Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis

Wiebke Herzog1,*, Carmen Sonntag1, Sophia von der Hardt1, Henry H. Roehl2,†, Zoltan M. Varga3 and Matthias Hammerschmidt1,‡

1Max-Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
2Max-Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
3University of Freiburg, Department of Biology I, Hauptstraße 1, 79104 Freiburg, Germany
*Present address: Programs in Developmental Biology and Human Genetics, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143-0448, USA
†Present address: University of Sheffield, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
‡Author for correspondence (e-mail: hammerschmidt@immunbio.mpg.de)

Accepted 21 April 2004
Development 131, 3681-3692
Published by The Company of Biologists 2004
doi:10.1242/dev.01235

Summary
The pituitary gland consists of two major parts: the neurohypophysis, which is of neural origin; and the adenohypophysis, which is of non-neural ectodermal origin. Development of the adenohypophysis is governed by signaling proteins from the infundibulum, a ventral structure of the diencephalon that gives rise to the neurohypophysis. In mouse, the fibroblast growth factors Fgf8, Fgf10 and Fgf18 are thought to affect multiple processes of pituitary development: morphogenesis and patterning of the adenohypophyseal anlage; and survival, proliferation and differential specification of adenohypophyseal progenitor cells. Here, we investigate the role of Fgf3 during pituitary development in the zebrafish, analyzing lia/fgf3 null mutants. We show that Fgf3 signaling from the ventral diencephalon is required in a non-cell autonomous fashion to induce the expression of lim3, pit1 and other pituitary-specific genes in the underlying adenohypophyseal progenitor cells. Despite the absence of such early specification steps, fgf3 mutants continue to form a distinct pituitary anlage of normal size and shape, until adenohypophyseal cells die by apoptosis. We further show that Sonic Hedgehog (Shh) cannot rescue pituitary development, although it is able to induce adenohypophyseal cells in ectopic placodal regions of fgf3 mutants, indicating that Fgf3 does not act via Shh, and that Shh can act independently of Fgf3. In sum, our data suggest that Fgf3 signaling primarily promotes the transcriptional activation of genes regulating early specification steps of adenohypophyseal progenitor cells. This early specification seems to be essential for the subsequent survival of pituitary cells, but not for pituitary morphogenesis or pituitary cell proliferation.

Key words: Fgf3, Pituitary, Adenohypophysis, Neurohypophysis, Zebrafish, Lia, Cell survival, Cell specification, Apoptosis, Sonic Hedgehog

Introduction
The pituitary gland links the nervous system with the endocrine system of vertebrates, responding to signals from the hypothalamus with the production and release of peptide hormones that regulate vital processes in metabolism, reproduction and growth. It consists of two parts that both secrete hormones: the posterior pituitary, also called the neurohypophysis, and the anterior pituitary, called the adenohypophysis. Neurohypophyseal hormones are generated in neuroendocrine cells in the hypothalamus, from where they are brought to the neurohypophysis via axonal transport, whereas adenohypophyseal hormones are generated in pituitary cells themselves. In mammals, these can be subdivided into different cell types, characterized by the hormones they produce: lactotropes producing prolactin (Prl), somatotropes producing growth hormone (Gh), thyrotropes producing thyroid-stimulating hormone (Tsh), gonadotropes producing luteinizing or follicle-stimulating hormone (Lh, Fsh), and corticotropes and melanotropes producing a common precursor peptide, Proopiomelanocortin (Pomc), which is proteolytically cleaved to give rise to adrenocorticotropin (Ach) and melanocyte-stimulating hormone (Msh).

The neurohypophysis is of neuroectodermal origin and derives from the infundibulum, an evagination of the ventral diencephalon. By contrast, the adenohypophysis is a derivative of the non-neuronal, placodal ectoderm. It is initially located at the anterior neural ridge (ANR) and becomes part of the oral roof ectoderm, from where it invaginates toward the presumptive neurohypophysis/infundibulum, forming Rathke’s pouch. This co-development of neuro- and adenohypophysis is governed by various signaling processes between infundibulum and adenohypophyseal placode (for reviews, see Treier and Rosenfeld, 1996; Burgess et al., 2002; Scully and Rosenfeld, 2002). For example, the infundibulum generates at least three members of the fibroblast growth factor (Fgf) family, Fgf8,
Fgf10 and Fgf18 (Norlin et al., 2000; Ohuchi et al., 2000). Gain-of-function studies with fgf8 transgenic mice or pituitary explants treated with Fgf8 beads suggest that Fgf signaling promotes the proliferation and differentiation of dorsal cell types of the adenohypophysis (corticotropes and melanotropes), antagonized by Bmp2, which promotes ventral cell fates (thyrotropes, gonadotropes, somatotropes and lactotropes) (Ericson et al., 1998; Treier et al., 1998). Consistent results were obtained in loss-of-function studies, showing that treatment of embryonic day (E) 10 pituitary transplants with the Fgf receptor inhibitor SU5402 (Mohammadi et al., 1997) selectively blocks the proliferation and generation of dorsal cell types (Norlin et al., 2000). Together, the data suggest a patterning and cell type selective role for Fgf signaling. By contrast, knockout mice deficient in Fgf10 (Ohuchi et al., 2000) or the Fgf receptor 2 isoform IIIB (Fgfr2IIIb) (De Moerlooze et al., 2000) display a poorly formed Rathke’s pouch, with numerous apoptotic cells throughout the entire pouch. These defects are already apparent at E10, suggesting an earlier and more general role for Fgf signaling during mouse pituitary development, affecting pouch morphogenesis and the survival and proliferation of all adenohypophyseal progenitor cells.

Here, we describe mutant analyses to uncover the role of Fgf3 during adenohypophysis development in the zebrafish. Recent work has revealed both striking similarities and differences in pituitary development between the different vertebrate classes. Thus, we found that despite differences in the morphogenesis and architecture of their pituitary glands, the role of Sonic Hedgehog during induction, growth and patterning of the adenohypophyseal anlage appears to be largely conserved between zebrafish and mouse (Herzog et al., 2003; Sbrogna et al., 2003). To isolate additional genes largely conserved between zebrafish and mouse (Herzog et al., 2003), we found that despite differences in the morphogenesis and growth of the pituitary anlage do not depend upon Fgf3. In addition, we show that the source of Fgf3 is cells of the ventral diencephalon, presumably encompassing the presumptive neurohypophysis.

### Materials and methods

#### Linkage analysis, identification of mutations, and genotyping

Mapping of the lia24147 and lia24152 mutations was done via PCR analysis of genomic DNA from individual lia mutant embryos, as described (Geisler, 2002). For identification of point mutations, fgf3 cDNA was amplified via RT-PCR, as described (Nica et al., 2004), using the following PCR conditions: 3 minutes at 94°C – 32× (30 seconds at 94°C, 30 seconds at 60°C, 1.5 minutes at 72°C) – 10 minutes at 72°C; sense primer 5’ GCTTGGAGAGCAGAGTGGAC; antisense primer 5’ GCTTGGGATCTTACCTGTCGTC. In two alleles, the mutations generate restriction length polymorphisms (RFLP), which were used to genotype single embryos via PCR of genomic DNA. For the fgf324147 allele, PCR conditions were: 2 minutes at 94°C – 34× (30 seconds at 94°C, 30 seconds at 58°C, 1 minute at 72°C) – 5 minutes at 72°C; sense primer, 5’ TTTCCTGTCTTTGTGGTACTGAGC; antisense primer 5’ TACGGAATCCCATGAATCTCATC. The obtained 330 bp PCR fragment was digested with Tsp509I, leading to a cleavage of the wild-type fragment to a 120 bp fragment and a 210 bp fragment, while the mutant fragment remained at 330 bp. For the fgf324152 allele, PCR conditions were: 2 minutes at 94°C – 35× (30 seconds at 94°C, 30 seconds at 58°C, 1 minute at 72°C) – 5 minutes at 72°C; sense primer 5’ GTCTTCAACCGAGAGTGGT; antisense primer 5’ CTATGCCCCGACCTGTGTG. The PCR products were digested with HpyI88I, yielding mutant fragments of 90 bp and 20 bp, while the wild-type fragment remained at 110 bp.

#### Generation of constructs, mRNA synthesis and microinjection

For expression constructs, full-length wild-type and mutant fgf3 cDNAs were amplified via RT-PCR with primers containing EcoRI and XhoI restriction sites, and cloned into pCS2+ (Rupp et al., 1994). Capped RNA was prepared with the Message Machine kit (Ambion). shh RNA was prepared, and RNA was injected as described (Herzog et al., 2003).

#### In-situ hybridization, Alcian Blue stainings, Acridine Orange stainings

Whole-mount in-situ hybridizations were carried out as previously described (Hammerschmidt et al., 1996; Herzog et al., 2003). For fgf3 in-situ probe synthesis, plasmid pCRII-fgf3 was linearized with KpnI and transcribed with T7 RNA polymerase. In addition, riboprobes of the following cDNAs were used: dix2, dix3 (Akimenko et al., 1994), evai1 (Sahly et al., 1999), emx1 (Morita et al., 1995), gh, pomc, prl (Herzog et al., 2003), hgg (Thiese et al., 1994), krox20 (Oxtoby and Jowett, 1993), lim3 (Glasgow et al., 1997), nkx2.1a (Rohr and Concha, 2000), pit1 (Nica et al., 2004), shh (Krauss et al., 1993), spry4 (Fürthauer et al., 2001).

To visualize craniofacial cartilage, 120 hours postfertilization (hpf) embryos were stained with Alcian Blue (Sigma) as described (Schilling et al., 1996).

For detection of apoptotic cells, dechorionated live embryos were incubated for 10 minutes in 5 µg/ml Acridine Orange (Sigma) in embryo medium (E3), followed by fluorescent microscopy (Zeiss axiophot) and photography.

#### Single cell tracing experiments

To study the fate of pituitary precursor cells, single cells in the prospective pituitary forming region were injected in tailbud-stage embryos with 3% rhodamine dextran (3 kD) in 0.2 M KCl, using an AM-Systems 1600 Neuroprobe amplifier, and the underlying mesodermal polster as a morphological landmark (Varga et al., 1999) (S. Dutta and Z.M.V., unpublished). Fates of labeled daughter cells were analyzed between 24 and 30 hpf, using conventional fluorescence microscopy, or a Zeiss LSM 510 confocal microscope. Individual embryos were genotyped after photography.
SU5402 treatment
Embryos were incubated at 28.5°C in 12 or 20 μM SU5402 containing E3, prepared from a 3 mM SU5402 (Calbiochem, S72630) stock solution in DMSO. Control embryos were incubated in E3 medium with the corresponding amount of DMSO. After treatment, embryos were washed five times with E3/DMSO and transferred to fresh E3.

Cell transplantations
For transplanting wild-type cells into offspring of heterozygous mutants, wild-type embryos were injected with a 1% biotin-dextran, 0.5% fluorescein dextran solution. Homotypic transplantations of presumptive telencephalic or diencephalic cells were carried out at the shield stage. At 32 hpf, chimeras were fixed and analyzed by in-situ hybridization, followed by anti-biotin stainings with the Vectastain Elite ABC kit (Vector Laboratories) to stain transplanted cells. The tails of chimeras (containing only recipient-derived cells) were genotyped, as described above.

Bead implantations
Heparin-coated acrylic beads (Sigma, H-5263) were washed twice in PBS, and incubated with 0.5 μg/μl recombinant human FGF3 (R&D Systems, 1206-FG) or 0.5 μg/ml BSA overnight at 4°C. At 19 hpf, offspring from a cross of two t24149/+ carriers were dechorionated, embedded in 1% low melting agarose on agarose-coated petri dishes, and covered with Ringer’s solution. Using a fine tungsten needle and forceps, a bead was implanted behind the eye and pushed to the front and covered with Ringer’s solution. Using bulk segregation analysis, the FGF3 mRNA was highly effective, whereas all four mutant versions showed hardly any effect (Fig. 1B). Even upon injection at 100-fold higher concentrations (10 ng/μl), Fgf3t24152 and Fgf3t24144 mRNA were ineffective, while Fgf3t26212 and Fgf3t24149 showed some effects that, however, were significantly weaker than those obtained with wild-type mRNA at 0.1 ng/μl (Fig. 1B). Together, these data indicate that the Fgf3t24152 nonsense mutation and the Fgf3t24144 missense mutation are likely to be null mutations (amorphs), while Fgf3t26212 and Fgf3t24149 have retained less than 1% of the normal FgF3 activity, and can therefore be regarded as very strong hypomorphs or near amorphs. This is consistent with the embryonic defects caused by the Fgf3 mutations, which are of indistinguishable strength for all four alleles.

fgf3 mutants display defects during craniofacial and otic vesicle development
Several recent publications describe fgf3 and combinatorial fgf3 and fgf8 loss-of-function studies, using antisense morpholino oligonucleotide technology (see Introduction). The combinatorial activity of fgf3 and fgf8 was reported to be required for otic vesicle formation, telencephalon and hindbrain patterning, and craniofacial development. Most of these processes were also affected upon single loss of fgf3; however, the effects were more moderate or more restricted, pointing to partial redundancy of Fgf3 and Fgf8.

During craniofacial development, Fgf3 from the pharyngeal endoderm was reported to be required for the specification and survival of chondrogenic neural crest cells of the gill arches (pharyngeal arches 3-7) (David et al., 2002), while the crest cells forming mandibular and hyoid (pharyngeal arches 1 and 2) are under the redundant control of Fgf3 and Fgf8 (Walsh and Mason, 2003b). Consistent with this notion, Alcian Blue stainings of fgf3 mutants at 120 hpf revealed an almost complete loss of the cartilage of the gill arches, while the cartilage of mandibular and hyoid was present (Fig. 2G,H). These defects are anticipated by a progressive reduction in the number of dlx2-positive chondrogenic neural crest cells of arches 3-7, starting around 26 hpf, while the two anterior dlx2 domains, forming cartilage of arches 1 and 2, appear normal (Fig. 2C,D). In addition, the posterior dlx2 domain fails to subdivide into the streams corresponding to the different gill arches (Fig. 2C,D). Similarly, the pharyngeal endoderm remains unsegmented, as reflected by the fgf3 expression pattern (Fig. 2E,F).
We could also confirm the previously reported essential, but partially redundant, role of Fgf3 during inner ear development. Thus, Fgf3 mutants display otic vesicles of reduced size and fused otoliths (Fig. 2G,H). By contrast, mutants show normal expression patterns of *emx1* and *dlx2* in the dorsal and ventral telencephalon (Fig. 2A,B), suggesting that in contrast to a previous report (Walshe et al., 2003a), Fgf3 is dispensable for telencephalic patterning. This discrepancy between mutant and morphant data might be due to toxicity and/or cross-reactions of the *fgf3* morpholino oligonucleotides, possibly with thus far undescribed *fgfs*.

**fgf3 expression during adenohypophysis development**

By contrast to the processes mentioned above, no role of Fgf3 during adenohypophysis development had been described so far. We carried out double in-situ hybridizations to investigate *fgf3* expression relative to the developing adenohypophysis. At the end of gastrulation (10 hpf), *fgf3* is expressed in the telencephalon, adjacent to the placodal cells of the anterior neural ridge (ANR) that are marked by *dlx3* expression (Fig. 3A). The placodal ectoderm itself is devoid of *fgf3* transcripts. Similarly, the progressing anterior dorsal mesoderm, called polster and marked by the expression of *hgg*, lacks *fgf3* expression (Fig. 3B). Median ventral regions of the neuroectoderm, marked by the expression of *shh* (Fig. 3C) (cf. Varga et al., 1999), might show some weak and diffuse *fgf3* staining (Fig. 3B,E). However, strong and distinct diencephalic *fgf3* expression can first be detected from the 18-somite stage onward (18 hpf), after *fgf3* expression in the telencephalon has ceased (Fig. 3F). Within the diencephalon, *fgf3* expression is restricted to the ventralmost cell layers, as revealed with double-stainings using the hypothalamic marker *nkx2.1a* (Fig. 3I,L). This tuberal region of the posterior-ventral
neurohypophysis (Fürthauer et al., 2001; Mathieu et al., 2002). The infundibulum of higher vertebrates, which gives rise to the hypothalamus is thought to correspond to the presumptive neurohypophysis. (infundibulum; presumptive neurohypophysis).

Fgf3 and the zebrafish adenohypophysis 3685

It is in close contact with the adenohypophyseal cells, which at 26 hpf are located in a horseshoe-like pattern around the anterior and lateral borders of the fgf3 expression domain (Fig. 3J,M). During further development, the lateral-posterior cells of the adenohypophyseal anlage converge to the midline (Nica et al., 2004) and become located underneath the fgf3-expressing cells of the presumptive infundibulum (Fig. 3N,O). By contrast, the anteriormost cells of the adenohypophysis, as characterized by the expression of prolactin, are in some distance from the fgf3-positive cells (Fig. 3K).

Comparative in-situ hybridizations with fgf8 further reveal that the fgf3-positive cells of the infundibular region lack fgf8 expression (compare Fig. 3G with 3H), which instead is weakly expressed in parts of the adenohypophyseal anlage itself and in posteriormost regions of the ventral diencephalon (Fig. 3H). Another site of unique fgf3 expression is the posterior pharyngeal endoderm (Fig. 3G,H), explaining the gill arch defects of fgf3 mutants (see above).

**Fgf3 is required for the early steps of adenohypophyseal specification**

As a first step to characterize the adenohypophyseal defects of fgf3 mutants, we carried out in-situ hybridizations at various stages of development. Placodal ectoderm starts to be specified toward the end of gastrulation, indicated by the expression of eya1, dlx3 or pitx3. All of them are expressed throughout the entire placodal field, while marker genes specific for the different placodes along the anterior–posterior axis of the embryo (adenohypophysis, olfactory, lens, otic etc.) only come up later. At tailbud stage (10 hpf), fgf3 mutants display normal expression of eya1 (Fig. 4A,B), dlx3 and pitx3 (data not shown), indicating that Fgf3 is not required for the earliest steps of general placodal specification. Similar unaltered expression patterns were found in fgf3 and fgf8 (ace) (Reifers et al., 1998) double mutants, and in embryos treated with the Fgf receptor inhibitor SU5402 from mid- through late-gastrula stages (Mohammadi et al., 1997) (data not shown), indicating that early placodal development is independent of Fgf signaling in general.

The first currently known adenohypophysis-specific zebrafish marker genes [pit1 (Nica et al., 2004); lim3 (Glasgow et al., 1997)] start to be expressed around the 19-somite stage (18.5 hpf), slightly after the initiation of fgf3 expression in the infundibular region (see above). In fgf3 mutants, expression of pit1 and lim3 fails to be initiated (Fig. 4C-F for pit1 at 19 hpf, lim3 at 24 hpf). Similarly, no transcripts of adenohypophyseal hormones can be detected at any stage (Fig. 4K,L for pomc at 72 hpf, and data not shown).

The infundibular region itself appears to be less affected by the fgf3 mutations. Infundibular cells of mutant embryos lack expression of the Fgf target gene and autocrine feedback antagonist sprouty4 (spry4) (Fig. 4I,J) (Fürthauer et al., 2001). However, fgf3 mutants display normal infundibular expression of fgf3 at 36 hpf (Fig. 2E,F) and later (48 hpf, 72 hpf, data not shown), indicating that infundibular cells are maintained, and that in contrast to Fgf8 (Reifers et al., 1998; Heisenberg et al., 1999), Fgf3 is not required for the maintenance of its own expression.

Like the infundibulum, which is part of the tuberal, posterior–ventral hypothalamus, other regions of the ventral diencephalon appear to develop independently of Fgf3, too. This is indicated by the unaltered expression of shh (Fig. 4G,H), a marker for the hypothalamus.

**Fig. 2. fgf3 mutant embryos display defects in otic vesicles, ventral head skeleton and pharyngeal endoderm.** Probes used in whole-mount in-situ hybridizations are indicated in the lower right corners, ages of embryos in the upper right corners. Left panels (A,C,E,G) show wild-type siblings (wt), right panels (B,D,F,H) fgf3 mutants (lia). Embryos were genotyped after photography. (A-F) Lateral views. ‘k’ in C marks krox20 in rhombomeres 3 and 5. Arrows and numbers in C,D mark neural crest streams to the corresponding pharyngeal arches (I, mandibular; II, hyoid; III, IV, V, gill arches). Arrows in E mark pharyngeal pouches of gill arches. (G,H) Dorsal views on heads. ‘k’ in C marks krox20 in rhombomeres 3 and 5. Arrows and numbers in C,D mark neural crest streams to the corresponding pharyngeal arches (I, mandibular; II, hyoid; III, IV, V, gill arches). Arrows in E mark pharyngeal pouches of gill arches. (G,H) Alcian Blue staining of craniofacial cartilage; mb, mandibulare; nc, neural crest; ppe, pharyngeal pouch endoderm; pt, pallial (dorsal) telencephalon; ot, optic stalk; pt, subpallial telencephalon; vt, ventral thalamus; pvh, posterior-ventral hypothalamus (infundibulum; presumptive neurohypophysis).
anterior-dorsal hypothalamus (Mathieu et al., 2002), and by the normal expression of pomc in endorphin-synthesizing hypothalamic neurons of mutant embryos (Fig. 4K,L).

Adenohypophyseal development is driven by Fgf3 from the diencephalon

As described above, adenohypophyseal cells are exposed to Fgf3 signals from different sources (telencephalon, diencephalon) and at different stages of development (end of gastrulation, midsegmentation) (Fig. 3). To determine the source of Fgf3 required for adenohypophyseal development, we generated mosaic embryos, transplanting presumptive telencephalic or diencephalic cells from early gastrula wild-type donor embryos into the same regions of fgf3 mutant recipients (Fig. 5B). We found that wild-type cells in the ventral region of the diencephalon rescued lim3 expression in adjacent adenohypophyseal cells of fgf3 mutants (Fig. 5F; n=9). By contrast, even largest clones of wild-type cells in the telencephalon of fgf3 mutants failed to rescue lim3 expression (Fig. 5G,H; n=8). This indicates that it is Fgf3 from the ventral diencephalons that is required in a non-cell autonomous fashion to instruct adenohypophyseal specification in the underlying placodal ectoderm.

Fgf signaling governing adenohypophysis development is required during midsegmentation stages

To narrow down the time window during which Fgf3 from the forebrain is required for adenohypophysis development, two kinds of experiments were carried out. To block Fgf signaling in a temporally controlled fashion, we treated wild-type embryos at various stages with the Fgf receptor inhibitor SU5402 (Mohammadi et al., 1997). Embryos treated during midsegmentation stages (18-22 hpf) show a complete loss of lim3, pomc and prl expression at 34 hpf, while head morphology appears normal (Fig. 6E-H, and data not shown) (284/286 embryos without adenohypophyseal marker gene expression; 6 independent experiments). In comparison, SU5402 treatment during gastrulation and early segmentation stages (8-12 hpf) led to milder adenohypophyseal defects (66/138 embryos without, 72/138 with, reduced adenohypophyseal marker gene expression; data not shown), although such embryos display strong brain defects (data not shown) (cf. Walshe et al., 2003a). In sum, the data show that Fgf signaling during midsegmentation stages is absolutely required for adenohypophyseal development, while the importance of earlier Fgf signaling is less clear (see Discussion).

A requirement of Fgf signaling during midsegmentation stages is also revealed by bead implantation studies. When implanted into the diencephalon of mutant embryos between the 18- and 20-somite stages (19 hpf), Fgf3-loaded beads led to a significant rescue of adenohypophyseal lim3 expression at 26 hpf (Fig. 6B,C) (9/9; 2 independent experiments). By contrast, BSA-loaded control beads had no effect (Fig. 6D) (0/5).

In sum, these experiments indicate that adenohypophysis development depends on Fgf3 during stages when it is normally expressed in the presumptive infundibular region.

Shh cannot rescue adenohypophyseal development but can induce ectopic pituitary cells in other placodal regions of fgf3 mutants

In addition to Fgfs, the diencephalon is known to be the source...
3687
Fgf3 and the zebrafish adenohypophysis

of other crucial signals driving adenohypophysis development. One of the identified diencephalic signals governing pituitary induction, patterning and growth in mouse and zebrafish is Sonic Hedgehog (Shh) from the anterior-dorsal hypothalamus (Treier et al., 2001; Herzog et al., 2003; Sbrogna et al., 2003) (see Fig. 4G). In light of results obtained for other developmental processes such as limb/pectoral fin development, proposing a role of Fgf signaling to activate shh expression (Fischer et al., 2003), we wanted to investigate whether neurohypophyseal Fgf3 might regulate

Fig. 4. fgf3 mutants fail to initiate the expression of early pituitary-specifying genes, whereas the hypothalamus develops normally. Probes used for in situ-hybridizations are indicated in the lower right corners. (A,C,E,G,I,K) Wild-type siblings (wt). (B,D,F,H,J,L) fgf3 mutants (lia), with age of embryos indicated in the upper right corners. (A,B) Tailbud stage, animal views, dorsal to the right; embryos were genotyped after photography. (C-L) Lateral views on heads. Arrows in (C,E) indicate expression in anterior domain, arrowheads expression in lateral posterior domains of adenohypophyseal anlage [compare with Fig. 3M and Nica et al. (Nica et al., 2004)]. Arrowheads in (K) indicate the two adenohypophyseal pomc expression domains. anc, endorphin-synthesizing arcuate nuclei cells of hypothalamus; fe, facial ectoderm; adh, anterior-dorsal hypothalamus; i, isthmus; os, optic stalk; pvh, posterior-ventral hypothalamus.

Fig. 5. Fgf3 signaling from the diencephalon, but not the telencephalon, is sufficient for adenohypophyseal development. (A,C-H) Embryos at 32 hpf, lateral views (A,C,F,G), or frontal views (D,F,H), on head regions. (A) Embryo stained for fgf3 transcripts. Note the fissure of the eye vesicle as a reference point for the anterior border of the infundibular fgf3 expression domain. (B) Cartoon showing the transplantation sites at shield stages. Consistent with results obtained in fate-mapping experiments (Woo and Fraser, 1995; Varga et al., 1999; Mathieu et al., 2002), diencephalic chimeras as shown in C-F were obtained by transplanting cells from/to dorsal regions anterior/animal of the shield. Cells of the adenohypophysis (ad) are supposed to derive from region indicated by arrowhead. (C-H) Chimeras, in-situ hybridized for lim3 transcripts in blue, and with transplanted wild-type cells in brown. Out-of-focus bilateral lim3 domains in D,F,H represent hindbrain motoneurons (Glasgow et al., 1997). (C,D) Wild-type recipients with wild-type donor cells in the diencephalon, displaying normal adenohypophyseal lim3 expression (indicated by arrows). (E,F) fgf3 mutant recipients with infundibular wild-type cells (indicated by arrowheads) and adjacent rescued adenohypophyseal lim3 expression (indicated by arrows). Inset in E shows second rescued embryo. (G,H) fgf3 mutant recipient with many wild-type cells in the telencephalon, still lacking adenohypophyseal lim3 expression.
adenohypophyseal development via Shh. For this purpose, fgf3 mutant embryos were injected with shh mRNA. However, shh-injected fgf3 mutants still lacked endogenous pomc and prl expression in the adenohypophyseal domain (Fig. 7B), indicating that Shh cannot compensate for the loss of Fgf3 and suggesting that Fgf3 acts in parallel to, rather than upstream of, Shh.

By contrast to the adenohypophysis itself, injected shh mRNA has a striking effect on adenohypophyseal gene expression in ectopic positions. In wild-type embryos, forced shh expression leads to ectopic pomc and prl expression in more lateral/posterior regions of the placodal ectoderm (Fig. 7A,C). These cells most probably represent trans-fated cells of the lense and otic placodes (Herzog et al., 2003) (note segmented pattern of prl expression in Fig. 7C). A similar ectopic induction of pomc and prl expression was also obtained in fgf3 mutants (Fig. 7B), indicating that in such ectopic locations, adenohypophyseal cells can specify independently of Fgf3 activity. They appear to require other Fgfs that act instead of, or in addition to, Fgf3. This is indicated by the effect of the Fgf receptor inhibitor SU5402, which, by contrast to fgf3 mutations, blocks both the endogenous and the Shh-induced ectopic prl expression to similar extents (Fig. 7D).

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf

Unspecified adenohypophyseal cells of fgf3 mutants die by subsequent apoptosis

In Hedgehog signaling pathway mutants, the adenohypophysis is trans-fated to lens material (Kondoh et al., 2000; Varga et al., 2001). Several experiments were carried out to investigate the fate of non-specifying adenohypophyseal cells in fgf3 mutant embryos. At 24 hpf, the ANR region of mutant embryos appeared morphologically normal, despite the lack of lim3 expression (Fig. 4E,F). Using Nomarski optics, the adenohypophysis of wild-type embryos became visible as a distinct organ at approximately 25 hpf (Fig. 8A). An organ of similar size and shape, and at the same position, was also present in fgf3 mutants at 25 hpf (Fig. 8B). However, by 28 hpf
and 29 hpf, the size of the adenohypophysis in mutants had become progressively smaller (Fig. 8D,H), while in wild-type siblings, it was similar to the size at 25 hpf (Fig. 8C,G).

Fig. 8. Non-specifying adenohypophyseal cells of fgf3 mutants undergo apoptosis. (A–D,I,J) Nomarski images, (G,H) confocal images; frontal views onto the anterior border of the head, superimposed with fluorescent images of Acridine Orange stainings in green (C,D,J), or rhodamine cell labelings in red (G–J). All images are at same magnification; scale bar shown in (I) = 25 μm. In A–D,I,J, borders of the adenohypophysis are indicated with white arrowheads. All embryos were genotyped after evaluation and photography. (A) Nomarski images at 25 hpf; wild-type sibling; (B) fgf3 mutant, displaying a normal-sized adenohypophysis. For better contrast, images are not superimposed with Acridine Orange stainings, which showed no positive cells for wild-type (A), but few positive cells for mutant (B). (C,D) Acridine Orange stainings at 28 hpf; (C) wild-type sibling; (D) fgf3 mutant. (E,F) Summary of single cell-tracing experiments: cartoons showing the position of single cells from the anterior neural ridge region labeled at the tailbud stage, relative to mesodermal polster outlined in gray, which served as a landmark for the injections. A square corresponds to 50 μm × 50 μm. The fate of each cell is indicated by shape and color. Circles mark cells whose daughter cells were alive 28–30 hpf, crosses indicate cells that died during the course of the analysis, resulting in labeled cell debris only. Red circles mark adenohypophyseal clones, blue circles olfactory epithelium clones, yellow circles facial ectoderm clones, and salmon clones ending up in the head mesenchyme. Mixed clones with descendants in two different tissues are indicated with two-colored circles. Numbers and arrows mark cells with descendants shown in G–J. (E) Cells from wild-type siblings; (F) cells from fgf3 mutants. In F, red crosses represent clones with debris within and outside the shrunken adenohypophysis. Gray crosses are clones with debris outside the adenohypophysis only, which had not been investigated at 24 hpf. Therefore, their initial tissue belongings cannot be stated; however, they most likely derive from adenohypophyseal cells that had died early. (G) Descendants of wild-type cell 54 at 29 hpf. (H) Cell debris deriving from mutant cell 49. (I,J) Time course analyses of mutant cell 84. (I) 25 hpf; (H) same embryo at 30 hpf, counterstained with Acridine Orange.

To investigate the reasons for this regression of the organ in fgf3 mutants, we performed Acridine Orange stainings to detect apoptotic cells. At the 20–somite stage (19 hpf; 4 genotyped mutants) and at 24 hpf (5 genotyped mutants), apoptosis rates in the ANR region of mutant and wild-type sibling embryos were low and undistinguishable (data not shown). However, at 28 hpf, fgf3 mutants showed significantly more apoptotic cells in and around the shrunken adenohypophysis (Fig. 8D; 5 genotyped mutants) than wild-type siblings (Fig. 8C). The Acridine Orange signals outside the adenohypophysis could stem from either apoptotic cells of adjacent tissues or adenohypophyseal cells with debris extruded from the organ. To distinguish between these possibilities, we performed cell-tracing experiments, following the fate of single cells from the ANR region after labeling at tailbud stage (Fig. 8E,F). Live cells that contribute to olfactory epithelium, facial ectoderm and head mesenchyme were labeled with similar frequencies in mutant and wild-type sibling embryos (Fig. 8E,F). However, while most of the labeled cells in wild-type embryos gave rise to the adenohypophysis (Fig. 8E,G), not a single live adenohypophyseal cell was obtained in mutants at 28–30 hpf. Instead, cell debris was found in and around the disintegrating organ (Fig. 8F,H). Time course analyses showed that this debris – even that outside the pituitary gland – stems from adenohypophyseal cells that appear alive at 25 hpf (Fig. 8I) but become apoptotic and Acridine Orange-positive within the next hours (Fig. 8J). Together, these data indicate that in the absence of Fgf3 signaling, adenohypophyseal cells undergo apoptosis, while other cell types coming from the ANR region develop normally. Adenohypophyseal cell death starts a few hours after the failed transcriptional activation of lim3 and pit1, pointing to a possible correlation between cell specification and cell survival processes.

Discussion

Fgf3 and Fgf10 in mouse and zebrafish

The different members of the family of Fgf ligands can be subgrouped according to sequence similarities and receptor specificities (Ornitz et al., 1996; Powers et al., 2000). Fgf3 mainly binds to the IIIb isofrom of Fgf receptor 2 (Fgfr2IIIb), as does Fgf10. In mouse, mutants lacking Fgf10 (Ohuchi et al., 2000) or Fgfr2IIIb (Min et al., 1998; Sekine et al., 1999; De Moerlooze et al., 2000) display very similar defects during the formation of numerous organs, including the pituitary, suggesting that Fgf10 is the major ligand of Fgfr2IIIb. In comparison, Fgf3 deficient mice have rather subtle and more restricted defects during the late stages of tail and inner ear development (Mansour et al., 1993). Comparing the
phenotypes of mutants in mouse and zebrafish, it appears that the functions of Fgf3 and Fgf10 have partly interchanged. During pituitary development, zebrafish Fgf3 seems to play the same role as mouse Fgf10. This is in contrast to pectoral fin/limb bud development, during which Fgf10 appears to be at play both in mouse and zebrafish (Min et al., 1998; Sekine et al., 1999; Ng et al., 2002).

Early and late roles of Fgf signaling during adenohypophyseal development?

The mouse infundibulum expresses at least three different Fgfs, Fgf10 of the Fgfr2IIIb-binding subgroup, and Fgf8 and Fgf18 of the IIIC group (Maruoka et al., 1998). The requirement of Fgf8 signaling for adenohypophyseal development has not been addressed as yet, due to early embryonic lethality of Fgf8 mutant embryos (Meyers et al., 1998; Sun et al., 1999). However, Fgf10 mutants are viable until birth, and their phenotype suggests an essential role of Fgf10 affecting all adenohypophyseal cell types before definitive pouch formation (E10) (Ohuchi et al., 2000). Furthermore, results obtained upon treatment of E10 pouch explants with the Fgf receptor inhibitor SU5402 suggest an additional later role of Fgf signaling to pattern the definitive pouch along its dorsoventral axis (Norlin et al., 2000). In zebrafish, our expression pattern analyses even suggest a third, earlier phase of Fgf signaling, which might occur during late gastrulation stages, when adenohypophyseal progenitor cells are located at the ANR and which might occur during late gastrulation stages, when pattern the definitive pouch along its dorsoventral axis (Norlin et al., 2000).

In zebrafish, our expression pattern analyses even suggest a third, earlier phase of Fgf signaling, which might occur during late gastrulation stages, when adenohypophyseal progenitor cells are located at the ANR and which might occur during late gastrulation stages, when pattern the definitive pouch along its dorsoventral axis (Norlin et al., 2000). In conclusion, it appears that Fgf3 signaling primarily induces the activation of genes involved in early steps of adenohypophyseal specification, subsequently affecting cell survival. Pituitary morphogenesis and growth is affected even later, most probably as a consequence of the death of adenohypophyseal cells. However, it still remains largely unclear how Fgf3-induced cell specification and cell survival processes are correlated. pitl1 and pitl3 might be direct target genes of Fgf3 signaling, as their expression appears to be initiated shortly after the onset of fgf3 expression in the presumptive neurohypophysis (18 hpf versus 18.5 hpf). This would be consistent with the proposed role of Fgf8 in activating Lhx3 expression in mouse (Takuma et al., 1998; Ericson et al., 1998). In mouse, Pit-1 and Lhx3 have been shown to be directly involved in the transcriptional activation of hormone-encoding genes (Anderson and Rosenfeld, 2001; Lamolet et al., 2001; Liu et al., 2001), explaining why zebrafish fgf3 mutants fail to initiate prl and pomc expression at 24 hpf. It remains unclear whether the subsequent death of adenohypophyseal cells between 25 hpf and 30 hpf is a default consequence of their failed specification/differentiation, or whether Fgf3 activates the transcription of additional genes, particularly regulating cell survival.

Differential effects of Fgf and Shh signaling

In midsegmentation zebrafish embryos, such survival factors appear also to be present in other tissues, where they are generated in response to other or additional Fgf signals. This is indicated by our observation that Shh can induce the formation of viable lactotropes and corticotropes in ectopic

The subsequent effects of Fgf3 signaling on cell specification and cell survival

During mouse adenohypophysis development, Fgf signaling is supposed to have diverse effects on target cells, regulating organ morphogenesis and patterning, cell proliferation, cell survival and cell specification (see Introduction). Here, we investigated how these different effects might be correlated, studying the time course with which the different phenotypic aspects arise during adenohypophyseal development of fgf3 mutant zebrafish. First defects are concerned with early adenohypophysis-specific specification steps. While the general specification of the placodal ectoderm at the interphase of neural and non-neural ectoderm (10-12 hpf) (for a review, see Baker and Bronner-Fraser, 2001) occurs normally in mutant embryos, later (18.5 hpf) they fail to initiate expression of the adenohypophyseal-specific marker genes lim3 and pitl1 in the ANR, the anteriormost region of the placodal domain. This, however, neither affects the proliferation of adenohypophyseal progenitor cells nor further pituitary morphogenesis. At 25 hpf, fgf3 mutants display a pituitary gland of relatively normal size and shape. Also, we failed to detect any differences in BrdU incorporation studies (W.H. and M.H., unpublished data). However, we found dramatic apoptosis of adenohypophyseal cells after organ formation, starting at 25 hpf, and leading to a complete loss of the organ within 5 hours.

In conclusion, it appears that Fgf3 signaling primarily induces the activation of genes involved in early steps of adenohypophyseal specification, subsequently affecting cell survival. Pituitary morphogenesis and growth is affected even later, most probably as a consequence of the death of adenohypophyseal cells. However, it still remains largely unclear how Fgf3-induced cell specification and cell survival processes are correlated. pitl1 and pitl3 might be direct target genes of Fgf3 signaling, as their expression appears to be initiated shortly after the onset of fgf3 expression in the presumptive neurohypophysis (18 hpf versus 18.5 hpf). This would be consistent with the proposed role of Fgf8 in activating Lhx3 expression in mouse (Takuma et al., 1998; Ericson et al., 1998). In mouse, Pit-1 and Lhx3 have been shown to be directly involved in the transcriptional activation of hormone-encoding genes (Anderson and Rosenfeld, 2001; Lamolet et al., 2001; Liu et al., 2001), explaining why zebrafish fgf3 mutants fail to initiate prl and pomc expression at 24 hpf. It remains unclear whether the subsequent death of adenohypophyseal cells between 25 hpf and 30 hpf is a default consequence of their failed specification/differentiation, or whether Fgf3 activates the transcription of additional genes, particularly regulating cell survival.
placodal locations in an Fgf3-independent, but SU5402-sensitive, manner. According to their position, the intermediate domains of ectopic prol-positively cells in shh-injected embryos most probably represent trans-fated lense precursor cells, which might survive due to the redundant function of Fgf3 and Fgf8 from the optic stalk. In shh-injected embryos, this optic stalk is laterally enlarged (Macdonald et al., 1995), and therefore close to the trans-fated placodal lense precursor cells.

The shh overexpression studies further show that Fgf3 does not simply act via an activation of shh, as Shh is not capable of rescuing pituitary cell types in the adenohypophysial region itself. Rather, Fgf3 and Shh appear to act in parallel and to have rather distinct effects. Thus, ectopic Shh can induce the expression of adenohypophysial genes in ectopic locations, whereas Fgf3 cannot (Fig. 7; W.H. and M.H., unpublished observations). Furthermore, Shh has mitogenic activity, whereas Fgf3 cannot (Fig. 7; W.H. and M.H., unpublished observations).

We are very grateful to the other members of the Freiburg screening group (M. Schorpp, D. Diekhoff, T. Franz, M. Leicht, E. Nold, T. Nolting, C. Riegger, W. Wiest), and of the Tuebingen screen consortium (MPI for Developmental Biology: F. van Bebber, E. Busch-Nentwich, R. Dahm, H.-G. Frohnhöfer, H. Geiger, D. Gilmour, S. Holley, J. Hooge, D. Jülich, H. Knaut, F. Maderspacher, H.-M. Maischein, C. Neumann, T. Nicolson, C. Nüsslein-Volhard, U. Schönberger, C. Seiler, C. Söllner, M. Sonawane, A. Wehner, C. Weiler; Exelixis Germany GmbH: F. Erker, H. Habeck, U. Hagner, C. Hennen, E. Kaps, A. Kirchner, T. Kobilitzek, U. Langenriechner, C. Loeschke, C. Metzger, R. Nordin, J. Odenthal, M. Pezzuti, K. Schlimbs, J. deSatana-Stamp, T. Trowe, G. Vacun, B. Walderich, A. Walker, C. Weiler) for carrying out the screen during which the lia alleles were isolated. We are also very grateful to Filippo Del Bene and Jochen Wittbrodt for teaching us the bead implantation technique. M.H. thanks Thomas Boehm, Z.M.V. thanks Wolfgang Driever, and Jochen Wittbrodt for teaching us the bead implantation technique. H.H.R. thanks Christiane Nüsslein-Volhard for support and discussions. We are grateful for the help and technical support from Roland Nitschke and the Life Imaging Facility of the SFB 592 (Z2).

References


