Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle

Katherine L. Hammond, Helen E. Loynes, Amos A. Folarin, Joanne Smith and Tanya T. Whitfield*

Centre for Developmental Genetics, University of Sheffield School of Medicine and Biomedical Science, Western Bank, Sheffield S10 2TN, UK

*Author for correspondence (e-mail: t.whitfield@sheffield.ac.uk)

Accepted 18 December 2002

SUMMARY

Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con^{<i>fl88</i>}) and slow muscle omitted (smu^{b441}) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.

Key words: Hedgehog, Sonic hedgehog, Tiggy-winkle hedgehog, Inner ear, Zebrafish, Mirror image duplication, slow muscle omitted, chameleon, Otic vesicle, Axis formation

INTRODUCTION

The inner ears of vertebrates are responsible for the sensations of hearing and of balance. Although the two ears are symmetric about the midline of the organism, each individual organ in most vertebrate species is asymmetric about three axes [anteroposterior/rostrocaudal (AP), dorsoventral (DV) and mediolateral (ML)]. The zebrafish otic field (defined by the expression of <i>pax8</i>) is induced at the lateral edges of the neural plate, adjacent to several presumptive rhombomeres (r) of the developing hindbrain. By about 14 hours post fertilisation (hpf), condensation of cells gives rise to distinct thickenings (the otic placodes) immediately opposite r5 (Kimmel et al., 1995; Pfeffer et al., 1998; Phillips et al., 2001). The expression of several genes, for example <i>pax2a</i> (formerly <i>pax2.1</i>), <i>dlx3b</i> (formerly <i>dlx3</i>) and <i>eya1</i>, is now detected throughout these placodes (Krauss et al., 1991; Akimenko et al., 1994; Sahly et al., 1999). The only known genes with restricted patterns of expression in the otic placode at this stage are the Delta genes. These are expressed in anterior and posterior domains, symmetrical about the AP and DV axes, but restricted to the medial side of the placode (Haddon et al., 1998). It is therefore likely that at 14 hpf only the ML axis of the otic placode has been specified.

Asymmetric gene expression patterns about both the AP and the DV axes are obvious by 18 hpf, when the placode begins to cavitate to form an otic vesicle. <i>nkx5.1</i> (<i>hmx3</i> – Zebrafish Information Network), which is currently the earliest known marker of an asymmetry about the AP axis, is expressed in an anterior domain from around 16 hpf; <i>pax5</i> is detectable in the anterior otic epithelium from 17.5 hpf and <i>dacha</i> is detected in the dorsal otic epithelium by 17-18 hpf, suggesting that all axes of the ear have been specified by this time (Pfeffer et al., 1998; Adamska et al., 2000; Hammond et al., 2002). By 24 hpf, several further otic genes are expressed asymmetrically, and this presumably both reflects and reinforces axis specification. <i>pax5</i>, <i>nkx5.1</i> and <i>fgf8</i> are expressed anteriorly, <i>bmp7</i> and <i>follistatin</i> posteriorly, <i>dlx3b</i> and <i>dacha</i> dorsally, <i>eya1</i> ventrally, and <i>pax2a</i> and <i>dacha</i> medially (Krauss et al., 1991; Akimenko et al., 1994; Sahly et al., 1999; Adamska et al., 2000; Mowbray et al., 2001; Hammond et al., 2002). Sensory epithelium now thickens and stratifies, and fingers of non-sensory epithelium protrude into the otic lumen and fuse to form the semicircular canal system (reviewed by Whitfield et al., 2002).

Fekete and colleagues have proposed a model in which tissues surrounding the ear provide inductive signals for both axis specification and further otic differentiation (Fekete et al., 1996; Brigande et al., 2000a; Brigande et al., 2000b). They propose that signals from the hindbrain have dorsalising activity, and may also be important in providing AP information and medialising signals to the otic vesicle. Several lines of
evidence, ranging from early transplantation experiments carried out in *Amblystoma* to more recent studies of knockout and mutant mice, suggest that the hindbrain does provide signals to pattern medial and dorsal otic regions (Harrison, 1945; Deol, 1964; Mansour et al., 1993; Mark et al., 1993; McKay et al., 1996; Niederreither et al., 2000). Each hindbrain rhombomere also expresses a specific and unique group of genes, including members of the Hox gene cluster, and may thus impart AP identity to adjacent inner ear regions (Fekete, 1996; Prince et al., 1998; Brigande et al., 2000a; Brigande et al., 2000b).

Fekete and colleagues also suggest that ventral midline structures (i.e. the notochord and floorplate) may specify ventral otic structures. Both the notochord and floorplate are strong sources of Hedgehog (Hh) proteins, and evidence from the chick suggests that these tissues are able to repress dorsal and lateral otic fate (Giraldez, 1998). We therefore set out to test whether Hedgehog signalling from the ventral midline is required to pattern the developing ear, and in particular whether it is responsible for the specification and development of ventral and/or medial otic structures. Hh proteins are secreted peptides known to act as morphogens in the axis specification of other organs, such as the neural tube, limb bud and somites (Echelard et al., 1993; Krauss et al., 1993; Riddle et al., 1993; Roelink et al., 1995) (reviewed by Hammerschmidt et al., 1997; Ingham and McMahon, 2001). In many situations, Hh is a diffusible molecule, and, in vertebrates, has been reported to act over several cell diameters (up to 300 μm in chick limb bud mesenchyme, for example) (Grill-Linde et al., 2001; Lewis et al., 2001; Zeng et al., 2001). Details of the signalling pathway have been elucidated in *Drosophila*. The Hh receptor, patched (Ptc), in the absence of Hh ligand, interacts with, and inhibits the action of, Smoothened (Smo). In the presence of Hh, repression of Smo via Ptc1 is lifted, and the signal is transduced through various intercellular intermediates to the transcription factor cubitus interruptus (Ci). Among the targets of the Hh signalling cascade is *ptc* itself, whose transcription is upregulated by active Hh signalling (for a review, see Ingham and McMahon, 2001).

In zebrafish, four hedgehog homologues have been reported: *sonic hedgehog* (*shh*) and *tiggy-winkle hedgehog* (*twhh*) (both orthologues of tetrapod Shh), and *echidna hedgehog* (*ehh*) and *hh-a* (orthologues of Indian hedgehog) (Krauss et al., 1993; Ekker et al., 1995; Currie and Ingham, 1996; Zardoya et al., 1996a; Zardoya et al., 1996b). Components of the transduction cascade include two Patched genes, and at least three Gli genes, orthologues of *ci* (Concordet et al., 1996; Karlstrom et al., 1999; Lewis et al., 1999a; Varga et al., 2001). Importantly, only a single *smoothened* orthologue, *smo*, appears to have been retained in the zebrafish genome, and all Hh signalling is thought to require the function of this gene (Varga et al., 2001). Mutations in some components of the Hh pathway have been isolated: *shh* is disrupted in *sonic you* (*syu*) mutants, *gli1* is disrupted in *detour* (*dtr*) mutants, *gli2* is disrupted in *you too* (*ytt*) mutants and the *smo* gene is disrupted in mutant alleles of *slow muscle omitted* (*smu*) (Schauerte et al., 1998; Karlstrom et al., 1999; Barresi et al., 2000; Chen et al., 2001; Varga et al., 2001; Karlstrom et al., 2003). In addition, the Hh pathway is thought to be disrupted in *chameleon* (*con*), *iguana* (*igu*) and *you* mutants (Schauerte et al., 1998; Lewis et al., 1999b; Odenthal et al., 2000).

Consistent with a role for Hedgehog in early medial or ventral otic patterning, we find that all essential components of the Hh signal transduction cascade are expressed in the otic vesicle, while three *hh* genes are expressed in adjacent midline structures (notochord and floorplate). Surprisingly, however, mutant analysis indicates that Hh signalling appears to be involved in AP patterning of the otic vesicle, rather than DV or ML patterning as predicted. Using double mutants and antisense morpholino experiments, we also show that both Shh and Twhh are involved in this AP patterning, and that either gene alone can compensate for the absence of the other.

MATERIALS AND METHODS

Zebrafish stocks

Wild-type embryos used were WIK or AB. Mutant strains used were *con*^{1b}, *cyc²¹⁹*; *dtr²²⁹*; *ffh²⁴¹* or *flh¹²⁸*; *syu⁹⁷*; *nlt²⁴¹*; *oct²⁵⁷*; *smu⁶⁴¹*; *syn⁴* and *you⁹⁷*; all recessive loss-of-function alleles, and *you¹¹⁹*; a dominant repressor of Gli-mediated Hh signalling. Phenotypically wild-type siblings were used as controls. Embryonic stages are given as hours post fertilisation (hpf) at 28.5°C, converted from somite stages in embryos younger than 24 hpf (Westferfield, 1995; Kimmel et al., 1995).

In situ hybridisation

Whole-mount in situ hybridisation was carried out as described previously (Oxtoby and Jowett, 1993). Digoxigenin-labelled probes were prepared according to manufacturer’s instructions (Roche). For microscopy, embryos were cleared in a glycerol/PBS series and mounted in 100% glycerol. Sense hybridisations were carried out for *smo*, *gli2* and *ptc2*; all were negative.

FITC-phanllodin stain

Embryos were whole-mount stained for actin with FITC-phanllodin as described previously (Haddon and Lewis, 1996), mounted in Vectashield (Vector Laboratories) and imaged with a Leica SP confocal microscope. For dorsal views, ears were dissected.

Sections

After in situ hybridisation, embryos were fixed overnight in 4% paraformaldehyde, and cleared through a glycerol/PBS series. Sections (~100 μm) were cut using a hypodermic needle and mounted in 100% glycerol. For thinner sections, fixed embryos were embedded in 1% low melting point agarose, embedded in an ethanol/butanol series, embedded in paraffin wax, and sectioned at 7 μm. Sections were stained with Haematoxylin and Eosin, and mounted in DePeX (Sigma).

mRNA injection

5’methylguanosine-capped sense mRNA was produced as described previously (Krieg and Melton, 1984). RNA (5 nl) was injected into one- or two-cell embryos using a Narishige microinjection rig, at 50 ng/μl to 1 μg/μl for *ptc1* RNA, 25 ng/μl to 100 ng/μl for *shh* RNA, 25 ng/μl to 400 ng/μl for dnPKA RNA (Concordet et al., 1996), and 500 ng/μl for *ehh* and *twhh* RNA. NGFP RNA (75 ng/μl) was co-injected in all experiments. GFP was visualised between shield stage and tail bud stage; embryos not expressing GFP ubiquitously were discarded.

Morpholino injection

Carboxyfluorescein-conjugated antisense morpholinos (GeneTools) were targeted to the 5’ end of the *shh* and *twhh* open reading frames (GenBank Accession Numbers, AF124382 and U30710,
RESULTS

Hh pathway genes are expressed in and around the developing ear

As a first step towards identifying possible roles for Hh signalling in otic vesicle development, we analysed mRNA expression patterns of zebrafish Hh pathway components in the vicinity of the ear (Fig. 1). None of the three zebrafish hedgehog genes examined, twhh, shh and ehh, are expressed in the otic vesicle itself. The closest source of Hedgehog to the ear between 16.5 hours post fertilisation (hpf) and 30 hpf is from midline tissues; shh is expressed in both the notochord and floorplate, while twhh is expressed only in the floorplate, and ehh only in the notochord (Fig. 1C,E,G) (Krauss et al., 1993; Ekker et al., 1995; Currie and Ingham, 1996). These structures are approximately 40 μm from the vesicle at 24 hpf, which is a feasible distance over which Hh may act (Gritli-Linde et al., 2001; Lewis et al., 2001; Zeng et al., 2001). shh is also expressed in visceral endoderm from 24 hpf (Roy et al., 2001), and in pharyngeal endoderm from 30 hpf (Piotrowski et al., 2000). At 25 hpf, endodermal expression is about 75 μm posterior to the ear, and is weaker than the floorplate expression nearer the ear (data not shown) (Roy et al., 2001). twhh expression is also detectable in the pharyngeal endoderm at 24 hpf, ~100 μm from the otic vesicle (data not shown).

Genes encoding components for the reception and transduction of the Hh signal are expressed in the otic epithelium. ptc1 is expressed in a ventromedial domain from 16.5 to 30 hpf, initially uniformly along the AP axis of the vesicle, but becoming concentrated in the posterior by 22 hpf (Fig. 1B, I, J). This indicates active Hh signal transduction in the otic vesicle, since ptc1 is itself a transcriptional target of the Hh pathway (Concordet et al., 1996; Goodrich et al., 1996). ptc2 is expressed similarly to but more widely than ptc1, as its expression is upregulated by a lower concentration of Hh signal (Lewis et al., 1999a). By 24 hpf, ptc2 RNA is detectable throughout ventral otic epithelium of wild-type embryos, rather than being restricted to a ptc1-like ventromedial band (Fig. 1D). smo is expressed throughout the otic vesicle from 16.5 to 30 hpf (Fig. 1F). Thus, all reported essential components of the zebrafish Hh signalling pathway are expressed in locations consistent with a direct role for Hh in early ear development. gli2, however, is not highly expressed in the otic epithelium (Fig. 1H). It is possible, however, that another Gli gene is expressed here, as Gli genes are expressed differentially in other developmental contexts (reviewed by Ingham and McMahon, 2001).

Providing further evidence for a direct effect of Hh signalling on otic vesicle development, otic ptc1 expression is greatly reduced or lost in two strong Hh pathway mutants, contf18b and smub641 (Fig. 2A-C). In addition, ptc1 expression is upregulated in the ears of embryos in which shh RNA has been overexpressed (Fig. 2D). In all three of these cases, an
otc phenotype is associated with the alteration in ptc1 expression, as discussed below.

The ears of conf118b and smu641 homozygotes have AP patterning defects

To investigate the effect of reduced Hedgehog signalling on otic development, we analysed the ears of all zebrafish mutants known or presumed to be defective in a component of the Hh signalling pathway (Table 1). Only three of these show gross otic patterning defects. First, con and smu ears, contrary to expectation, display AP patterning defects, as described below. Second, the ears of igu mutants lack the dorsolateral septum that divides the anterior and posterior semicircular canals, but appear normal in all other respects (data not shown); this phenotype will not be considered further in this report.

By 72 hpf, the wild-type ear is well differentiated and displays clear asymmetries about all three axes (AP, DV and ML). The most obvious structures are the otoliths, which lie over the two maculae. The smaller, anterior (utricular) otolith is situated ventral and lateral to the larger, posterior (saccular) otolith, which lies medially. In both smu and con the two otoliths are small, ventral and lateral, resembling the anterior otolith (Fig. 3A-C). The underlying maculae can be visualised by phalloidin staining, which labels the actin-rich stereocilial bundles of hair cells. In the ears of wild-type embryos, the anterior (utricular) macula sits on the anterolateral floor, and the posterior (saccular) macula lies on the posteromedial wall (Fig. 3D,G). In smu, however, a single sensory patch covers the entire ventral floor of the vesicle, while in con the anterior macula is present but an additional ventral sensory patch develops at the posterior of the ear (Fig. 3E,F,H,I). This second patch resembles a posterior macula in shape, but is reduced in size. In neither smu nor con is there a sensory patch in the normal medial position of the posterior macula (Fig. 3E,F). Note, however, that the position of the axes of the ear with respect to the midline is altered in con and smu homozygotes (Fig. 3J-L). Midline tissue is missing, bringing the ventral surface of the ear closer to the midline than normal. Taken together, these data suggest that posterior otic regions are not specified correctly in smu and con, and may be acquiring some anterior identity.

Posterior otic structures are lost in smu641 and conf118b while anterior regions are duplicated

To investigate smu and con ear patterning in detail, we used a panel of otic region-specific markers. Anterior expression domains of three genes are duplicated or expanded into posterior regions of the otic vesicle of smu and con homozygotes. Anterior domains of otx1 expression at 48 hpf are duplicated in a mirror image manner in both con and smu (Fig. 4A-C). Similarly, wnt4 expression at 36 hpf, normally detectable at the posterior end of the anterior macula, shows duplicated expression at the anterior end of the second ventral macula in con (Fig. 4D,F). wnt4 is also expressed in the centre of the single ventral macula in smu (Fig. 4E). Third, nks5.1, which normally marks anterior otic regions from 16 hpf, and a small posteroventral region by 30 hpf, is expanded along the entire AP extent of the ear in both con and smu (Fig. 4G-I). These expression domains suggest a duplication of anterior otic regions. However, pax5 and fgf8, both of which mark anterior otic epithelium at 24 hpf, maintain their normal expression pattern in con and smu, suggesting that this duplication is incomplete (Fig. 4J-O). Confirming the absence of posterior identity, follistatin expression, which normally marks a localised posterior epithelial region from 24 hpf, is absent or severely reduced in the ears of both con and smu (Fig. 4P-R). Taking these data together, we conclude that a partial mirror image duplication of anterior otic regions occurs at the expense of posterior identity in con and smu homozygotes.

Table 1. Summary of otic phenotypes of the zebrafish Hh pathway mutants

<table>
<thead>
<tr>
<th>Mutant strain</th>
<th>Gene mutated</th>
<th>Ear defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>smu641</td>
<td>smo</td>
<td>Anteriorised*</td>
</tr>
<tr>
<td>conf118b</td>
<td>Unknown</td>
<td>Anteriorised*</td>
</tr>
<tr>
<td>syt4</td>
<td>shh</td>
<td>Retarded but otherwise normal*†</td>
</tr>
<tr>
<td>yot6119</td>
<td>gli2</td>
<td>None*</td>
</tr>
<tr>
<td>dtr8276</td>
<td>gli1</td>
<td>None*</td>
</tr>
<tr>
<td>yot97</td>
<td>Unknown</td>
<td>None*</td>
</tr>
<tr>
<td>igu209</td>
<td>Unknown</td>
<td>Dorsal septum absent*†</td>
</tr>
</tbody>
</table>

*Supernumerary, un tethered otoliths are often observed in all Hedgehog pathway mutants examined. Investigation (not detailed in this report) revealed that this is probably an artefact of the lack of spontaneous movement in the developing embryo and is not specific to Hh pathway mutants.
†The entire yot4 embryo is developmentally retarded. Retardation of ear development is in line with that of the rest of the embryo.
‡Phenotype not described further in this report.

Dorsoventral and mediolateral patterning appear relatively normal in conf118b and smu641 ears

Expression patterns of dlx3b, a dorsal otic marker, and cya1, a ventral marker, are normal in con and smu homozygotes (Fig. 4S-X). In addition, several of the genes discussed above with respect to AP patterning are expressed asymmetrically about the DV axis: otx1, wnt4 and nks5.1 are all ventral markers (Fig. 4A-I). In all cases, it is only the AP patterning that is altered; the DV aspect of these expression patterns remains unaffected. In addition, a ventral neurogenic region is specified in con and...
Hh patterns the zebrafish inner ear

We therefore conclude that the DV otic axis is patterned correctly in the absence of Hh signalling. We are unable to tell, however, whether the dorsal part of the ear is also duplicated about the AP axis in con and smu, as semicircular canal projections appear symmetrical in the wild-type ear, and no AP-restricted dorsal markers are currently available. It is possible, therefore, that Hh is involved only in patterning ventral otic structures, and that other signals pattern the AP axis of dorsal regions.

The expression of *pax2a*, which marks the medial side of the otic vesicle, is also unchanged in con and smu homozygotes (Fig. 4Y-Aa). Likewise, the medial position of the *pax5* expression domain is normal (Fig. 4J-L). These data suggest that the ML axis of smu and con ears is also patterned correctly. We do observe a change in the medial expression of *otx1* (Fig. 4A-C). However, the medial expression of *otx1* normally marks the posterior macula (Fig. 4A); because this structure is missing in smu and con, we conclude that this change in *otx1* expression is a result of the anterior duplication, rather than a separate ML patterning defect. Note also that ectopic cristae may develop in smu ears, while cristae are reduced or absent in the ears of embryos in which Hh signalling is increased (see below). These data suggest that Hh may repress the development of cristae, which are lateral structures, but in the mutants, ectopic cristae may be explained by the duplication of anterior regions.

A single statoacoustic ganglion is associated with each ear in *con* and *smu* homozygotes

Neuroblasts that form the statoacoustic ganglion (SAG) delaminate from an anteroventral region of the otic epithelium and migrate anteriorly to form the ganglion, which is positioned anteroventral to the otic vesicle (Haddon and Lewis, 1996). As anterior regions of the otic vesicle are partially duplicated in the absence of Hh signalling, it was of interest to know whether signals from the vesicle might specify the direction of neuroblast migration. If so, we would predict that in con and smu mutants, neuroblasts would migrate both
anteriorly and posteriorly, forming a second ganglion underneath posterior regions of the ear. The presumptive SAG is thought to be marked by the expression of both nkd5.1 and snai2 expression at 24 hpf (Thissel et al., 1995; Adamska et al., 2000). In con and smu homozygotes, the expression of nkd5.1 and snai2 remains detectable in the SAG in an anterior domain of variable size, but there is no evidence of a posterior duplicated region of expression of either of these genes (Fig. 4G-I and data not shown). We conclude that the specification of neuroblasts in ventral regions does occur in con and smu, but that the direction of neuroblast migration is controlled independently of AP otic vesicle patterning.

Four cristae develop in a proportion of con^tsb and smu^tsb ears

At 48 hpf, both bmp4 and msx2 are expressed in three discrete ventral domains, representing the developing cristae (Ekker et al., 1997; Mowbray et al., 2001). A fourth expression domain of both of these genes is seen in 31% (5/16) con and 50% (5/10) smu ears, suggesting the presence of an ectopic crista (Fig. 4Ab-Ad and data not shown). Hair cells differentiate in these ectopic cristae (Fig. 3E). This phenotype is consistent with an anterior
otic duplication in con and smu, as both the anterior and lateral cristae are located in the anterior half of the normal ear. An anterior duplication would, therefore, also lead to the presence of two cristae at the posterior of the ear. Owing to the lack of markers specific to individual cristae, however, we were unable to assign an identity to the cristae in the ears of con and smu.

ptc1 injection phenocopies the defects in con

Table 2. Ear phenotypes caused by ptc1 RNA injection into one- or two-cell zebrafish embryos

<table>
<thead>
<tr>
<th>Strain injected</th>
<th>Concentration of RNA (ng)</th>
<th>No AP defect</th>
<th>con like</th>
<th>smu like</th>
<th>Number necrotic or dead</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIK (wild type)</td>
<td>50</td>
<td>28 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>WIK</td>
<td>100</td>
<td>90 (93.8%)</td>
<td>0</td>
<td>0</td>
<td>6 (6.2%)</td>
<td>96</td>
</tr>
<tr>
<td>WIK</td>
<td>200</td>
<td>74 (94.9%)</td>
<td>0</td>
<td>0</td>
<td>4 (5.1%)</td>
<td>78</td>
</tr>
<tr>
<td>WIK</td>
<td>500</td>
<td>132 (78.5%)</td>
<td>30 (17.9%)</td>
<td>0</td>
<td>6 (3.6%)</td>
<td>168</td>
</tr>
<tr>
<td>WIK</td>
<td>500</td>
<td>68 (72.3%)</td>
<td>26 (27.7%)</td>
<td>0</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>WIK</td>
<td>1000</td>
<td>122 (60.4%)</td>
<td>11 (5.4%)</td>
<td>3 (1.5%)</td>
<td>66 (32.7%)</td>
<td>202</td>
</tr>
<tr>
<td>con tf18b+/ × con tf18b+/</td>
<td>500</td>
<td>198 (63.9%)</td>
<td>50 (16.1%)</td>
<td>46 (14.8%)</td>
<td>16 (5.2%)</td>
<td>310</td>
</tr>
</tbody>
</table>

Fig. 5. Ear phenotypes caused by injection of ptc1 RNA into one- or two-cell zebrafish embryos. ptc1 RNA (5 nl), at the concentrations shown, was injected into one- or two-cell wild-type (WIK) embryos or embryos from a cross between two con tf18b heterozygotes. Embryos were scored as wild type, con like, smu like or dead/necrotic based on their appearance under a compound light microscope; confocal imaging of sensory hair cells was sometimes used for confirmation. The percentage of each phenotypic class is shown; all remaining embryos were wild type. Data from several batches of injections have been pooled. At 1000 ng/ul, ptc1 RNA proved to be toxic, but at 500 ng/ul injection into WIK resulted in 21% embryos developing with con-like ears, while injection into embryos from a con+/ mating results in 14.8% (the presumed con homozygotes) developing a smu-like ear phenotype.

injection is low (5.2%) and comparable with that seen in the wild-type injection experiments (Table 2). Phalloidin staining confirmed the similarity of the phenotype to that seen in smu ears: the posterior macula was absent, a single ventral macula was observed and four cristae were seen in some ears (Fig. 6J). No in situ markers were used, as we have found none that distinguishes between the con and smu ear phenotypes. The ptc1 injection data therefore confirm that the difference in function Hh pathway mutants (Fig. 6H).

To confirm that the difference between the con and smu ear phenotypes is due to a difference in the level of residual Hh activity, we injected 0.5 μg/μl ptc1 RNA into embryos from a con/+ × con/+ mating. This should reduce Hh signalling further in the con homozygotes, but circumvents the use of toxic levels of ptc1 mRNA. In 14.8% of ears from injected embryos, we observe a smu-like otic phenotype; these embryos presumably represent the homozygous con mutants. A further 16.1% of ears show a con-like phenotype; these embryos may include homozygous, heterozygous or wild-type siblings (Fig. 5; Table 2). The level of death due to nonspecific toxic effects of RNA injection is low (5.2%) and comparable with that seen in the wild-type injection experiments (Table 2). Phalloidin staining confirmed the similarity of the phenotype to that seen in smu ears: the posterior macula was absent, a single ventral macula was observed and four cristae were seen in some ears (Fig. 6J). No in situ markers were used, as we have found none that distinguishes between the con and smu ear phenotypes. The ptc1 injection data therefore confirm that the difference between the con and smu ear phenotypes is due to a difference in Hh activity levels in the two mutants.

Both Shh and Tzhh contribute to otic anteroposterior patterning

At least three Hedgehog genes are expressed in the vicinity of the ear (Fig. 1) but a mutant is available in only one of these, syu, which removes the function of Shh. There are as yet no reported zebrafish twhh or ehh mutants. To investigate which

Table 2. Ear phenotypes caused by ptc1 RNA injection into one- or two-cell zebrafish embryos

<table>
<thead>
<tr>
<th>Strain injected</th>
<th>Concentration of RNA (ng)</th>
<th>No AP defect</th>
<th>con like</th>
<th>smu like</th>
<th>Number necrotic or dead</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIK (wild type)</td>
<td>50</td>
<td>28 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>WIK</td>
<td>100</td>
<td>90 (93.8%)</td>
<td>0</td>
<td>0</td>
<td>6 (6.2%)</td>
<td>96</td>
</tr>
<tr>
<td>WIK</td>
<td>200</td>
<td>74 (94.9%)</td>
<td>0</td>
<td>0</td>
<td>4 (5.1%)</td>
<td>78</td>
</tr>
<tr>
<td>WIK</td>
<td>500</td>
<td>132 (78.5%)</td>
<td>30 (17.9%)</td>
<td>0</td>
<td>6 (3.6%)</td>
<td>168</td>
</tr>
<tr>
<td>WIK</td>
<td>500</td>
<td>68 (72.3%)</td>
<td>26 (27.7%)</td>
<td>0</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>WIK</td>
<td>1000</td>
<td>122 (60.4%)</td>
<td>11 (5.4%)</td>
<td>3 (1.5%)</td>
<td>66 (32.7%)</td>
<td>202</td>
</tr>
<tr>
<td>con tf18b+/ × con tf18b+/</td>
<td>500</td>
<td>198 (63.9%)</td>
<td>50 (16.1%)</td>
<td>46 (14.8%)</td>
<td>16 (5.2%)</td>
<td>310</td>
</tr>
</tbody>
</table>
of these three zebrafish Hedgehog genes have a role in AP otic patterning, we therefore made use of the midline mutants no tail (ntl) and cyclops (cyc) in addition to syu. ntl mutants carry a mutation in the zebrafish homologue of the Brachyury gene and lack a differentiated notochord (Schulte-Merker et al., 1994). ntl embryos therefore never express ehh because ehh is expressed only in the notochord (Currie and Ingham, 1996). cyc, a nodal-related mutant, lacks the floorplate, and hence twhh expression, as twhh is only found in the floorplate (Rebagliati et al., 1998; Sampath et al., 1998).

In all three single mutants (syu, cyc or ntl) the ears are largely phenotypically normal, and show none of the defects found in con or smu embryos (data not shown). Although cyc homozygotes have slightly abnormally shaped ears, phallolidin staining reveals that the sensory patches are fully formed and present in the correct relative positions. syu mutant embryos, including the developing ear, are developmentally retarded. Otherwise, the ear appears normal, although the posterior macula may occasionally be positioned slightly too far towards the anterior. ntl ears appear normal in all respects. In all three single mutants, nkx5.1 (an anterior marker), follistatin (a posterior marker) and bmp4 (a crista marker) are expressed normally (data not shown). The loss of function of each individual Hedgehog protein is therefore not sufficient to cause gross AP patterning defects in the developing ear.

To examine the ears of fish lacking function of two of the three Hedgehog proteins, we used double mutants and morpholino knockdowns (Nasevicius and Ekker, 2000; Odenthal et al., 2000; Lewis and Eisen, 2001) (Tables 3 and 4). To remove functional ehh and shh, we crossed fish heterozygous for both ntl and syu. The ears of 137 live embryos from four clutches appeared morphologically normal, although some were developmentally retarded. As ntl;syu double homozygous embryos are difficult to distinguish from ntl homozygotes, all embryos displaying a ntl phenotype from three clutches (lacking a tail; n=19) were examined by phallolidin staining. In every case the sensory patches were well formed and positioned correctly, although in five fish, the presumed ntl;syu double mutants, the development of the sensory patches was retarded. These data indicate that removal of functional Ehh in addition to Shh is not sufficient to give a con or smu-like ear phenotype (Table 3 and data not shown).

By contrast, cyc;syu double homozygotes (identifiable type embryos (A). (B,F,J) Confocal images of FITC-phallolidin stained ears. (B) Wild-type pattern: arrowhead, anterior macula; arrow, posterior macula. A posterior macula is not present on the medial wall of ptc1-injected embryos (F,J). In ears of ptc1-injected wild-type embryos, the anterior macula is present as normal but a second ventral macula is present at the posterior of the ear, as in con (arrowheads, F). In ears of ptc1-injected embryos from a con+ mating, a single ventral macula covers the ventral surface of the otic vesicle, as in smu ears (arrowhead, J). (C,D,G,H) In situ markers show similar expression patterns in the ears of ptc1-injected embryos and of con and smu. Four cristae may develop (G), and expression of the anterior marker nkx5.1 is expanded (H). We do not have markers that distinguish between con-like and smu-like ears and so these assays were not repeated on ptc1-injected con9180 embryos. Scale bars: 50 µm.

Table 3. Summary of ear phenotypes caused by removal of function of one or more Hedgehog proteins via mutant analysis

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gene mutated</th>
<th>Hh removed</th>
<th>Ear defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>syu41</td>
<td>shh</td>
<td>Shh</td>
<td>None*</td>
</tr>
<tr>
<td>ntl341</td>
<td>brachyury</td>
<td>Ehh</td>
<td>None†</td>
</tr>
<tr>
<td>cyc219</td>
<td>nodal related</td>
<td>Twhh</td>
<td>None</td>
</tr>
<tr>
<td>syu41</td>
<td>shh; brachyury</td>
<td>Shh; Ehh</td>
<td>None</td>
</tr>
<tr>
<td>syu41</td>
<td>shh; nodal related</td>
<td>Shh; Twhh</td>
<td>Anteriorised</td>
</tr>
</tbody>
</table>

*Developmentally retarded.
†Anteroposterior axis elongated with respect to dorsoventral axis.

Fig. 6. Overexpression of ptc1 RNA in wild-type and con9180 embryos phenocopies the anteriorised ear phenotype seen in con9180 and smu6641 homozygotes. Lateral views; anterior towards the left, dorsal towards the top. (A,E,I) DIC images of live embryos, focussed at the level of the anterior otolith. Both otoliths in the ears of ptc1-injected embryos (E,I) are small, lateral and ventral, and resemble the anterior otolith of wild-type embryos (A). (B,F,J) Confocal images of FITC-phallolidin stained ears. (B) Wild-type pattern: arrowhead, anterior macula; arrow, posterior macula. A posterior macula is not present on the medial wall of ptc1-injected embryos (F,J). In ears of ptc1-injected wild-type embryos, the anterior macula is present as normal but a second ventral macula is present at the posterior of the ear, as in con (arrowheads, F). In ears of ptc1-injected embryos from a con+ mating, a single ventral macula covers the ventral surface of the otic vesicle, as in smu ears (arrowhead, J). (C,D,G,H) In situ markers show similar expression patterns in the ears of ptc1-injected embryos and of con and smu. Four cristae may develop (G), and expression of the anterior marker nkx5.1 is expanded (H). We do not have markers that distinguish between con-like and smu-like ears and so these assays were not repeated on ptc1-injected con9180 embryos. Scale bars: 50 µm.
Table 4. Summary of ear phenotypes caused by injection of *twhh* and *shh* antisense morpholinos into one- or two-cell zebrafish embryos

<table>
<thead>
<tr>
<th>Strain</th>
<th>Morpholino injected</th>
<th>Concentration (mM)</th>
<th>Hh removed</th>
<th>Number injected</th>
<th>Ear defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIK</td>
<td>twhh MO</td>
<td>0.25</td>
<td>Twhh</td>
<td>40</td>
<td>None</td>
</tr>
<tr>
<td>syu (^{d/d}) (\times) syu (^{d/d})</td>
<td>shh MO</td>
<td>0.5</td>
<td>Shh</td>
<td>92*</td>
<td>None</td>
</tr>
<tr>
<td>syu (^{d/d}) (\times) syu (^{d/d})</td>
<td>twhh MO</td>
<td>0.25</td>
<td>Shh + Twhh</td>
<td>174*</td>
<td>31 anteriorised/143 wild type</td>
</tr>
</tbody>
</table>

*Only 1/4 of these fish will be homozygous *syu*\(^{d/d}\) mutants.

because they have both U-shaped somites and cyclopia) show an anteriorised ear phenotype similar to, but perhaps not quite as strong as, the *smu* phenotype. The posterior otolith is small and too lateral, resembling the anterior otolith (Fig. 7A,B); the posterior macula is missing, and either a single macula covering the ventral surface of the ear (as in *smu*) or two separate ventral maculae (as in *con*) are seen (Fig. 7D,E). Additionally, anterior *nkx5.1* expression is expanded
posteriorly and posterior follistatin expression is absent (Fig. 7G,H, I, K). bmp4 expression indicated that four cristae instead of the usual three were present in 7/18 (38%) ears examined (data not shown). Removal of both twhh and shh function from the embryo is thus sufficient to cause anteriorisation of the otic vesicle, although removal of the function of either alone is not.

We confirmed this result by the use of antisense morpholinos to knock down Shh and Twhh function. Carboxyfluorescein-tagged antisense morpholinos were designed against shh and twhh, and injected into wild-type or suy mutant embryos. Injection of 0.25 mM twhh morpholino to wild-type (AB) embryos caused circulation defects and very slight somite defects. Although necrosis was observed in the head in some cases, the ears of all injected embryos developed normally (Table 4). To deplete both twhh and shh function, we injected 0.25 mM twhh MO into a clutch of embryos from a mating between suy+ parents. We observed a phenotype similar to that seen in twhh MO-injected wild-type embryos in 82% of cases. In the remaining 18% (the presumed suy homozygotes), the eyes were cyclopic and the ears resembled con and smu anteriorised ears. The otoliths both resembled the anterior otolith, a ventral sensory patch could be seen at the posterior of the ear and the posterior macula was absent (Fig. 7C,F). In addition, posterior otic follistatin expression was lost and anterior otic nks5.1 expression extended posteriorly, although not to the extent seen in cyclsuy double mutants (Fig. 7L).

As a control for nonspecific effects of twhh MO injection, we injected 0.5 mM shh MO into a clutch of embryos from a suy+/× suy/+ mating. In no case was an anteriorised ear phenotype observed, although all embryos now resembled suy homozygotes in possessing circulation defects and U-shaped somites, confirming that our shh MO knocks down Shh function. These data indicate that the anteriorised ear phenotype seen in twhh MO-injected suy homozygotes is not due to nonspecific effects of morpholino injection (see Table 4). It therefore appears that both Twhh and Shh function to specify the posterior part of the ear, but that either can compensate for the absence of the other. We have not tested the role of Ehh with morpholinos, but suggest that it is unlikely to play a major role, given that the ears of suy;ntl double homozygotes, which lack both functional shh and ehh, are patterned normally.

Injection of shh or dnPKA RNA posteriorises the ears of wild-type embryos

As a loss of Hedgehog signalling leads to a loss of posterior character and a concomitant gain of anterior character at the posterior of the ear, we predicted that an increase in Hedgehog signalling should lead to a gain of posterior character by the anterior part of the ear. We tested this hypothesis by overexpression of shh RNA or a dominant negative (dn) PKA RNA in wild-type embryos. We injected shh RNA into wild-type zebrafish embryos at concentrations of 25 ng/μl to 100 ng/μl. Approximately 65% of the ears of these embryos had a very small otic vesicle containing either a single central otolith or a fused dumb-bell shaped central otolith (Table 5; Fig. 8A-C). Semicircular canal projections were very reduced or absent in these ears (Fig. 8A-C). A few more weakly affected embryos displayed a variable semicircular canal phenotype where one or more of the canal projections was reduced or absent (data not shown). Phalloidin staining in those ears with a single or fused central otolith revealed the absence of an anterior macula and the presence of a single medial macula. This had a characteristic ‘bow-tie’ or ‘butterfly’ shape, and is presumed, based on its shape and position, to represent a twinned, double posterior macula (Fig. 8D-F). Increasing the concentration of RNA injected affects this phenotype. At 25 ng/μl, out of 15 posteriorised ears, ten showed the ‘bow-tie’ shape shown in Fig. 8F and five showed the ‘butterfly’ shape shown in Fig. 8E. At 100 ng/μl, out of six posteriorised ears, five showed the ‘butterfly’ phenotype, while one showed the ‘bow-tie’.

Phalloidin staining and in situ hybridisation with msxc also indicated that the cristae were variably reduced in the posteriorised ears. In most cases, all cristae were absent, but in a number of cases one or more were observed (data not shown).

As before, we were unable to assign an identity to the cristae present. Anterior markers (nks5.1, pax5 and fgf8) were absent or severely reduced in 60% or more of cases (Fig. 8I-O), which is consistent with the number of ears with twinned posterior maculae in shh-injected embryos. follistatin, a posterior marker, was duplicated at the anterior in 5/22 ears examined or expanded anteriorly along the medial wall of the otic vesicle in 5/22 (Fig. 8G-I). These data suggest that the otic phenotype of shh-injected fish is indeed a posteriorisation of anterior otic regions. Injections of either twhh RNA or ehh RNA, at concentrations up to 500 ng/μl, had no effect on the otic vesicle.

A dominant-negative form of PKA (dnPKA) was also used to repress Hedgehog signalling activity. PKA acts downstream of Smo to repress Hh signalling and therefore dnPKA causes constitutive activation of the pathway (Concordet et al., 1996). dnPKA RNA (400 ng/μl) was injected into wild-type embryos, resulting in a phenotype identical to that caused by shh injections in 14% embryos (Fig. 8C,F). Lower concentrations had no effect on the otic vesicle. These data confirm that ectopic Hh activity can lead to a duplication of posterior structures at the expense of anterior domains.

Table 5. Ear phenotypes caused by injection of shh and dnPKA RNA into one- or two-cell zebrafish embryos

<table>
<thead>
<tr>
<th>Strain injected</th>
<th>RNA injected</th>
<th>RNA concentration (ng)</th>
<th>Number in which there is no AP defect*</th>
<th>Number indistinct†</th>
<th>Single or fused otoliths</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIK (wild-type)</td>
<td>shh</td>
<td>25</td>
<td>20 (33.3%)</td>
<td>4 (6.7%)</td>
<td>36 (60.0%)</td>
<td>60</td>
</tr>
<tr>
<td>WIK</td>
<td>shh</td>
<td>50</td>
<td>19 (41.3%)</td>
<td>0</td>
<td>27 (58.7%)</td>
<td>46</td>
</tr>
<tr>
<td>WIK</td>
<td>shh</td>
<td>100</td>
<td>6 (16%)</td>
<td>6 (16.7%)</td>
<td>24 (66.6%)</td>
<td>36</td>
</tr>
<tr>
<td>WIK</td>
<td>shh</td>
<td>100</td>
<td>5 (9.3%)</td>
<td>3 (5.5%)</td>
<td>46 (85.2%)</td>
<td>54</td>
</tr>
<tr>
<td>WIK</td>
<td>dnPKA</td>
<td>400</td>
<td>77 (58.3%)</td>
<td>36 (27.3%)</td>
<td>19 (14.4%)</td>
<td>132</td>
</tr>
</tbody>
</table>

*Based on otolith position and size. A variable crista and semicircular canal phenotype was seen in this group (not considered further in this report).
†Could not be clearly assigned to either category (e.g. otoliths small or too close together).
DISCUSSION

In this study, we have examined the role of signalling molecules of the Hedgehog (Hh) family in patterning the axes of the zebrafish otic vesicle. The closest sources of Hh protein to the developing ear are ventral midline structures (notochord and floorplate). As these are situated ventral and medial to the otic vesicles, we predicted that Hh would have a mediolateral (ML) or dorsoventral (DV) patterning role in the developing ear. However, we found that both the ML and DV axes of the ear appeared to be patterned correctly in the absence of Hh signalling. Instead, our data indicate that both Shh and Twhh have a role in specifying posterior otic structures. Severely reduced or absent Hh signalling leads to a loss of posterior otic structures and a concomitant partial mirror image duplication of anterior regions. Increased Hh signalling throughout the embryo leads to the reverse phenotype: a loss of anterior otic structures and a mirror image duplication of posterior regions.

Based on the expression of ptc1 and ptc2 in the ears of wild-type embryos, con and smu mutants, and embryos overexpressing shh RNA, we argue that the effect of Hh signalling on the ear is likely to be direct. However, we cannot rule out the possibility that Hh acts in a permissive manner on surrounding tissues to potentiate or block the production or action of a localised factor, which then acts secondarily to pattern the ear. We find no evidence, however, that AP pattern in the hindbrain is altered in embryos with attenuated Hh signalling: AP expression of krx20 (egrl2 – Zebrafish

ears of shh- and dnPKA-injected embryos are small and contain either a single otolith (arrowhead, B) or fused otoliths (arrowhead, C), positioned medially. A ventral anterior macula (arrow, A) is absent in these posteriorised ears. (D-F) Confocal images of FITC-phalloidin stains showing the pattern of sensory hair cell stereocilia in posterior maculae. Scale bars: 25 μm. (D) Wild-type pattern. The posterior macula has a rounded posterior region and a slim anterior projection (D). Posterior maculae of dnPKA- and shh-injected embryos have two rounded posterior ends resulting in a ‘butterfly’ (E) or ‘bow-tie’ (F) shape. Note that both phenotypes shown in B,C,E,F could be caused by either shh or dnPKA RNA injection. (G-O) In situ hybridisation performed on shh-injected embryos. Scale bars: 50 μm. (G-I) Posterior follistatin expression is either duplicated at the anterior of the otic vesicle or extends medially along the length of the otic vesicle in posteriorised ears (arrows). (J,K) Anterior nkx5.1 expression is reduced to a small central domain in posteriorised ears. (L-O) Anterior fgf8 and pax5 expression is absent from posteriorised ears.

Fig. 8. Overexpression of shh and dnPKA RNA in wild-type embryos results in posteriorised ears.

(A-K) Lateral views; anterior towards the left, dorsal towards the top. (L-O) Dorsal views; anterior towards the left, lateral towards the top. (A-C) DIC images of live ears. Scale bars: 50 μm. The
Information Network) **hoxb4a** and **val/mafb**, for example, is normal in the rhombomeres of **con** mutants (data not shown).

The inner ear phenotype of mice homozygous for a mutation in the **shh** gene has recently been reported (Liu et al., 2002; Riccomagno et al., 2002). The defects do not appear to mimic those we see in **smu** or **con**, but they primarily affect structures that have no direct counterpart in the fish ear. In particular, the cochlear duct and cochleovestibular ganglia, all ventral otic derivatives, are rudimentary or absent, and **Pax2** expression is diminished in the vesicle; by contrast, in **smu** and **con** mutants, specification of otic neuroblasts does occur, and otic **Pax2** expression is retained (Fig. 4; data not shown). Note that in the mouse, inactivation of **Shh** gives rise to much more severe overall head defects than in any of the zebrafish **Hh** pathway mutants, characterised by holoprosencephaly and cyclopia (Chiang et al., 1996). In vitro and in vivo evidence also suggests a later role for **Shh** in chondrogenesis of the murine otic capsule (Liu et al., 2002; Riccomagno et al., 2002).

Hh signalling may act to pattern the otic epithelium at or soon after vesicle formation

Although our experiments do not address the timing of **Hh** action rigorously, we suggest that the zebrafish ear is likely to respond to **Hh** signalling between 19 and 24 hpf. Exogenous **RNA** injected at the one- to two-cell stage and protein translated from it are likely to degrade before 24 hpf (Hammerschmidt et al., 1999) (K. L. H., unpublished), but injection of **ptc1** RNA is sufficient to repress endogenous **Hh** signalling and phenocopy the defects seen in **smu** and **con**. **Hh** may not, however, exert its posterior inductive abilities as early as 16-17.5 hpf, when the earliest AP molecular asymmetries are indicated by the expression of its target gene **ptc1**, only becomes concentrated in posterior otic epithelium between 19 hpf and 22 hpf. Before this, **ptc1** expression (and hence **Hh** activity) is detectable in a ventromedial domain along the entire AP length of the otic vesicle.

If **Hh** does act prior to 19 hpf, it is possible that ventromedial cells specified by **Hh** later move to occupy more posterior positions, thus transforming a DV or ML signal into an AP pattern. Although a fate map of the zebrafish otic vesicle exists (Haddon, 1997), it is not sufficiently detailed to tell whether such movements do generally occur. Grafting experiments in salamander embryos are suggestive of an anterior to posterior movement of ventromedial otic cells (Kaan, 1926), but species-specific differences are likely: in the chick otic cup, ventral cells tend to move in an anterodorsal direction (Brigande et al., 2000a). In addition, amphibian ears may show a high degree of cell mixing (Kil and Collazo, 2001), but this appears to be more limited in the zebrafish and chick otic vesicle (Haddon, 1997; Brigande et al., 2000a).

Alternatively, **Hh** may act after 19 hpf to reinforce and maintain AP polarity in the ear rather than establish it, in a similar fashion to the role of **Hh** in the vertebrate limb bud. Here, **Shh** expression in the zone of polarising activity (ZPA) is established by a prepattern involving mutual antagonism between the transcription factors **GLI3** and **dHAND** (te Welscher et al., 2002). In the zebrafish fin bud, for example, a transient AP polarity is established (but not maintained) in the fin buds of **syu** (**shh**) mutants (Neumann et al., 1999), but no AP patterning is ever apparent in the fin buds of **hands off** (**hand2**) mutants (Yelon et al., 2000).

Hh signalling appears to affect the ear in a dose-dependent manner

Only a low level of **Hh** signalling is required for correct patterning of the zebrafish otic vesicle; defects are evident only in those mutants with the strongest phenotypes in other tissues (**smu** and **con**), or when the activity of both **Shh** and **Twhh** are removed. The ears are also patterned correctly in **ntl**, **flh** and **ope** embryos, in which the development of subsets of tissues expressing **Hh** is compromised (data not shown; see below). Despite this, we observe phenotypes that appear to differ according to the level of **Hh** activity. The anterior duplication is incomplete in both **smu** and **con** ears, but the **smu** phenotype appears to be stronger; we see a single fused ventral macula rather than the two separate ventral maculae found in **con**. This correlates with the fact that **smu** homozygotes show a more complete loss of **Hh** signalling than **con** homozygotes (Lewis et al., 1999b; Barresi et al., 2000; Varga et al., 2001). Moreover, the different otic defects can be phenocopied by different levels of **Hh** inhibition via **ptc1** injection. We also observe a dose-dependent effect of **Shh** or **dnPKA** injection; low doses more frequently result in a “bow-tie”-shaped posterior macula, whereas higher doses (100 ng) more frequently result in the “butterfly” phenotype.

Other mirror image duplications

The ears described in this work are enantiomorphs: twins. Mirror image duplications of various tissues have been observed in several other contexts, and are frequently associated with alterations of **Hh** signalling. Examples include the development of adult abdominal segments and the wing in *Drosophila* (Basler and Struhl, 1994; Capdevila and Guerrero, 1994; Kojima et al., 1994; Kopp et al., 1997; Struhl et al., 1997a; Struhl et al., 1997b; Lawrence et al., 2002), and development of the limb bud in vertebrates (Riddle et al., 1993; Yang et al., 1997). Mutants for **hh**, **ci** and **ptc** in *Drosophila* are themselves members of the segment polarity class, in which a proportion of each embryonic abdominal segment is deleted and the remainder present as a mirror image duplication (Nüsslein-Volhard and Wieschaus, 1980).

Mirror image duplications of the inner ear have also been documented previously. Harrison transplanted ear rudiments in salamander (*Amblystoma*) embryos such that their AP axis was reversed with respect to that of the host (Harrison, 1936; Harrison, 1945). Ear rudiments transplanted early (at the neural plate stage) developed with an AP axis corresponding to that of the host, while ear rudiments transplanted later (after closure of the neural folds) developed according to the donor AP axis. However, in transplantations performed at intermediate stages (during neural tube closure; stage 19-21), up to 27% of transplanted ear rudiments developed as mirror image twins. These ears consisted of two posterior halves, two anterior halves or incomplete duplications, and show a remarkable similarity to the zebrafish phenotypes we describe. In the double anterior ears, four cristae and two utricular maculae and otoliths were observed; in the double posterior ears, utricular maculae were missing, and cristae were reduced (Harrison, 1936; Harrison, 1945). Similar duplications have been
observed in *Xenopus* embryos after ablation of either the anterior or posterior half of the otic placode. Regeneration after anterior ablations results in mirror image double posterior ears, while posterior ablations can cause the reverse phenotype (Waldman et al., 2001).

Restriction of Hh activity to the posterior of the ear

In the above examples involving Hh, a localised source of Hh provides the necessary information to generate AP polarity. In most cases this is either a point source (as in the vertebrate limb bud) or a linear boundary (as in the fly wing disc). However, in the fish ear, the strongest and closest source of Hh appears to be constant along the AP axis. It is possible that endodermal expression of Shh influences the ear, but we think this unlikely, given its late onset. Unless Hh-receiving cells move to the posterior of the ear (as discussed above), a mechanism must exist to restrict the effects of Hh activity to the posterior of the ear.

One possibility is that posterior otic regions receive more Hh than anterior domains because of positioning of the otic vesicle relative to the midline and the notochord. At 22 hpf, when active Hh signalling is first concentrated in posterior otic epithelium, anterior otic regions are a little further from the midline than posterior regions (see Fig. 11). Although slight, this difference may play some part in the concentration of higher level Hh activity in posterior otic regions. In addition, the anterior limit of the notochord coincides roughly with the anterior limit of the otic vesicle (Fig. 9), and thus notochord-derived Hh may be reduced at the anterior of the vesicle. We have found, however, that either the notochord or the floorplate alone suffices to pattern the ear correctly. The ears of *ntl* mutants, which lack a notochord (Schulte-Merker et al., 1994), *flh* mutants, which lack chordamesoderm (Halpern et al., 1995), and *cyc* and *oep* mutants, both of which lack a medial floorplate (Schier et al., 1997; Rebagliati et al., 1998), all show correct AP patterning (data not shown). Assuming that post-transcriptional and post-translational processing, release and diffusion of Hh are equivalent at different AP levels in the otic region, it appears that a constant source of Hh from midline tissues, encoded by *twhh* or *shh*, is able to pattern posterior regions of the ear.

If the source of Hh is constant, it is likely that other factors, originating either from within or outside the otic vesicle, synergise with Hh in posterior regions or antagonise it at the anterior (Fig. 9). Members of the bone morphogenetic protein (BMP), BMP antagonist, Wnt and fibroblast growth factor (FGF) families are good candidates for such factors, as they are known to potentiate or antagonise Hh in many developmental contexts (see Marcelle et al., 1997; Meyers and Martin, 1999; Patten and Placzek, 2002) (reviewed by Cohn and Tickle, 1996; McMahon et al., 2003). Members of all four families are expressed in the developing zebrafish ear (Blader et al., 1996; Reifers et al., 1998; Mowbray et al., 2001).

Among the best candidates for antagonists of Hh activity in anterior otic epithelium are *Fgf3* and *Fgf8*. Both have an early role in otic placode induction: disruption of the function of either Fgf results in a small otic placode, and if both are disrupted the otic placode is severely reduced or fails to form entirely (Phillips et al., 2001; Raible and Brand, 2001; Maroon et al., 2002). Later, at the stages when Hh is likely to be active, *fgf3* continues to be expressed in r4 (now positioned adjacent to the anterior part of the otic vesicle), while *fgf8* is expressed in the anterior otic epithelium (Fig. 4M) (Reifers et al., 1998; Phillips et al., 2001; Maroon et al., 2002). Both factors appear to have anterior otic inducing ability. In *valentino* (*mabf*) embryos, hindbrain *fgf3* expression is expanded posteriorly, resulting in the expansion of anterior-specific gene expression in the ear. Conversely, in embryos where Fgf3 function is depleted by morpholino injection, expression of some anterior-specific otic genes is reduced or missing (Kwak et al., 2002). In the *acerebellar* (*fgf8*) mutant, *nkx5.1* expression is reduced, suggesting that some loss of anterior character has occurred (Adamska et al., 2000). Thus Fgf3 from the hindbrain and Fgf8 in the otic epithelium are excellent candidates for antagonists of Hh activity in the anterior otic vesicle (Fig. 9).

Conclusion

In all likelihood, more than one mechanism operates to concentrate Hh activity in posterior regions of the otic vesicle. Whichever mechanism is responsible, it is clear that Hh is essential for the specification of posterior otic identity in the zebrafish. We still do not understand, however, how this is effected. The mirror image duplications observed appear to reveal an underlying prepattern, where the otic vesicle is an equipotential system in which the two ends (or the centre) are specified, but an A or P identity has not been assigned to either. This is similar to the ‘global mirror-symmetric system’ proposed for the *Drosophila* adult abdominal segment by Kopp and Duncan (Kopp and Duncan, 1997). We note that the early expression of genes marking the positions of the presumptive maculae at the two ends of the otic vesicle, such as the Delta genes, is initially mirror symmetric (Haddon et al., 1998). A symmetric prepattern would then be acted on by Hh, Fgf and other signals, from surrounding tissues and within the ear, to establish and maintain AP polarity.

We thank J. Lewis for inspiration, A. Jamieson for help with a pilot study (funded by a Nuffield Foundation vacation studentship), P. Ingham, S. Roy, C. Wolff and J. Begbie for helpful discussion, S. Roy and C. Wolff for help with establishment of stocks, and F. Wilson and

![Fig. 9. Hindbrain- or otic vesicle-derived factors may concentrate Hh signalling activity in posterior otic epithelium. Schematic of a zebrafish otic vesicle and surrounding tissues during late somitogenesis stages, showing the expression domains of potential Hh-interacting factors and of *hh* and *ptc1*. Lateral view; anterior towards the left, dorsal towards the top. r4/5/6, rhombomere 4/5/6 of the hindbrain. Factors from r4 of the hindbrain or anterior otic epithelium, e.g. Fgf3 and Fgf8, may repress *ptc1* expression and hence Hh activity at the anterior of the otic vesicle. Alternatively, or in addition, factors from r5/6 or the posterior otic vesicle may potentiate Hh signalling activity and hence *ptc1* expression at the posterior of the vesicle.](image-url)
L. Gleadall for care of the fish facility. We are grateful to R. Karlstrom and B. Riley for communicating data before publication, and many members of the zebrafish community for supplying cDNAs. This work was supported by a Wellcome Trust project grant (057101). Support for confocal microscopy was provided by Yorkshire Cancer Research.

REFERENCES

Hh patterns the zebrafish inner ear

