Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on \textit{milliways} (\textit{milli}^{\text{Alk}}) as receptor for \textit{Jeb} signalling

Christiana Stute1, Kristina Schimmelpfeng2,*, Renate Renkawitz-Pohl1, Ruth H. Palmer3 and Anne Holz4,†

1Philipps-Universität Marburg, Fachbereich Biologie, Zoologie/Entwicklungsbiologie, Karl-von-Frisch-Strasse, 35039 Marburg, Germany
2Institut für Neuro- und Verhaltensbiologie, Westfälische Wilhelms-Universität Münster, Badestrasse 9, 48149 Münster, Germany
3Umeå Center for Molecular Pathogenesis, Building 6L, Umeå University, S-90187, Sweden
4Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Stephanstraße 24, 35390 Gießen, Germany

*Present address: HHMI/Division of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA-92093-0683, USA
†Author for correspondence (e-mail: anne.holz@allzool.bio.uni-giessen.de)

\textit{Development} 131, 743-754
Published by The Company of Biologists 2004
doi:10.1242/dev.00972
Accepted 7 November 2003

\textbf{Summary}

The visceral muscles of the \textit{Drosophila} midgut consist of syncytia and arise by fusion of founder and fusion-competent myoblasts, as described for the somatic muscles. A single-step fusion results in the formation of binucleate circular midgut muscles, whereas a multiple-step fusion process produces the longitudinal muscles. A prerequisite for muscle fusion is the establishment of myoblast diversity in the mesoderm prior to the fusion process itself. We provide evidence for a role of \textit{Notch} signalling during establishment of the different cell types in the visceral mesoderm, demonstrating that the basic mechanism underlying the segregation of somatic muscle founder cells is also conserved during visceral founder cell determination.

Searching for genes involved in the determination and differentiation of the different visceral cell types, we identified two independent mutations causing loss of visceral midgut muscles. In both of these mutants visceral muscle founder cells are missing and the visceral mesoderm consists of fusion-competent myoblasts only. Thus, no fusion occurs resulting in a complete disruption of visceral myogenesis. Subsequent characterisation of the mutations revealed that they are novel alleles of \textit{jelly belly} (\textit{jeb}) and the \textit{Drosophila} Alk homologue named \textit{milliways} (\textit{milli}^{\text{Alk}}). We show that the process of founder cell determination in the visceral mesoderm depends on \textit{Jeb} signalling via the \textit{Milliways}/Alk receptor.

Moreover, we demonstrate that in the somatic mesoderm determination of the opposite cell type, the fusion-competent myoblasts, also depends on \textit{Jeb} and Alk, revealing different roles for \textit{Jeb} signalling in specifying myoblast diversity. This novel mechanism uncovers a crosstalk between somatic and visceral mesoderm leading not only to the determination of different cell types but also maintaining the separation of mesodermal tissues, the somatic and splanchnic mesoderm.

Key words: \textit{Drosophila}, Myogenesis, Visceral and Somatic muscles, Founder cells, Fusion-competent cells, Myoblast fusion, \textit{Notch}, \textit{Delta}, \textit{lethal of scute}, \textit{jelly belly}, Alk, RTK signalling

\textbf{Introduction}

The early events of mesoderm formation and specification have been studied extensively (reviewed by Anderson, 1998), whereas the molecular mechanisms leading to different mesodermal cell types are less understood. The primordia of visceral, somatic and cardiac tissues are established at defined positions in each segment (Borkowski et al., 1995; Azpiazu et al., 1996; Riechmann et al., 1997; Hosono et al., 2003). The subdivision of mesodermal cells during gastrulation is the basis for the constitution of the main types of musculature in \textit{Drosophila}: the somatic and visceral muscles. The formation of visceral midgut muscles depends on two homeobox genes, \textit{tinman} (\textit{tin}) and \textit{bagpipe} (\textit{bap}) (Bodmer, 1993; Azpiazu and Frasch, 1993). Expression of \textit{bap}, which is required for the determination of the midgut visceral mesodermal anlage, is activated by Tin in the dorsal mesoderm. \textit{bap} induction occurs in segmental clusters that migrate in anterioposterior direction forming a continuous band of visceral progenitor cells, which finally surrounds the midgut. Whereas \textit{bap} is expressed transiently in the visceral precursor cells to determine the circular midgut muscles, the forkhead domain factor \textit{binou} (\textit{bin}) is activated downstream of \textit{bap} and is necessary for the differentiation of all visceral derivatives. Hence, in \textit{bap} and \textit{bin} mutant embryos, the visceral mesoderm is partially transformed into somatic mesoderm (Azpiazu and Frasch, 1993; Zaffran et al., 2001).

Recently, Weiss et al. (Weiss et al., 2001) identified a novel signalling process that induces visceral cell identities. The \textit{jelly belly} (\textit{jeb}) gene encodes a secreted protein that is produced from somatic mesodermal cells and taken up by visceral cells. In \textit{jeb} mutants, no visceral muscles develop due to a failure...
of differentiation in the existing Bap-expressing visceral precursors. The emerging picture shows, on the one hand, visceral determination genes such as tin, bap and bin, which are responsible for subdividing the mesoderm into different tissues and, on the other hand, inductive signals like Jeb, which promote interactions between these tissues.

The differentiated visceral musculature of the Drosophila midgut consists of an inner layer of circular muscles and an outer layer of longitudinal muscles (Campos-Ortega and Hartenstein, 1997), the latter persisting throughout metamorphosis (Klapper, 2000). The founder cells of the longitudinal muscles have a distinct primordium at the posteriormost part of the mesoderm (Tepass and Hartenstein, 1994; Georgias et al., 1997; Kusch and Reuter, 1999), whereas the circular visceral founder cells and all fusion-competent myoblasts (fcms) for both visceral muscle types originate from the trunk mesoderm (Klapper et al., 2002). Recently, it has been shown that both types of visceral muscles are syncytial and arise by fusion of founders and fcms (Klapper et al., 2001; San Martin et al., 2001; Klapper et al., 2002). These two classes of myoblasts are closely associated in a band of visceral precursors, which express markers such as Fasciclin III (Patel et al., 1987) and are characterised by binou expression (Zaffran et al., 2001). The ventralmost row of these visceral myoblasts consists of dumbofounded/kin of irre (duf/kirre)-expressing founder cells with a characteristic columnar shape. The more dorsally located fcms are characterised as such by a more globular morphology and by expression of sticks and stones (sns). During stage 12, binucleate circular muscles are built via fusion of these founders and fcms. This fusion process is disturbed in myoblast city (mbc), duf/kirre and sns mutants, which are also known to be defective in somatic muscle fusion, indicating that the founder cell hypothesis applies both to somatic and visceral myogenesis. Thus, several of the known genetic components are common between somatic as well as visceral myoblast fusion (Klapper et al., 2001; San Martin et al., 2001; Klapper et al., 2002).

Differentiation of the syncytial somatic muscles depends on the determination of founder and fusion-competent myoblasts (Bate, 1990; Dohrmann et al., 1990). These two classes of myoblasts are specified by lateral inhibition by the neurogenic genes Notch and Delta from a group of equivalent somatic mesodermal cells (Carmena et al., 2002). As a consequence, expression of the proneural gene lethal of scute (lsc) is restricted to muscle progenitor cells. These progenitors divide asymmetrically and give rise to muscle founder cells (Carmena et al., 1995), which are characterised by differential expression of myogenic genes (reviewed by Baylies et al., 1998; Paululat et al., 1999). After establishment of myoblast diversity, the fusion process starts, leading in a first fusion step to muscle precursor cells and in a second fusion step to formation of mature myotubes (Doberstein et al., 1997; Rau et al., 2001). This process can be disturbed at distinct levels (reviewed by Dworak and Sink, 2002; Taylor, 2002). Besides lateral inhibition and determination through distinct transcription factors cell-cell signalling is an important mechanism in myogenesis.

Receptor tyrosine kinases (RTKs) are involved in intercellular communication in a wide range of processes. RTKs are composed of three domains: an extracellular ligand-binding domain, a single membrane-spanning domain and a cytoplasmic catalytic domain (Yarden and Ullrich, 1988). Ligand binding to the extracellular domain induces activation of the kinase on the cytoplasmic side, which initiates the intracellular signalling. The activated RTKs phosphorylate themselves and cytoplasmic substrates, leading to activation of a number of downstream signalling molecules, and ultimately induce changes in gene expression and the phenotypic state of the cell (Faintl et al., 1993; van der Geer et al., 1994). RTKs thus play important roles in cellular proliferation and differentiation. The role of RTKs during embryonic development and especially during the determination of distinct cell types has been studied in detail in Drosophila (reviewed by Rebay, 2002). During specification of muscle progenitor cells from equivalent cell clusters, the Ras/MAPK pathway functions as an inductive cellular determination signal. This pathway is activated by both epidermal and fibroblast growth factor receptors in the dorsal embryonic mesoderm ([Gabay et al., 1997]; DER (Buff et al., 1998) and htl (Michelson et al., 1998)], while Notch antagonises this activity by lateral inhibition (Carmena et al., 2002). Recently, a novel RTK named DAlk (Drosophila Anaplastic Lymphoma Kinase; Alk – FlyBase) was described which is expressed specifically in the developing visceral mesoderm and CNS of Drosophila (Lorên et al., 2001). Furthermore, activation of Alk mediated signalling is required for embryonic gut development and more specifically for the activation of MAP kinase in the visceral mesoderm (Lorên et al., 2003). As Alk drives MAPK activation in the visceral mesoderm it is an obvious candidate to be involved in determination of distinct visceral cell types.

In a search for genes involved in the determination of visceral cell types, we screened a collection of EMS-induced lethal mutations established previously (Hummel et al., 1999a; Hummel et al., 1999b) and identified two independent mutations with a nearly identical phenotype. Both exhibit a loss of circular visceral founder cells at early stages of visceral development, whereas fusion-competent visceral myoblasts are specified correctly and express markers like Fas3 and Sns. This results in a complete absence of visceral midgut muscles. Complementation analysis revealed that one mutation belongs to the previously described jelly belly (jeb) gene, while the second mutation named milliways (mwt) represents a Alk allele. We describe the crucial role of these genes in the process of visceral founder cell determination and analyse the role of Notch and Delta during the distinction between visceral cell types. Moreover, we uncover Jeb signalling via the Alk RTK as a new determination step for the fusion-competent cells of the somatic mesoderm.

Materials and methods

Flystocks

To find out whether Notch and Delta mutants have defects in founder cell determination in the visceral mesoderm, we used N[5Se1] and D[5B2] mutants from the Bloomington Drosophila Stock Center. For analysis of the involvement of Notch and Delta in the founder determination process we used a dominant-negative form of Notch [UAS-dnNotch (Rebay et al., 1993; Go et al., 1998)], UAS-Notch+Delta (Bloomington Drosophila Stock Center, M. Muskavitch, unpublished) and UAS-Notch[pan] flies (Lieber et al., 1993). UAS-Notch[pan] allows expression of a constitutive active form of the Notch receptor.

The collection of EMS mutagenised flies was obtained from Christian Klämbt (Hummel et al., 1999a; Hummel et al., 1999b). To
screen for mutants with defects in the determination of founder cells in the visceral mesoderm, we stained 180 lines on the second and 270 lines on the third chromosome, with anti-Fas 3 antibodies (Patel et al., 1987). We isolated a new jeb allele, jebprep and a new Alk allele, which we named miiab69. These two mutants were used for all experiments described herein.

For complementation tests we used jeb605644 (Weiss et al., 2001) from the Bloomington Drosophila Stock Center, and Df(2R)AlkΔ21 which is a deficiency covering 53C (Lorén et al., 2003), β-galactosidase-expression in founder cells was achieved using the enhancer trap line rP298-lacZ (Nose et al., 1998; Klapper et al., 2002) and in the entire mesoderm using bap-lacZ (Azpiazu and Frasch, 1993; Zaffran et al., 2001). Overexpression studies were carried out using a bap-GAL4 driver line (Zaffran et al., 2001), which drives expression in the circular visceral mesoderm from stage 10 onwards or a twist-GAL4 driver line (SG24-GAL4), which drives expression in the entire mesoderm (gift from A. Michelson). As UAS lines we used UAS-Alk (Lorén et al., 2001) and UAS-jeb flies (Weiss et al., 2001). All overexpression studies were carried out at 25°C.

Immunohistochemical staining
Immunostaining was performed as described previously (Knirr et al., 1999; Klapper et al., 2002). The mouse Fas3 antiseraum (Patel et al., 1987) was used for the visualisation of the visceral mesoderm cells (diluted 1:5, gift from C. Klämbt). A rabbit anti-β-galactosidase antibody (Biotrend, diluted 1:2500) was used to visualise muscle founder cells in the enhancer trap line rP298-lacZ and a mouse anti-β-galactosidase antibody (Promega, diluted 1:500) was used to visualise bap-lacZ expression. For analysis of the somatic mesoderm, we used rabbit anti-β-tubulin antibodies at a dilution of 1:2500 (Leiss et al., 1988). The rabbit anti-Alk (diluted 1:500) (Lorén et al., 2003), rabbit anti-Jeb (diluted 1:100) (Weiss et al., 2001), rabbit anti-Lmd (diluted 1:1000) (Duan et al., 2001), mouse anti-Notch (diluted 1:10) (Fuß and Hoch, 2002) and mouse anti-Delta anti-serum (diluted 1:50, Developmental Studies Hybridoma Bank) were used in combination with the TSA signal amplification kit (NEN). For secondary antibodies, we used Cy2- and Cy3-labelled antibodies made in goats against rabbit and mouse from Dianova (diluted 1:40 and 1:100). The embryos were embedded in Fluoromount G (Southern Biotechnology Associates) and photos were taken under Nomarski optics with a Zeiss Axioskop microscope or a Leitz confocal microscope and processed with Adobe Photoshop 6.0 (Adobe Systems).

In situ hybridisation
In order to visualise fcms in the mesoderm, whole-mount fluorescent DNA hybridisation was performed with random digoxigenin-labelled sticks and stones cDNA probes according to Knirr et al. (Knirr et al., 1999). The sns cDNA was a gift from S. Abmayr (Bour et al., 2000). For the combination with antibody stainings to visualise β-galactosidase expression we used anti-β-galactosidase antiseraum (Cappel) at a dilution of 1:3000.

Lethal phase analysis
To test the lethality of the progeny from UAS-GAL4 crosses we mated homozygous lines carrying the founder cell marker rP298-lacZ, collected eggs for 24 hours and allowed further development for another 48 hours at 25°C. Afterwards, we counted at least 1000 progeny of each cross.

Results and discussion
Founder cell determination in the visceral mesoderm depends upon Notch
The process of lateral inhibition involving Notch and its ligand Delta, which was first discovered in the nervous system, also plays a role in determining the founder and fusion-competent myoblasts (fcms) of the somatic musculature (Carman et al., 2002). As many of the processes involved in the development of the somatic musculature also seem to affect the development of the visceral muscles, we investigated whether the mechanism of determination of founder and fcms is also conserved.

Notch and Delta play important roles in various developmental processes and mutations in either gene lead to strong developmental defects during embryogenesis. Thus, it is difficult to analyse whether the visible defects in the visceral mesoderm are due to defects in the determination of the founder cells or are a result of secondary effects. In Notch mutant embryos more founder cells appear to be present in the visceral mesoderm (Fig. 1A,B). The visceral fcms seem to be reduced compared with the wild-type expression of sticks and stones (sns) as a marker for these cells (Fig. 1D,E). This reduction is not as severe as in the somatic mesoderm but still quite obvious. In Delta mutants, the number of founder cells also seems to be increased in comparison with the wild type and the fcms are reduced in mutant embryos (Fig. 1C,F).

These observations cannot exclude the possibility that the observed phenotypes are induced by secondary effects from defects in other tissues, among others the lack of fcms in the somatic mesoderm. We therefore decided to perform overexpression studies using the UAS-GAL4 system (Brand and Perrimon, 1993). The GAL4 and UAS lines employed here also carry rP298-lacZ (Nose et al., 1998), which serves to mark the founder cells. As a driver line we used bap-GAL4 (Zaffran et al., 2001) to drive expression in the entire trunk visceral mesoderm. Expression of UAS-Notch+Delta, which contains the entire coding regions of both genes (M. Muskavitch, unpublished) or UAS-Notchmira, which represents a constitutively active form of Notch (Lieber et al., 1993), in the visceral mesoderm, both result in a distinct phenotype. In midgut preparations of these embryos the founder cells of the circular visceral mesoderm are strongly reduced (Fig. 1K,L; data not shown for UAS-Notcht+Delta) and later on, no functional visceral mesoderm can be observed (data not shown). By contrast, the founder cells of the longitudinal visceral muscles, which have a different origin at the posterior tip of the embryo are still present (arrowheads in Fig. 1K,L). Interestingly, bap-GAL4-driven expression of the Notch ligand Delta does not result in fewer founder cells in the visceral mesoderm (data not shown).

To exclude the possibility that the described defects are due to non-endogenous effects induced by the overexpression of the examined genes in the wrong tissue, we analysed wild-type Notch expression and found that it is indeed expressed in the visceral mesoderm. Notch is localised at cell membranes of the visceral fcms and the fcms are reduced in mutant embryos (Fig. 1C,F) and later on, no functional visceral mesoderm can be observed (data not shown). By contrast, the founder cells of the longitudinal visceral muscles, which have a different origin at the posterior tip of the embryo are still present (arrowheads in Fig. 1K,L). Interestingly, bap-GAL4-driven expression of the Notch ligand Delta does not result in fewer founder cells in the visceral mesoderm (data not shown).

To exclude the possibility that the described defects are due to non-endogenous effects induced by the overexpression of the examined genes in the wrong tissue, we analysed wild-type Notch expression and found that it is indeed expressed in the visceral mesoderm. Notch is localised at cell membranes of the visceral fcms and the fcms are reduced in mutant embryos (Fig. 1C,F) and later on, no functional visceral mesoderm can be observed (data not shown). By contrast, the founder cells of the longitudinal visceral muscles, which have a different origin at the posterior tip of the embryo are still present (arrowheads in Fig. 1K,L). Interestingly, bap-GAL4-driven expression of the Notch ligand Delta does not result in fewer founder cells in the visceral mesoderm (data not shown).
needed there to participate in the visceral determination process, as indicated by the increased number of founder cells and reduced number of fcsms in Delta mutants. Even though DI is expressed in the cells surrounding the visceral mesoderm, ectopic expression of UAS-DI in these cells with a twi-GAL4 driver line does not result in an obvious phenotype (data not shown), which might be due to the fact that the amount of Delta in this tissue is not the limiting factor that restricts Notch signalling. Another explanation for a missing Delta expression in the visceral mesoderm might be that a different factor acts as a ligand for Notch in the visceral mesoderm and that the observed phenotype in Delta mutants is due to secondary effects.

As the ectopic expression causes such a severe phenotype we also tested the lethality of these embryos (Fig. 2). Most of the progeny of the cross between the bap-GAL4 driver line and UAS-N+DI or UAS-Nint develop and hatch but die as first larvae (78% or 70%), presumably owing to the fact that they cannot ingest any food. Ectopic expression of UAS-DI alone also increased lethality compared with the UAS and GAL4 lines alone (data not shown), but still ~65% of the larvae survive.

To confirm these results, we overexpressed a dominant-negative form of Notch [UAS-dnN (Rebay et al., 1993; Go et al., 1998)] specifically in the visceral mesoderm with a bap-GAL4 driverline. The embryos exhibit an obvious duplication of most visceral founder cells but still some fcsms remain (Fig. 1M).

From these results, we conclude that Notch plays a role in the determination of the founder cells and fcsms in the visceral mesoderm. Delta, which is expressed in the cells surrounding the visceral mesoderm, might serve as the ligand in this process but it is also possible that another factor takes over this role. Hence, not only is the fusion mechanism between the founder cells and the fcsms in the somatic and visceral mesoderm conserved (San Martin et al., 2001; Klapper et al., 2002), but so is the initial mechanism of determination of these two cell types.

A screen for genes involved in visceral mesoderm development

To find out more about the mechanisms involved in the formation of the visceral muscles, we decided to screen a collection of EMS mutagenised flies (Hummel et al., 1999a; Hummel et al., 1999b) in order to search for genes involved in the determination of the two visceral cell types as well as in other aspects of visceral mesoderm differentiation.

Mutant embryos were stained and analysed with Fasciclin 3 (Fas3) (Patel et al., 1987), which marks the complete visceral mesoderm and allowed us to distinguish between the two cell types. Founder cells show a strong Fas3 expression and are characterised by a more columnar shape, while the more globular fcsms show a clearly weaker Fas3 expression (Klapper et al., 2002). Using this approach, we identified several mutants with various defects in the development of the visceral musculature. These novel mutants can be summed up in four subgroups (Fig. 3).
Myoblast determination depends on \(N \) and \(\text{Alk} \)

The first group (G1) shows no Fas3 staining in the visceral mesoderm at any stage of embryonic development when compared with the wild type (Fig. 3A,D). In these G1 mutants, the initial subdivision of the mesoderm in precursors of the somatic and visceral mesoderm might be defective. The second group (G2) shows Fas3 staining in the visceral mesoderm, but the cells fail to form a continuous band (Fig. 3E) as is observed in wild type from stage 11 onwards (Fig. 3B). The third group (G3) shows defects at even later stages. Here, the continuous band of the visceral mesoderm forms, but the cells do not migrate dorsally or ventrally (Fig. 3F) and thus do not encircle the midgut as they do in wild-type embryos (arrowhead in Fig. 3C). It remains unclear whether this is due to a failure of myoblast fusion or to other reasons. The analysis of these mutants will be described elsewhere, while the fourth group (G4) is described here.

Identification of jelly belly (jebwell) and the receptor for Jeb, milliways (\textit{mili}Alk) the Drosophila Alk homologue

In the same screen, we found a fourth subgroup (G4) consisting of two independent mutations, \textit{wellville} (\textit{weli}) and \textit{milliways} (\textit{mili}), with the same, distinct phenotype (Fig. 4). In these two mutants, the continuous band of the visceral mesoderm in stage 11 is formed, but when stained with Fas3, the more columnar shaped founder cells with the stronger Fas3 expression are absent (Fig. 4B,C compare with A). Thus, it appears that the founder cells of the circular visceral muscles are not determined in either of these mutants. Using the enhancer trap line \(rP298\text{-lacZ} \), which shows a \(\beta\)-galactosidase pattern reflecting the expression of Duf/Kirre (Nose et al., 1998; Ruiz-Gómez et al., 2000), we could indeed show that in both mutants this founder cell marker is not expressed in the visceral mesoderm (Fig. 4E,F, compare with D). In contrast to these observations, the determination of founder cells in the somatic mesoderm is not affected (Fig. 4J-L), and the somatic muscle pattern shows only mild fusion defects, which are especially obvious in the dorsal and ventral muscles (Fig. 6A-C). At later stages no visceral mesoderm is present in either mutant (Fig. 4H,I, compare with G).

Both mutations, \textit{weli} and \textit{mili}, are located on the second chromosome. Complementation tests were subsequently performed with mutants on the second chromosome, which are known to affect visceral mesoderm development. Surprisingly, this analysis revealed that \textit{weli} is a new jelly belly (jebwell) allele. \textit{jeb} encodes a secreted protein that is produced in the somatic mesoderm but is needed for proper visceral mesoderm formation and has been proposed to be essential for the migration and differentiation of the visceral mesoderm (Weiss et al., 2001). The phenotype of the specific loss of founder cells of the circular visceral muscles has not been described.

\textit{mili} displays the same distinct phenotype as \textit{jeb} and we reasoned that it is likely that both genes are involved in the same pathway. As \textit{jeb} is a secreted protein the most promising candidate for \textit{mili} was \textit{Drosophila Alk}, a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs), which is expressed in the nervous system and the visceral mesoderm (Lorén et al., 2001). Alk is considered to be a possible receptor for \textit{jeb} signalling (Lorén et al., 2003).

In order to further analyse whether \textit{mili} is indeed an allele
founder cells in the visceral mesoderm by ectopic expression of UAS-Alk in the miliAlk mutant background using bap-GAL4 as driver (data not shown).

Thus, the two newly identified mutants, both of which display the same, very distinct, phenotype of loss of founder cells in the visceral mesoderm, turn out to be novel jelly belly and Alk alleles.

The remaining cells of the visceral mesoderm in jebweli and miliAlk mutants differentiate to fusion-competent myoblasts

We have shown that the cells of the visceral mesoderm in jebweli and miliAlk mutants do not express the founder cell marker rP298-lacZ and exhibit exclusively a globular shape upon Fas3 staining, which is characteristic for fcms. This raised the question of whether the cells indeed are determined to become fcms or remain undifferentiated. To clarify this question, we performed in situ hybridisation with sns as probe (Fig. 5). sns is expressed in all fcms, both in the somatic and in the visceral mesoderm (Bour et al., 2000; San Martin et al., 2001; Klapper et al., 2002). In the wild type during stage 11, two bands of sns-expressing cells can be observed in the mesoderm, which are connected in a ladder-like pattern and represent the fcms of the somatic and visceral mesoderm (Fig. 5A). In jebweli and miliAlk mutants (Fig. 5B,C), only one band is present whereas the other band is missing. As indicated by the location of the connecting cells ventral of the present band, the dorsal band consisting of the fcms of the visceral mesoderm is still present (arrowheads in Fig. 5B,C). Thus, the remaining cells in the visceral mesoderm differentiate as fcms and express genes that are characteristic for this differentiated cell type.

Jeb signalling and Alk expression are also responsible for fusion-competent myoblast differentiation in the somatic mesoderm

The finding that in jebweli and miliAlk mutants in addition to the lack of founder cells in the visceral mesoderm also the fcms of the somatic mesoderm do not express fcm specific genes like sns was interesting as only mild defects in the somatic muscles are observed (Fig. 6B,C). To explain this phenotype, we took a closer look at the Alk expression in wild-type embryos. In addition to the expression of Alk in the cells of the visceral mesoderm, additional patches can be found in the neuroectoderm and the somatic mesoderm during stages 10 and 11 (Fig. 5D-F). We conclude that these patches of Alk expression in the somatic mesoderm are essential for the development of the somatic fcms because in Alk mutant embryos, which are unable to activate the RTK pathway, these cells do not express fcms-specific genes (Fig. 5C). Furthermore, Jeb signalling is also required for this process, because the same phenotype can be observed in jeb

Fig. 4. In jebweli and miliAlk mutants the founder cells of the circular visceral musculature are not determined. The development of the visceral mesoderm in wild-type (WT), jebweli and miliAlk mutants as visualised by Fas3 expression (red in A-I). (A-F) Stage 11, (G-I) stage 15-16 and (J-L) stage 14. The nuclei of the founder cells are marked by rP298-lacZ expression (green in D-F, brown in J-L). In jebweli and miliAlk mutants at stage 11, the more columnar-shaped founder cells are missing. Only cells that display the more globular shape of the fusion-competent myoblasts (fcms) are present (B,C,E,F). Additionally, the founder cell marker rP298-lacZ is absent in the visceral mesoderm in these mutants (E,F). The rP298-lacZ-positive cells, which can be observed over the fcms of the visceral mesoderm in D-F belong to the somatic mesoderm. At later stages, there are no signs of visceral musculature in either mutant (stage 16, arrowheads in H-I). (J-L) The founder cells of the somatic mesoderm are not affected in these mutants as visualised by rP298-lacZ expression (stage 14, K,L compare with J).

of Alk, we tested a newly created deficiency in the region (Df(2R)AlkΔ21) in which Drosophila Alk has been removed (Lorén et al., 2003). Indeed, mili is allelic to Df(2R)AlkΔ21, and furthermore, embryos transheterozygous for Df(2R)AlkΔ21 and mili show the same phenotype as mili mutant embryos on Fas3 analysis (data not shown). We then tested mili directly against the newly generated Akil allele (Lorén et al., 2003) and could indeed confirm that mili is a new Alk allele, which we now named miliAlk. The analysis of miliAlk mutants with the help of Alk antibodies (Lorén et al., 2001) reveals that the mutant Alk protein is found in the cytoplasm instead of its normal localisation at the cell membrane. Therefore we conclude that the mutation is a phenotypic null allele. Furthermore, we could rescue the specific loss of
mutants (Fig. 5B). Therefore the RTK signalling pathway involving Jeb and Alk is not only needed for founder cell specification of the visceral mesoderm but also for the differentiation of the fcms in the somatic mesoderm.

Having found that sns is no longer expressed in the fcms of the somatic mesoderm, we decided to look at the transcription factor lame duck/myoblast incompetent/gleeful (lmd/minc/glee), which is expressed in the somatic and visceral fcms and is responsible for their determination (Duan et al., 2001; Furlong et al., 2001; Ruiz-Gómez et al., 2002). The expression pattern of Lmd in the wild type is similar to that of sns and the protein is present in two bands in stage 11-12 (Fig. 5G). In both jeb^{weli} and mili^{Alk} mutants, the Lmd expression pattern is present (Fig. 5H,I) not only in the fcms of the visceral mesoderm but also in the somatic ones, even though it seems as if it is slightly weaker in the ventral part in the mutants than in the wild type. These data suggest that in jeb^{weli} and mili^{Alk} mutants the initial determination of the fcms in the somatic mesoderm takes place, but the subsequent differentiation is blocked. Therefore, the Alk-RTK signalling pathway in the somatic mesoderm seems to be essential for the differentiation of the fcms but not for the initial determination.

The fusion-competent myoblasts of the visceral mesoderm become incorporated into the somatic mesoderm

Because most of the fcms of the somatic mesoderm are not expressing sns in jeb^{weli} and mili^{Alk} mutants, we had a closer look at defects in this tissue. β-galactosidase antibody staining in mutants carrying the founder cell marker p298-lacZ show a regular pattern of somatic founder cells compared with the wild type in the somatic mesoderm (Fig. 4J-L). Only in some of the mutant embryos could we detect local distortions because of the defects in the visceral mesoderm (data not shown). β3tubulin antibody staining (Leiss et al., 1988) shows some mild fusion defects in the dorsal and ventral muscles in jeb^{weli} and mili^{Alk} mutants indicated by unfused myoblasts in this region and long thin projections of the muscles (Fig. 6B,C, compare with A).

The development of the visceral mesodermal cells cannot be followed with Fas3 staining because it disappears in the mutants after stage 11. Therefore, we visualised the fate of the fcms using the visceral mesoderm marker bap-lacZ, which normally is expressed exclusively in the visceral mesoderm throughout embryonic development (Azpiazu and Frasch, 1993; Zaffran et al., 2001) (Fig. 6D). We observe that jeb^{weli} and mili^{Alk} mutant embryos show a pattern of cells indicating that they become incorporated into the somatic mesoderm. Ventrolateral (A,B,C) muscles of stage 16 embryos were visualised by bap-lacZ expression (green in A-F). Cells of the visceral mesoderm are marked by bap-lacZ expression (red in D-F). Compared with the wild type (A) the somatic muscles in both jeb^{weli} and mili^{Alk} mutants are thinner and show long thin projections (B,C; arrow in B). Several unfused myoblasts are visible (arrow in C). (D-F) In wild-type embryos, no bap-lacZ expression is found in the somatic mesoderm during all stages of development (stage 14, D). By contrast, jeb^{weli} and mili^{Alk} mutant embryos exhibit bap-lacZ expression in the lateral muscles of the somatic mesoderm (stage 14, E,F).
mutants carrying this marker show β-galactosidase expression in the somatic mesoderm from late stage 12 onwards (Fig. 6E,F).

From previous studies, it is known that a lack of sns expression in fcms in the somatic mesoderm results in strong defects in the somatic musculature where the founder cells become blocked at the point of myoblast fusion (Bour et al., 2000). Because we are not able to detect such a strong phenotype in miliAlk and jebweli mutants, and together with the fact that bap-lacZ-expressing cells are present in the somatic mesoderm, we conclude that the sns-expressing cells from the visceral mesoderm now become incorporated into the somatic mesoderm and replace at least a fraction of the somatic fcms.

Alk protein is mislocalised in miliAlk mutant embryos and co-localises with Jeb at the membranes of visceral founder cells

As jeb is a secreted protein we were interested whether the localisation of Alk controls the specification for the more ventral cells of the visceral mesoderm to become founder cells whereas the others develop into fcms. Staining with anti-Alk antibodies (Lorén et al., 2003) show that in the wild type the protein is localised at the cell membranes in the visceral mesoderm (Fig. 7A). Surprisingly, Alk can be found in the founder cells of the circular visceral muscles and in the fusion-competent myoblasts (Fig. 7A-C), which are not obviously affected in miliAlk mutants (Fig. 4C,F).

In jebweli mutants, the localisation of Alk is not affected. Identical to the wild type, it localises at the cell membranes and is also present in all cells of the visceral mesoderm, which persist in these mutants (Fig. 7D-F). In miliAlk mutant embryos, however, the Alk protein is still detectable in all cells of the visceral mesoderm, but it is not correctly localised at the cell membrane and is instead found in the cytoplasm (Fig. 7G-I). Because of this mislocalisation and the fact that the embryos transheterozygous for Df(2R)AlkA21 and miliAlk display the same phenotype in the visceral mesoderm as the miliAlk mutant embryos alone (data not shown), we conclude that the mutation is a phenotypic null allele even though at least the N-terminal part of the protein, against which the antibody is raised, is still present. As the Alk receptor is not properly localised, the founder cells cannot receive the Jeb signal and thus the signal transduction pathway leading to the activation of duf/kirre in the visceral founders is disturbed.

Ectopic expression of UAS-jeb results in an increased number of founder cells in the visceral mesoderm

Previous work has shown that Jeb is secreted from the ventromedial cells of the somatic mesoderm, which are close to the visceral mesoderm (Weiss et al., 2001) (Fig. 9). Because all cells of the visceral mesoderm express the Alk RTK, it is theoretically possible that all are able to respond to jeb signalling. The fact that only the most ventral cells of the visceral
Mesoderm display an active RTK pathway as a result of this interaction and later become the founders of the visceral mesoderm could be explained by the fact that these cells are closest to the cells that secrete the Jeb signal (Fig. 7K), which we suggest is the limiting factor. We therefore set out to test whether increased levels of Jeb can change the fate of the more dorsally located visceral fcms, which also express the receptor Alk, to become founder cells. We again used the UAS-GAL4 system and expressed UAS-jeb in the entire mesoderm with a twi-GAL4 driver. As expected, nearly all cells of the visceral mesoderm are now converted to founder cells (Fig. 8A,B). Even though fcms are missing, the founders are able to form visceral muscles that later on encircle the midgut. This ability to form muscles is one of the characteristics of founder cells. From sns and mbc mutants, it is known that even though no fusions take place, mini-muscles are formed in the somatic mesoderm that display the right orientation and attachment sites (Rushion et al., 1995; Bour et al., 2000). This has also been shown for the founder cells of the visceral mesoderm. In sns mutants, apart from the first gut constriction the visceral mesoderm develops normally (Bour et al., 2000). On closer inspection just the founder cells differentiate, whereas the fcms remain undifferentiated (Klapper et al., 2002). Thus, apart from the increased number of founder cells no defects are visible. The same phenotype can be observed if UAS-jeb is ectopically expressed only in the visceral mesoderm (data not shown).

sns in situ hybridisation confirms that through the overexpression of UAS-jeb in either the entire or just the visceral mesoderm, the fate of the fcms is changed so that they no longer express fcms-specific gene products such as SNS. This seems to be the reason why the band of fcms of the visceral mesoderm (Fig. 8D) is missing in these embryos (Fig. 8E). The somatic mesoderm (Fig. 8G) shows no defects as indicated by an anti-β3tubulin staining (Fig. 8H). Overexpression of UAS-jeb in a Alk mutant background shows that the UAS-jeb overexpression phenotype is suppressed in the Alk mutants (data not shown). Therefore jeb is dependent upon Alk as a receptor to activate the downstream signalling pathway.

In the wild type, the limited amount of the Jeb signal appears to restrict founder cell determination to the most ventral cells of the visceral mesoderm (Fig. 9). However, these findings prove that in principle all cells of the visceral mesoderm are able to respond to jeb signalling. Furthermore, we found no difference when the signal is produced from the somatic or the visceral mesoderm.

Fig. 8. Ectopic expression of UAS-Alk and UAS-jeb in the mesoderm gives rise to different phenotypes. Wild-type embryos are shown in A,D,G and L. (B,E,H) UAS-jeb is ectopically expressed with a twi-GAL4 driverline. (C,F,J,K,M) UAS-Alk is ectopically expressed with a twi-GAL4 (C,F,J,K,M) or bap-GAL4 (D,F) driver line (J,K). Founder cells (f) are marked by rP298-lacZ expression (green in A,B,J,K). (D-F) Fusion-competent myoblasts (fcms) are visualised by sns in situ hybridisation. (B) Ectopic expression of UAS-jeb converts all cells of the visceral mesoderm to founder cells. (E) sns expression is absent in these cells of the visceral mesoderm. (H) The somatic mesoderm shows no defects, as indicated by β3tubulin antibody staining. (C) No visceral founder cells can be detected by Fas3 staining of stage 11 embryos in which UAS-Alk is ectopically expressed in the entire mesoderm. (F) sns in situ hybridisation indicates that through the overexpression of UAS-Alk the fcms of the somatic mesoderm are missing in stage 11 and only the band of the fcms of the visceral mesoderm remains. (I) The dorsal and ventral somatic muscles in stage 16 show a fusion defect phenotype with thin projections (arrow) and unfused myoblasts (arrowhead) as indicated by β3tubulin staining. When UAS-Alk is expressed only in the visceral mesoderm with a bap-GAL4 driverline, which also carries rP298-lacZ as founder cell marker, the founder cells of the visceral mesoderm are still present and seem to be doubled in number (J,K). In contrast to a single row in the wild type (A), a second row of founder cells is present in these stage 11 embryos. The bands of both halves of the embryo are shown (J,K). In the wild type, jeb is expressed in a continuous band in the mesoderm (L), whereas upon overexpression of UAS-Alk in the entire mesoderm the signal is reduced (M).

Ectopic expression of UAS-Alk gives a similar phenotype as in milAlk and jebwel mutants

Anti-Alk stainings on embryos carrying the visceral mesoderm marker bap-lacZ show that Alk is expressed in all cells of the visceral mesoderm, some neuroectodermal cells and transiently in stage 10 to 11 in cell clusters in the somatic mesoderm (Fig. 5D-F, Fig. 9). We were interested in the consequences of ectopic expression of UAS-Alk in the entire mesoderm. Surprisingly, the overexpression of UAS-Alk by a twi-GAL4 driver produces a similar phenotype to
that in miliAlk or jebweli mutant embryos. In early stage 11 only fcms are visible in Fas3 stainings (Fig. 8C) and later on there is no evidence of the presence of visceral mesoderm any more. In the somatic mesoderm, defects can be seen by an anti-β3 tubulin antibody staining (Fig. 8I). Several muscles are small and display a spindle-like shape with long and thin projections, indicating that only few myoblasts fuse to form the muscles. In comparison with jebweli and miliAlk mutants (Fig. 6B,C), in the Alk overexpressing embryos the muscle defects are stronger. Another surprising finding was that in this overexpression situation the sns-expressing cells of the somatic mesoderm are again missing (Fig. 8F).

It remains an unanswered question why the overexpression of Alk in the entire mesoderm results in a similar phenotype to that in jebweli and miliAlk mutants. One possible explanation for the visceral phenotype is that because of the absence of sns-expressing cells in the somatic mesoderm, jeb is not secreted anymore, which results in the absence of an active RTK pathway in the visceral founder cells. Therefore, we carried out anti-Jeb antibody stainings on these embryos. In stage 10 wild-type embryos, jeb is expressed in two bands in the somatic mesoderm and disappears in stage 12 from all mesodermal derivatives (Weiss et al., 2001) (Fig. 8L). In embryos overexpressing Alk in the entire mesoderm, we could observe only one small group of jeb-expressing cells per hemisegment (Fig. 8M). The reduced amount of the ligand Jeb thus phenocopies a jeb mutant situation where the visceral founders are not determined.

A distinct difference between the founder cells and the fcms in the somatic mesoderm is the expression of lmd/minc/glee in the fcms (Duan et al., 2001; Furlong et al., 2001; Ruiz-Gómez et al., 2002). We assume that in the wild type, only the fcms, which are characterised by this expression, are able to respond to the Jeb/Alk signalling pathway, which promotes the further differentiation of the somatic fcms. These in turn continue to secrete Jeb, which is required for the induction of the signalling pathway in the visceral mesoderm.

We assume that in the somatic mesoderm it is mainly the fcms that express Alk and suggest that the overexpression of Alk in the entire somatic mesoderm enables all cells of the mesoderm to take up the Jeb signal. Therefore, the signal necessary for the further differentiation of the fcms in the somatic mesoderm is downregulated through the increased Jeb uptake of the cells now ectopically expressing Alk. Another possibility to explain the visceral phenotype by overexpressing UAS-Alk in the whole mesoderm is that the overexpression of Alk itself leads to a strong downregulation of Jeb. As a consequence, the visceral founder cells are not specified, again owing to the lack of Jeb signal.

A further indication for the relevance of these changes in the somatic mesoderm for the visceral phenotype arises from the overexpression of Alk just in the visceral mesoderm with a bap-GAL4 driverline. This does not result in the phenotype described above. In this case, the founder cells in the visceral mesoderm are present and seem to be even increased in number (Fig. 8J-K). We assume that due to the Alk overexpression additional cells of the visceral mesoderm are now able to take up some of the limited amount of Jeb signal from the somatic mesoderm and thus become founder cells. In this case, Jeb expression in the somatic mesoderm is not affected.

We are grateful to Christian Klämbt for sharing fly stocks and results prior to publication. We thank Peter Seum for excellent technical assistance. We are indebted to Simone Lier, Henning Mootz and Christian Klämbt for critical reading of the manuscript and helpful comments. We thank the Bloomington Stock Center for fly stocks, Christian Klämbt for Fas3 antibody, Manfred Frasch for GAL4 and stocks, Christian Klämbt for sharing fly stocks and results prior to publication. We thank Peter Seum for excellent technical assistance. We are indebted to Simone Lier, Henning Mootz and Christian Klämbt for critical reading of the manuscript and helpful comments. We thank the Bloomington Stock Center for fly stocks, Christian Klämbt for Fas3 antibody, Manfred Frasch for bap-GAL4 and bap-lacZ, Joe Weiss for UAS-jeb flies and Jeb-antibody, Thomas Klein for UAS-Bap flies, Dietmar Mayer for UAS-dmNotch flies, Hanh Nguyen for Lmd-antibodies, Alan Michelson for SG24-GAL4 flies, Akinao Nose for P298-lacZ, and Susan Abmayr for the
References

