then resolved on a preparative 10% SDS-PAGE. The proteins were transferred to a PVDF membrane (Boehringer Mannheim) on a Trans-Blot Semi-Dry apparatus (BioRad). The membranes were subsequently stained with Coomassie Brilliant Blue and selected bands were subjected to N-terminal sequencing. Peptide sequence of 63 kDa band VNKQYSATDLAEFMKIAANWQNSN showed an unambiguous match with that of TDF.

Antibodies

For the production of anti-TDF serum, a 1455 bp cDNA fragment encoding the entire TDF was inserted into a pET-28a vector (Novagen) and the polyhistidine-tagged protein was expressed in Escherichia coli BL21 (DE3). The His-TDF protein was purified by Ni2+ affinity chromatography and used to generate polyclonal antibodies in rabbit. The serum was used directly for immunostaining at a 1000-fold dilution. For western analyses, it was used at a 10,000-fold dilution. The production of the MBF1 antibody will be described elsewhere (M. J., M. O., Y. H. and S. H., unpublished). This antibody detects a single band of 16 kDa in normal embryos, but not in mbf1-embryos (Fig. 3).

Other antibodies include a rabbit anti-Drosophila TBP antibody (a gift from Yoshihiro Nakatani); mouse anti-β-galactosidase mAb 40-1a; rabbit anti-β-galactosidase antibody (Cappel); mouse anti-FLAG M2 (Kodak); mouse mAb BP102; and mouse mAb 2A12 that recognizes an unknown luminal component of the trachea (a gift from Shigeo Hayashi).

The secondary antibodies used were as follows: biotinylated anti-mouse IgG; Cy3-conjugated anti-rabbit IgG; Cy3-conjugated antimouse IgG (Jackson Laboratory); and Alexa 488 goat anti-rabbit IgG conjugate (Molecular Probes). When biotinylated anti-mouse IgG was used for the 2A12 staining, signals were amplified by adding biotinylated tyramide (NEN Life Science Products) as a substrate, followed by application of the ABC kit (Vector Lab), and finally visualized by Cy3-conjugated streptavidin (Amersham Biosciences).

Immunostaining

For staining of embryos, 0-12 hours or 12-15 hours AEL embryos were collected and fixed as described (Tautz and Pfeifle, 1989). After blocking with 5% normal goat serum/PBS-0.1% Triton X-100, the embryos were incubated with a primary antibody, followed by a secondary antibody.

Staining of larval tissues was performed as described previously (Liu et al., 2000). Larvae were dissected in PBS, fixed in 25 mM PIPES-KOH (pH 7.0), 0.5 mM EDTA, 0.25 mM MgSO4 and 4% formaldehyde for 40 minutes on ice and then permeabilized for 15 minutes at room temperature in PBS containing 0.5% NP-40. In the case of salivary glands, the dissected tissues were first treated with PBS-0.5% NP-40 for 8 minutes before the fixation and the permeabilization step after the fixation was omitted.

Staining of polytene chromosomes using indirect immunofluorescence was performed as described (Shopland and Lis, 1996) except that salivary glands were treated with PBS, 0.5% NP-40 for 5 minutes before fixation. FLAG-MBF1, TBP and TDF were detected with anti-FLAG M2, anti-TBP and anti-TDF antibodies, respectively, and visualized with the mouse Cy3- or rabbit Alexa 488-conjugated secondary antibodies. After staining, samples were washed with PBS, 0.2% NP-40, 0.2% Tween 20 and containing subsequently 300 mM NaCl and 400 mM NaCl.
GST pull-down assay
GST fusion proteins were purified on Glutathione Sepharose 4B beads (Amersham Biosciences). GST pull-down assays were performed as described (Takemaru et al., 1998). Bound proteins were detected on western blots using either the anti-MBF1 or the anti-TBP antibody.

Immunoprecipitation
For co-immunoprecipitation assays, 20 μl of IgG-conjugated Dynabeads (Dynal, Oslo, Norway) containing 2 μg of IgG were incubated at 4°C for 2 hours with 40 μl of a primary antibody or the corresponding preimmune serum and then washed with TBS [50 mM Tris-HCl (pH 7.4), 60 mM NaCl]. Nuclear extracts were prepared from yw or mbf1 embryos (0-20 hours AEL) as described (Ueda et al., 1990) and 30 μl of the nuclear extract was added to the antibody-loaded beads. After incubation at 4°C for 2 hours, the beads were washed with TBS containing 0.01% NP-40. Bound proteins were eluted from the beads with SDS loading buffer, resolved by SDS-PAGE (8% for TBP and TDF, 12.5% for MBF1) and analyzed on a western blot.

In vitro DNA-binding experiments
The TDF-binding consensus was obtained from a pool of oligonucleotides containing 16-nucleotide random sequences in the middle as described (Gogos et al., 1992). Binding reactions were performed as described elsewhere (Pollack and Treisman, 1990). The binding mixture (25 μl) contained buffer E (20 mM Hesper (pH 7.9), 100 mM KCl, 20% glycerol, 0.2 mM EDTA, 0.5 mM PMSF, 0.5 mM DTT, 0.1% NP-40, 5 μg/ml leupeptin, 5 μg/ml pepstatin and 0.75 μg/ml aprotinin), 1 μl anti-TDF, 2 μl nuclear extract (0-20 hours AEL), 0.1 μmole of the 32P-labeled oligonucleotide probe, 200 ng poly(dIdC)-poly(dIdC) and 200 ng bovine serum albumin (Sigma). The mixture was incubated on ice for 30 minutes and oligomers bound by TDF were collected on protein A-Sepharose beads. After washing the beads with buffer E, the oligomers were recovered by phenol treatment, amplified using PCR and then used for the next selection cycle. After the fifth round of selection, DNA fragments were subcloned into a T-vector (Novagen) and sequenced. The consensus sequence was deduced from sequences of 54 clones.

GST pull-down assay
GST fusion proteins were purified on Glutathione Sepharose 4B beads (Amersham Biosciences). GST pull-down assays were performed as described (Takemaru et al., 1998). Bound proteins were detected on western blots using either the anti-MBF1 or the anti-TBP antibody.

Immunoprecipitation
For co-immunoprecipitation assays, 20 μl of IgG-conjugated Dynabeads (Dynal, Oslo, Norway) containing 2 μg of IgG were incubated at 4°C for 2 hours with 40 μl of a primary antibody or the corresponding preimmune serum and then washed with TBS [50 mM Tris-HCl (pH 7.4), 60 mM NaCl]. Nuclear extracts were prepared from yw or mbf1 embryos (0-20 hours AEL) as described (Ueda et al., 1990) and 30 μl of the nuclear extract was added to the antibody-loaded beads. After incubation at 4°C for 2 hours, the beads were washed with TBS containing 0.01% NP-40. Bound proteins were eluted from the beads with SDS loading buffer, resolved by SDS-PAGE (8% for TBP and TDF, 12.5% for MBF1) and analyzed on a western blot.

In vitro DNA-binding experiments
The TDF-binding consensus was obtained from a pool of oligonucleotides containing 16-nucleotide random sequences in the middle as described (Gogos et al., 1992). Binding reactions were performed as described elsewhere (Pollack and Treisman, 1990). The binding mixture (25 μl) contained buffer E (20 mM Hesper (pH 7.9), 100 mM KCl, 20% glycerol, 0.2 mM EDTA, 0.5 mM PMSF, 0.5 mM DTT, 0.1% NP-40, 5 μg/ml leupeptin, 5 μg/ml pepstatin and 0.75 μg/ml aprotinin), 1 μl anti-TDF, 2 μl nuclear extract (0-20 hours AEL), 0.1 μmole of the 32P-labeled oligonucleotide probe, 200 ng poly(dIdC)-poly(dIdC) and 200 ng bovine serum albumin (Sigma). The mixture was incubated on ice for 30 minutes and oligomers bound by TDF were collected on protein A-Sepharose beads. After washing the beads with buffer E, the oligomers were recovered by phenol treatment, amplified using PCR and then used for the next selection cycle. After the fifth round of selection, DNA fragments were subcloned into a T-vector (Novagen) and sequenced. The consensus sequence was deduced from sequences of 54 clones.

Genetic analyses
To analyze genetic interactions between mbf1 and tdf, we made two double mutant stocks, homozygous for mbf1 deletion: tdfP2/Cyo; mbf1 and tdfP2/Cyo; tdf-lacC; mbf1. To compensate for the mbf1 deletion, the rescue construct P[MBF1+] was introduced into the mbf1 mutant chromosome. A double mutant tdfP2/Cyo; P[MBF1+] was also prepared and used for rescue experiments. To rescue the CNS phenotype of the tdf mutant, UAS-tdf was introduced into the tdfP2 chromosome. A double mutant tdfP2/Cyo; P[MBF1+] was also prepared and used for rescue experiments.

RESULTS
Characterization of Drosophila MBF1
A cDNA encoding Drosophila MBF1 was cloned from a larval CNS library. The predicted protein of 145 amino acids had 44, 64 and 83% identity to MBF1 from yeast, human and silkmoth, respectively (Fig. 1A). MBF1 consists of two structural domains: a well-structured C-terminal half that participates in binding to various activators and a terminal half that is conserved in yeast, Drosophila and the silkmoth, respectively (Fig. 1A). MBF1 includes both of these functional domains (Fig. 1A). A cDNA encoding MBF1 was cloned from a larval CNS library. The predicted protein of 145 amino acids had 44, 64 and 83% identity to MBF1 from yeast, human and silkmoth, respectively (Fig. 1A). MBF1 includes both of these functional domains (Fig. 1A).

To analyze genetic interactions between mbf1 and tdf, we made two double mutant stocks, homozygous for mbf1 deletion: tdfP2/Cyo; mbf1 and tdfP2/Cyo; tdf-lacC; mbf1. To compensate for the mbf1 deletion, the rescue construct P[MBF1+] was introduced into the mbf1 mutant chromosome. A double mutant tdfP2/Cyo; P[MBF1+] was also prepared and used for rescue experiments.

To examine the effect of the loss of tdf function on the reporter expression, the TDS-lacZ transgene was introduced into the tdfP2 chromosome. The TDS-lacZ expression in mbf1 and heterozygous tdfP2 background were examined in TDS-lacZ/Cyo; mbf1 and TDS-lacZ/Cyo; tdfP2/mbf1, respectively. β-Galactosidase activities in embryonic extracts were measured using a Galacto-Light Plus System (Applied Biosystems) and a luminometer LUMAT LB9507 (Berthold Technologies). For scoring of X-gal-stained embryos, we excluded embryos that died earlier and only counted embryos that developed to stage 16.

To misexpress TDF in the salivary glands, a UAS-tdf transgene was controlled by a Gal4 driver sgP[Gal4] on the X chromosome. sgP[Gal4] is one of the enhancer trap lines isolated by Brand and Perrimon (Brand and Perrimon, 1993) and is active in the salivary gland cells from embryonic through larval stages. To localize TDF on its binding site in vivo, the TDS-lacZ reporter was introduced into the UAS-tdf chromosome and the y+ sgP[Gal4]/Binsc1 females were crossed with the yw:UAS-tdf, TDS-lacZ males. After culturing at 18°C, y+ third-instar larvae were dissected and stained with anti-TDF serum and the anti-β-gal mAb 40-1A.
a 2082 bp DNA segment encompassing the entire coding region and most of the 3′-noncoding region of mbf1 (from 211 bp upstream of the initiation codon to 857 bp downstream of the stop codon). mbf1− animals derived from mbf1−/+ parents were viable, with no detectable loss in viability. mbf1 mutant females, however, had a maternal effect phenotype with incomplete penetrance; a variable fraction of progeny from mbf1− homozygous females died before stage 5, regardless of whether they were mated to mbf1+ or mbf1− males. As escapers developed to adults with no obvious morphological defects, a stable mbf1 homozygous line could be maintained under laboratory conditions. No MBF1 protein was detectable in the mbf1 mutant by western analyses (Fig. 3A, lane 2; Fig. 3B, lane 2). Based on the requirement of MBF1 as a co-activator for FTZ-F1-dependent transcription in vitro, we had expected to see a ftz-fl-like segmentation defect among the dead mbf1 homozygous embryos. However, no such pair-rule phenotype was observed. Furthermore, we were unable to detect any decrease in the expression of a FTZ-F1-dependent reporter gene in mbf1− mutant embryos (Fig. 1D). These results showed that MBF1 is not a crucial co-activator for FTZ-F1-dependent transcription in vivo. This led us to search for new partners of MBF1.

Identification of TDF as an MBF1-associated protein

To isolate new partners of MBF1 in vivo, we used the transgenic line expressing FLAG-MBF1 and pulled out MBF1-associated factors from embryonic nuclear extracts. Complexes including MBF1 were captured on anti-FLAG antibody beads, eluted with the FLAG peptide and resolved by SDS-PAGE. While the nuclear extract of a strain lacking FLAG-MBF1 yielded no specific protein bands (Fig. 2A, lane 1), many proteins were recovered from the FLAG-MBF1 transgenic embryos (Fig. 2A, lane 2). As anticipated, TBP was identified among the MBF1-associated proteins (Fig. 2B, lane 4). The above procedure is also expected to pull down TAFs; indeed some of the bands had sizes corresponding to Drosophila TAFII32, TAFII60, TAFII110 and TAFII150, but we did not examine them further.

We focused on the most prominent protein at 63 kDa that could not be accounted for by any TAF. Its N-terminal amino acid sequence identified it as the bZIP protein TAFII60, TAFII110 and TAFII150, but we did not examine them further.

We used the transgenic line expressing FLAG-MBF1 and pulled out MBF1-associated factors from embryonic nuclear extracts. Complexes including MBF1 were captured on anti-FLAG antibody beads, eluted with the FLAG peptide and resolved by SDS-PAGE. While the nuclear extract of a strain lacking FLAG-MBF1 yielded no specific protein bands (Fig. 2A, lane 1), many proteins were recovered from the FLAG-MBF1 transgenic embryos (Fig. 2A, lane 2). As anticipated, TBP was identified among the MBF1-associated proteins (Fig. 2B, lane 4). The above procedure is also expected to pull down TAFs; indeed some of the bands had sizes corresponding to Drosophila TAFII32, TAFII60, TAFII110 and TAFII150, but we did not examine them further.

We focused on the most prominent protein at 63 kDa that could not be accounted for by any TAF. Its N-terminal amino acid sequence identified it as the bZIP protein TDF (Gellon et al., 1997; Eulenberg and Schuh, 1997). This was supported by western analysis with an anti-TDF antibody (Fig. 2B, lane 6). As yeast MBF1 has been known to interact directly to TDF (Gellon et al., 1997; Eulenberg and Schuh, 1997). This was supported by western analysis with an anti-TDF antibody (Fig. 2B, lane 6). As yeast MBF1 has been known to interact directly with the bZIP protein GCN4 (Takemaru et al., 1998), TDF appeared as a good candidate for a new functional partner of MBF1. Indeed, GST pull-down assays using bacterially expressed purified proteins showed that MBF1 bound directly to TDF (Fig. 2C) and to TBP (Fig. 2D). Yeast GCN4 binds MBF1 with its bZIP domain (Takemaru et al., 1998). Similarly, the bZIP domain of TDF was sufficient for the binding of Drosophila MBF1 (Fig. 2C).
The role of *Drosophila* coactivator MBF1

If MBF1 bridges TDF and TBP, association between these two proteins should depend on the presence of MBF1. To examine the requirement of MBF1 for tethering TBP to TDF in vivo, we carried out co-immunoprecipitation using nuclear extracts prepared from *mbf1*+ or *mbf1*–null mutant embryos. From the *mbf1*+ nuclear extract, MBF1 and TDF were co-immunoprecipitated with the anti-TBP antibody, but not with the pre-immune serum (Fig. 3A, lanes 3 and 5). By contrast, when we started from the extract from *mbf1*– embryos, TDF was not co-immunoprecipitated with the anti-TBP antibody (Fig. 3A, lanes 2 and 6). In a reciprocal test, MBF1 and TBP were co-immunoprecipitated with the anti-TDF antibody from the *mbf1*+ extract, but not from the *mbf1*– nuclear extracts, or from the *mbf1*+ extract using the pre-immune serum (Fig. 3B, lanes 3, 5 and 6). These results demonstrate that MBF1 forms a bridge between TDF and TBP and that in its absence, a stable association of TDF and TBP does not take place.

TDF binds DNA in a sequence-specific manner

The physical interaction between MBF1 and TDF, as well as the presence of bZIP domain in TDF suggests that TDF is a transcription factor that uses MBF1 for transcriptional regulation of its target genes. To test this possibility, we first determined the binding sequence of TDF. The full-length TDF protein or its C-terminal 56 amino acids harboring the bZIP domain were expressed in bacteria and purified. In a preliminary gel mobility retardation experiment, both the full-length and the C-terminal proteins showed DNA-binding activities (data not shown). The optimal binding sequences were selected from a pool of random oligonucleotides (see Materials and Methods). The consensus sequence deduced from the selected oligonucleotides was (A/G) TTC (C/T) (A/T) A T (T/A) (G/A) GA (A/T) (T/C). Fig. 4A.

The specificity of TDF binding to the consensus DNA sequence was verified by a competition assay. Incubation of 32P-labeled double-stranded DNA carrying the sequence 5′-ATTCCAATTGAAT-3′ with the full-length TDF protein yielded a slowly migrating complex. The complex formation was efficiently competed with the unlabeled oligonucleotide of the same sequence (Fig. 4B, lanes 2-5) but not with a mutant oligonucleotide carrying four base substitutions (Fig. 4B, lanes 6-8). Essentially the same results were obtained with the C-terminal 56 amino acid fragment of TDF (data not shown). These data indicate that TDF is a sequence-specific DNA binding protein that recognizes a 14 bp palindrome (A/G) TTC (C/T)(A/T) AT (T/A) (G/A) GA (A/T)(T/C) (Fig. 4A).

TDF is a sequence-specific activator of transcription

We then tested whether TDF regulates transcription from a promoter carrying its binding site. A reporter gene was constructed in which three tandemly repeated TDF-binding sites (*TDS*) were placed upstream of a *hsp70* basal promoter (−40 to +90)-*lacZ* fusion gene (*TDS-lacZ*; Fig. 5A). We also made another reporter gene containing three tandemly repeated mutant binding sites (*TDMS-lacZ*). Transgenic fly lines...
carrying these reporter genes were analyzed for lacZ expression by staining with anti-b-galactosidase antibody. TDS-lacZ was expressed in the tracheae, heart precursor cells, head and CNS of stage 16 embryos (Fig. 5B,C), i.e. in the pattern of the endogenous TDF protein (Eulenberg and Schuh, 1997; Gellon et al., 1997; Su et al., 1999) (Q.-X. L., M. J., H. U., Y. H. and S. H., unpublished). By contrast, the TDMS-lacZ reporter with mutated binding sites showed no activity (Fig. 5D). Expression of TDS-lacZ was not detectable in the tdf loss-of-function mutants tdfP2 (Fig. 5E) and tdfP3 (data not shown). Conversely, when TDF was ectopically expressed in the posterior salivary gland cells, it induced expression of the TDS-lacZ reporter in these cells (Fig. 5I). Such induction of lacZ was not observed when we used the line carrying TDMS-lacZ (data not shown). These results clearly show that TDF is required and sufficient to activate transcription by binding to its specific recognition sequence TDS.

MBF1 plays a role in the TDF-dependent activation

As animals that lack MBF1 can survive to adulthood while null mutants of TDF are embryonic lethal, TDF must be able to carry out its function even when no stable association with TBP occurs. This suggests that, in the absence of MBF1,
transcriptional activity by TDF may be reduced, but not abolished. To measure the transcriptional activity of TDF, we quantitated the expression of the TDS-lacZ reporter in normal and MBF1-deficient embryos (Fig. 6B). We found that β-galactosidase expression from TDS-lacZ was reduced by 80% when MBF1 was absent. This effect was reverted by expressing a transgenic MBF1 (data not shown). The reduction was even more pronounced when only one copy of the tdfl gene was present, while removing one copy of the tdfl gene in mblf1+ background had no effect on TDS-lacZ reporter activity. This indicates that the loss of MBF1 has a quantitative effect on TDF-mediated transcriptional activation. Interestingly, when a population of stage 16 mblf1− embryos carrying TDS-lacZ gene was stained for β-galactosidase expression, there was a considerable individual variation in the expression levels; about 15% of embryos had no detectable levels of β-galactosidase expression, while the rest exhibited varying levels. Such variation was not observed in mblf1+ embryos. It is possible that MBF1 function becomes essential for TDF-mediated transcription under conditions that are not completely controlled in our experiments.

Role of TDF and MBF1 in the development of the tracheae and CNS

The involvement of MBF1 in TDF-mediated transcription suggests that loss of mblf1 may also affect a tdfl mutant phenotype. In addition to the tracheal system (Eulenberg and Schuh, 1997; Gellon et al., 1997), TDF is strongly expressed in the CNS (Eulenberg and Schuh, 1997). Although a defect in neural function has been reported in a tdfl mutant (Takasu-Ishikawa et al., 2001), the role of TDF in the CNS development remained to be investigated. We found that tdflPΔ3 embryos had breakages in the CNS axon tracts and tracheal networks (Fig. 7C,D). CNS and tracheal phenotypes were individually rescued when TDF was expressed in all neurons or in all tracheal cells, respectively, indicating that these phenotypes represent independent requirement for TDF in two tissue types, rather than one being a secondary consequence of another (Fig. 7E,F) (Eulenberg and Schuh, 1997) (Q.-X. L., M. J., H. U., Y. H. and S. H., unpublished). The breakages in the CNS and tracheal networks were also observed in the mblf1 mutant, although the penetrance of these phenotypes was only 2-3% (Fig. 7G,H).

Although the developmental defect caused by the lack of MBF1 was rather subtle, mblf1 mutation exhibited a strong genetic interaction with tdfl mutants. Animals that were heterozygous for the tdflPΔ3 allele had no detectable defects in either the CNS or tracheae (Fig. 7A,B). However, when MBF1 was removed from the tdflPΔ3 heterozygotes, we observed a significant increase in the number of defective embryos (17-18% in Fig. 7I,J). Moreover, the degree of defects was also enhanced: increase in the number of breakages and in their size (Fig. 7I,J versus Fig. 7G,H). This effect was completely reverted by expressing MBF1 from a transgene carrying the genomic mblf1 locus (Fig. 7K-N). These genetic interactions between mblf1 and tdfl strongly suggest that MBF1 participates in TDF-mediated transcription during normal development of the tracheae and CNS.

DISCUSSION

MBF1 mediates TDF-dependent transcriptional activation during development of tracheae and CNS

We have analyzed the biological function of an evolutionarily conserved transcription co-activator MBF1 through identifying its partner protein TDF. MBF1 bound directly to TBP and TDF and colocalized with TDF on a TDF-binding site experimentally placed on a polytene chromosomal locus. Co-immunoprecipitation experiments demonstrated that a TDF-MBF1-TBP ternary complex occurred and that MBF1 was required for bridging between TDF and TBP. In the absence of MBF1, the association between TDF and TBP was weakened and TDF-dependent expression of a reporter gene was reduced by 80%. Loss of mblf1 function resulted in developmental defects similar to those seen in tdfl mutants and affected the proper formation of the tracheae and CNS. These phenotypes
were enhanced when the gene dose of tdf was halved. Based on these biochemical and genetic data, we conclude that Drosophila MBF1 functions as a co-activator of TDF during the development of the tracheae and CNS.

Two pathways for transcriptional activation by TDF

The relationship between Drosophila MBF1 and TDF is similar to that between yeast MBF1 and its partner transcription factor GCN4 (Takemaru et al., 1998). Just as yeast MBF1 contacts GCN4 through its bZIP domain, Drosophila MBF1 binds the bZIP domain of TDF. Moreover, the lack of GCN4-dependent activation in yeast mbf1 mutant can be partially restored by expressing Drosophila MBF1. The sequence and functional conservation between yeast and Drosophila MBF1 indicates that the interaction with bZIP proteins is a conserved feature of the bridging factor MBF1.

Genetic studies of mbf1 in yeast and Drosophila suggest that MBF1-associated transcription factors have two pathways for activation. In addition to the MBF1-mediated recruitment of TBP via its bZIP domain (Takemaru et al., 1998), GCN4 also recruits the SAGA complex with its N-terminal activation domain and effects transcription through chromatin modification (Grant et al., 1997). Likewise, Drosophila TDF has a region similar to the glutamine-rich transactivation domain (Eulenberg and Schuh, 1997) and may employ an activation pathway independent of recruiting TBP through MBF1. Such pathway may account for the residual expression of the TDS-lacZ reporter gene in the absence of MBF1. Although MBF1 is essential for GCN4-dependent transcription of its target gene HIS3 (Takemaru et al., 1998), low level of TDF-dependent transcription of the TDS-lacZ gene can still occur in the absence of MBF1. This suggests that the relative importance of the two pathways is different between GCN4 and TDF. The DNA-binding domain of FTZ-F1 carries a basic region homologous to those in bZIP proteins and binds MBF1 through this region (Takemaru et al., 1997). However, loss of mbf1 showed no effect on FTZ-F1-dependent transcription in vivo, suggesting that the activation by FTZ-F1 relied solely on the pathway through its transactivation domain. In our in vitro transcription system, the transactivation domain does not seem to be functional because FTZ622 polypeptide bearing only the DNA-binding domain of FTZ-F1 showed the same transcriptional activity as the intact FTZ-F1 (Takemaru et al., 1997). This may explain the difference in the MBF1 requirement between FTZ-F1-dependent transcription in vivo and in vitro.

It is possible that the role of MBF1 becomes more critical under certain circumstances, when rapid induction of gene expression is demanded by environmental conditions. The expression of the TDS-lacZ reporter in mbf1− background varied considerably from embryo to embryo, suggesting that certain conditions that are uncontrolled in our experiments may render transcription particularly dependent on the MBF1-mediated pathway. In the natural environment, there are many stimuli that alter gene expression profile: UV radiation, poison agents, nutrient starvation and so on. Therefore, direct recruitment of TBP by MBF1 may become essential for rapid activation of transcription under such conditions. In agreement with this idea, the yeast mbf1 disruptant is viable under normal culture conditions, but sensitive to amino acid starvation (Takemaru et al., 1998).

The biological role of MBF1

Studies on MBF1 homologs also support the idea that MBF1 may function when gene expression is required in response to developmental or environmental signals. Rat MBF1 has been isolated as a calmodulin-associated peptide 19 (CAP-19) (Smith et al., 1998) and human MBF1 (Kabe et al., 1999) has been identified as...
endothelial differentiation-related factor 1 (EDF1) (Dragoni et al., 1998). EDF1/MBF1 is downregulated when endothelial cells are induced to differentiate. Interestingly, EDF1/MBF1 binds to calmodulin in the cytoplasm under low Ca\(^{2+}\) conditions but the two proteins dissociate when intracellular Ca\(^{2+}\) is high. The released EDF1/MBF1 is then phosphorylated and shuttled into the nucleus, where it binds TBP (Mariotti et al., 2000). Nuclear translocation of MBF1 has also been observed at a specific stage of molting in the silkworm B. mori (Liu et al., 2000). Considering the Ca\(^{2+}\) elevation upon exposure to the molting hormone ecdysoyteroid (Biyasheva et al., 2001), these data raise an intriguing possibility that MBF1 is involved in Ca\(^{2+}\)-induced gene activation. Although in this study we have analyzed only the developmental roles of MBF1 associated with TDF function, Drosophila MBF1 may also be involved in other biological processes, such as stress response, homeostasis and longevity.

Several lines of evidence suggest that Drosophila MBF1 has partners other than TDF. MBF1 is expressed in a wide spatiotemporal pattern, including tissues and stages where TDF is absent. Although TDF is not expressed in the salivary gland, immunolocalization of MBF1 on salivary gland chromosome revealed a large number of loci associated with MBF1 (Q.-X. L., M. J. and S. H., unpublished). Furthermore, FLAG-tagged MBF1 pulled down many proteins besides TDF. Although mbf1-null mutants were viable under laboratory conditions, tdf became haploinsufficient in mbf1- genetic background, clearly indicating the importance of MBF1 in the expression of the genomic information. This finding opens a way to identify new partners of MBF1 through genetic screening for loci that exhibit dominant phenotypes in the absence of MBF1. Characterization of MBF1 partners will contribute to our knowledge on how co-activators mediate specific biological events.

We thank Shigeo Hayashi, Masataka Okabe, Reinhard Schuh, Leslie Pick and Yoshihiro Nakatani for kindly supplying flies, DNA and antibodies; and Jun-ichi Tomizawa for critical reading of the manuscript. This work was supported by Grants-in-aid for Scientific and Technology of Japan and grants from the Naito Foundation and from the Ministry of Education, Science, Sports, Culture and Technology of Japan and grants from the Naito Foundation and from the Czech Grant Agency number204/00/0811. Q.-X. L. and M. J. were supported by a Center of Excellence Program of Japan. Q.-X. L. was also supported by Japan Society for the Promotion of Science.

REFERENCES

