Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis

Chun-hong Xia1, Haiquan Liu1, Debra Cheung1, Catherine Cheng2, Eddie Wang1, Xin Du3, Bruce Beutler3, Woo-Kuen Lo4 and Xiaohua Gong1,2,*

Different mutations of \(\alpha\)3 connexin (Cx46 or Gja3) and \(\alpha\)8 connexin (Cx50 or Gja8), subunits of lens gap junction channels, cause a variety of cataracts via unknown mechanisms. We identified a dominant cataractous mouse line (L1), caused by a missense \(\alpha\)8 connexin mutation that resulted in the expression of \(\alpha\)8-SSOP mutant proteins. Histology studies showed that primary lens fiber cells failed to fully elongate in heterozygous \(\alpha\)8SSOP+ embryonic lenses, but not in homozygous \(\alpha\)8SSOPSSOP, \(\alpha\)8S50P and \(\alpha\)3S50P mutant embryonic lenses. We hypothesized that \(\alpha\)8-SSOP mutant subunits interacted with wild-type \(\alpha\)3 or \(\alpha\)8, or with both subunits to affect fiber cell formation. We found that the combination of mutant \(\alpha\)8-SSOP and wild-type \(\alpha\)8 subunits specifically inhibited the elongation of primary fiber cells, while the combination of \(\alpha\)8-SSOP and wild-type \(\alpha\)3 subunits disrupted the formation of secondary fiber cells. Thus, this work provides the first in vivo evidence that distinct mechanisms, modulated by diverse gap junctions, control the formation of primary and secondary fiber cells during lens development. This explains why and how different connexin mutations lead to a variety of cataracts. The principle of this explanation can also be applied to mutations of other connexin isoforms that cause different diseases in other organs.

KEY WORDS: Cataract, Connexin, Gap junction, Lens fiber cell

INTRODUCTION

Cataracts, defined as lens opacities, are the leading cause of blindness in the world. To date, cataract surgery remains the only way to cure them and there is no non-surgical method to delay or prevent cataractogenesis. Although decades of studies have significantly improved our understanding of risk factors for developing cataracts, as well as biochemical and morphological changes that occur during cataract formation, the mechanisms for how the lens establishes and maintains its transparency remain largely unknown. The lens is formed through sequential events including the differentiation and elongation of posterior lens vesicle cells to form primary fibers that fill the lumen of lens vesicle, followed by the differentiation and elongation of anterior lens epithelial cells to form secondary fiber cells that lie on top of primary fibers at the lens periphery. Cell elongation is a hallmark of lens fiber differentiation during lens development (Bassnett, 2004; Pliatigorsky, 1981). A mechanistic understanding of fiber cell elongation in vivo has relied on speculations based on in vitro studies of cultured lens epithelial cells. Moreover, mechanisms that differentially regulate lens primary and secondary fiber cell formation are unknown.

Lens fiber cells are coupled by intercellular gap junction channels formed by \(\alpha\)3 (connexin 46) and \(\alpha\)8 (connexin 50) connexin subunits to maintain the homeostasis required for lens transparency (Goodenough, 1992; Mathias et al., 1997). Mutations in the \(\alpha\)3 (Gja3) and \(\alpha\)8 (Gja8) connexin genes are one of the common causes for inherited cataracts in humans and mice. Connexin proteins have four transmembrane domains with three intracellular regions (the N terminus, a cytoplasmic loop and the C terminus) and two extracellular loops (E1 and E2) (Yeager and Nicholson, 2000). Six connexin subunits oligomerize to form one connexon (hemichannel). A gap junction channel is formed by the docking of extracellular loops of two opposing connexons in the plasma membrane. Hundreds of gap junction channels come together to form gap junctions that are morphologically defined as specialized punctate ‘plaques’ of cell-to-cell contacts. These channels with small pores provide pathways for the direct exchange of small molecules between adjacent cells (Fleishman et al., 2004; Unger et al., 1999). Co-expression of two types of connexin subunits in cells will allow the formation of homomeric connexons (consisting of one type of subunit), heteromeric connexons (consisting of two types of subunits), homotypic channels (the docking of two identical connexons) and heterotypic channels (the docking of two different types of connexons) (Kumar and Gilula, 1996).

Studies of \(\alpha\)3−/− knockout mice have suggested that \(\alpha\)3 connexin is essential for maintaining lens transparency (Gong et al., 1997), while the analyses of \(\alpha\)8−/− knockout mice and knock-in \(\alpha\)3(50KI46/50KI46) mice have revealed that \(\alpha\)8 connexin is important for lens growth (Martinez-Wittinghan et al., 2003; Martinez-Wittinghan et al., 2004; Rong et al., 2002; White et al., 1998). Although \(\alpha\)8−/− lenses show reduced epithelial proliferation and delayed fiber cell maturation, the mechanism for how the loss of \(\alpha\)8 connexin leads to smaller lenses is unknown (Rong et al., 2002; Sellitto et al., 2004). The interaction between \(\alpha\)3 and \(\alpha\)8 subunits has been suggested by their colocalization in the fiber cells of different vertebrate lenses and the biochemical isolation of heteromeric connexons from the lens (Gong et al., 1997; Jiang and Goodenough, 1996; Konig and Zampighi, 1995; Lo et al., 1996). The \(\alpha\)3 and \(\alpha\)8 connexin subunits are able to form heteromeric and...
heterotypic channels in paired *Xenopus* oocytes and cultured cells in vitro (Hopperstad et al., 2000; White et al., 1994). Thus, diverse gap junctions formed by α3 and α8 subunits need to be further investigated in vivo.

The roles of diverse gap junctions have never been elucidated during lens development due to a lack of an appropriate experimental model in vivo. We hypothesize that dominant cataracts are caused by altered intercellular communication mediated by diverse gap junction channels consisting of mutant and wild-type connexin subunits in the lens. In this work, we have found that the combination of mutant α8-S50P subunits (a mutation in the extracellular loop 1) and wild-type α8 subunits specifically inhibits the elongation of embryonic lens fiber cells, while the combination of mutant α8-S50P and wild-type α3 subunits disrupts the differentiation and elongation of postnatal lens fibers. This work reveals that diverse gap junctions mediate distinct mechanisms to control the formation of lens primary and secondary fiber cells, and this also explains why and how a variety of cataracts can result from perturbations of different types of gap junctions during lens development.

MATERIALS AND METHODS

Mouse ENU mutation, genomic linkage analysis and causative gene identification

Generation of ENU-mutagenized mice, mouse breeding and genome-wide linkage analysis were described previously (Du et al., 2004). The dominant *L1* mutation, in the C57BL/6J (B6) strain background, was outcrossed with wild-type C3H/Hej mice to produce affected G1 hybrid mice that were further crossed with wild-type C3H/Hej mice to produce second generation (G2) mice. The G2 mice were phenotyped with a slit lamp and genotyped with genomic DNA for a genome-wide linkage analysis by using a total of 59 microsatellite markers (Du et al., 2004). Based on the chromosomal location, causative gene candidates were identified from the Mouse Genome Database at the National Center for Biotechnology Information (NCBI) website. PCR fragments of the α8 connexin gene were amplified from mutant genomic DNA isolated from homozygous mutant mice, as previously described (Chang et al., 2002), and followed by DNA sequencing analysis.

Examination of lens phenotypes

Mouse pupils were dilated by using an eye drop containing 1% phenylephrine and 1% atropine before lens clarity was examined using a slit lamp. The cataract was directly imaged in living animals by a slit lamp (Nikon-FS3) using a camera and Kodak elite2 200ASA color slide films. Fresh lenses, dissected from enucleated eyeballs of wild-type and mutant mice, were imaged under a Leica MZ16 dissecting scope using a digital camera.

Generation of compound mutant mice

L1 heterozygous α8S50P/α3+/− mice were bred with α8/−α3/− double knockout mice to produce the α8S50P/α3/− and α8/−α3/− mutant mice. Both *L1* homozygous α8S50P/α3−/− and double mutant α8S50P/α3−/− mice were generated from the intercross of α8S50P/α3−/− mice. Double mutant α8S50P/α3−/− mice were bred with α3/− knockout mice to produce α8S50P/α3−/− mice. Previously described PCR methods were used to distinguish α3 or α8 knockout alleles from wild-type or mutant alleles (Chang et al., 2002).

Histology, thin-section TEM and immunohistochemistry

Enucleated eyeballs were fixed in a solution containing 2% glutaraldehyde and 2.5% formaldehyde in 0.1 M cacodylate buffer (pH 7.2) at room temperature for at least 5 days and were postfixed in 1% aqueous O3Os2, stained en bloc with 2% aqueous uranyl acetate and then dehydrated through graded acetone. Samples were embedded in Epon resin (Ted Pella, Redding, CA). Sections (1 μm) were collected on glass slides and stained with Toluidine Blue. Bright-field images were acquired via a Zeiss Axiovert 200 light microscope with a digital camera. Thin sections (80 nm) were cut with a diamond knife, stained with 5% uranyl acetate followed by Reynold’s lead citrate before examination under a JEOL JEM-1200EX electron microscope (JEOL, Tokyo, Japan).

A previously described method was used to prepare lens frozen sections for immunohistochemical analysis with different antibodies (Gong et al., 1997). The following reagents were used for immunostaining embryonic lens frozen sections: a rabbit polyclonal antibody against the C-terminal region of α8 connexin (generously provided by Dr M. J. Wolosin at Mount Sinai School of Medicine, New York), rhodamine phalloidin (Molecular Probe) for detecting F-actin and DAPI (Vector Laboratories) for labeling cell nuclei. Fluorescent images were collected under a Zeiss Axiovert 200 fluorescent microscope with an Axioham camera or a Leica laser confocal microscope with a high resolution digital camera.

RESULTS

The α8-S50P point mutation causes dominant cataracts in *L1* mutant mice

A male cataractous mouse was identified from ENU-mutagenized mice by slit-lamp examination. This male founder was bred with wild-type C57BL/6J (B6) female mice, and half of the offspring developed a phenotype identical to the male founder. This mutant line was named lens mutation 1 (*L1*) and was maintained in the B6 background (Fig. 1A). The *L1* heterozygous mice developed whole cataracts with small eyes (about 30% of the size of wild-type eyes) at weaning age (Fig. 1A,B). Genomic DNA samples of 30 normal and 36 affected G2 mice were used for a genome-wide linkage analysis. The *L1* mutation was mapped to mouse chromosome 3 with a Lod score of 6.8 at the linkage marker D3Mit98, which is in the vicinity of the *Gja8* (α8 connexin) gene (Fig. 1C).

It is known that α8 connexin mutations cause cataracts in both humans and mice. Therefore, we performed DNA sequencing analysis using PCR fragments amplified from the genomic DNA of *L1* homozygous mice. We found a missense mutation (T→C) of the *Gja8* gene, resulting in the replacement of the serine residue at codon 50 by a proline residue (S50P) in the extracellular loop 1 (E1-loop) of the α8 connexin protein (Fig. 1D). Thus, the dominant cataracts in the *L1* mouse line are caused by the α8-S50P mutation. The genotypes for *L1* heterozygous and homozygous mice are labeled as α8S50P/+α3+/− and α8S50P/+α3+/+, respectively. The wild-type, homozygous α8 knockout and α8/α3 double knockout mice are labeled as α8−/−α3+/+, α8−/−α3−/− and α8−/−α3−/−.

We further confirmed that the α8S50P/+α3+/+ mice developed small and ruptured cataractous lenses similar to the α8S50P/+α3+/+ mice at weaning age (Fig. 2A,B). Histological data showed severely disorganized fiber cells, vacuole formation and posterior capsule rupture in both α8S50P/+α3+/+ and α8S50P/+α3+/+ lenses (Fig. 2C,D). Thus, secondary fiber cell formation was severely disrupted in both α8S50P/+α3+/+ and α8S50P/+α3+/+ postnatal lenses.

Primary fiber cell elongation is inhibited only in the α8S50P/+α3+/+ lenses

As altered fiber cells were obviously observed in the neonatal lenses of both α8S50P/+α3+/+ and α8S50P/+α3+/+ (data not shown), we carried out histological studies of their embryonic lenses. At 15.5 days post-conception (E15.5), both α8−/−α3+/+ and α8−/−α3+/+ embryonic lenses showed no space between the primary fibers and overlying anterior epithelium (Fig. 3A,B). Unexpectedly, a large cystic lumen between posterior primary fiber cells and anterior epithelium was observed in the E15.5 α8S50P/+α3+/+ embryonic lenses with 100% penetrance (Fig. 3C), but not in the E15.5 α8S50P/+α3+/+ embryonic lenses (Fig. 3D). Histology data further
verified that at earlier stages (E13.5), posterior primary fiber cells did not reach the anterior epithelium in the α8S50P+/α3+/+ lenses, while primary fiber cells in wild-type lenses elongated and obliterated the lumen of the lens vesicle at the same embryonic stage (data not shown).

Thus, although mature fiber cells are severely altered in both postnatal day 21 (P21) α8S50P+/α3++ and α8S50Pα3++ lenses (Fig. 2), the elongation of primary fiber cells is significantly perturbed only in α8S50P+α3++ embryonic lenses, not in α8S50Pα3++ and α8α3++ lenses during embryonic development. We hypothesize that α8-S50P is a gain-of-function mutant subunit, as neither a loss-of-function of α8 connexin nor a normal function of α8 connexin in wild-type α8α3++ lenses inhibits primary fiber cell elongation. Moreover, normal elongation of primary fiber cells in α8S50Pα3++ lenses suggests that an interaction between mutant α8-S50P subunits and endogenous wild-type α8 subunits is probably required for the suppression of primary fiber cell elongation in α8S50Pα3++ embryonic lenses.

We hypothesize that the gain-of-function α8-S50P mutation alters the intercellular communication in lens fiber cells by interacting with endogenous wild-type α8 and/or α3 subunits to form mutant gap junctions. To test this hypothesis, we examined the presence of gap junctions in α8S50P+α3++ embryonic lenses. A representative immunostaining image showed typical punctate fluorescent spots of α8 connexin in an E15.5 wild-type lens frozen section detected by an anti-α8 antibody (Fig. 3E). Similar fluorescent signals were also detected in posterior fiber cells of E15.5 α8S50P+α3++ lens sections (Fig. 3F,G). Transmission electron microscope (TEM) analysis further confirmed the presence of bona fide gap junctions in α8S50P+α3++ lenses (Fig. 3H). Therefore, we investigated the subunit composition of mutant gap junctions that perturb the formation of primary and secondary fiber cells in α8-S50P mutant lenses by a genetic approach.

The combination of wild-type α8 and mutant α8-S50P subunits inhibits the elongation of lens primary fibers

In order to determine the subunit composition of mutant gap junction channels that mediate the inhibition of primary fiber cell elongation in α8S50P+α3++ embryonic lenses, we replaced wild-type α3 and α8 alleles with the null alleles. By breeding the α8S50P+α3++ mutant mice with the α3+/− knockout and α8–/− knockout mice, we have generated two different compound mutant mice: α8S50P+α3+/− mice that lack wild-type α3 connexin and α8S50P+α3−/− mice that lack wild-type α8 connexin. Histological data showed a cystic lumen only in α8S50P+α3+/− embryonic lenses (Fig. 4A), but not in α8S50P+α3−/− lenses (Fig. 4B). Gap junctions were also detected in the fiber cells of these compound mutant embryonic lenses by immunohistochemistry and TEM (data not shown). These results suggest that α8-S50P subunits interact with endogenous wild-type α8 subunits to inhibit primary fiber cell elongation, while the presence of endogenous wild-type α3 subunits does not affect primary fiber formation. Thus, it is possible that α8-S50P and wild-type α8 subunits form mutant gap junction channels that modulate a unique mechanism essential for the elongation of lens primary fiber cells.
spots represent typical staining of respectively. The punctate green fluorescent lumen is present only in the H TEM shows bona fide gap junctions (indicated by white arrows) between posterior fiber cells of the E15.5 white arrows). (A) An E15.5 α8S50P+ α3+/+ embryonic lens shows a large cystic lumen between posterior primary fiber cells and the anterior epithelium. All images were taken from Toluidine Blue-stained embryonic sections. (E,F) Triple-labeled images of α8 connexin (green), F-actin (red) and nuclei (blue) of frozen sections from wild-type (E) and α8S50P+ α3+/+ (F) embryonic lenses, respectively. The punctate green fluorescent spots represent typical staining of α8 connexins in lens fiber cells. A large cystic lumen is present only in the α8S50P+ α3+/+ embryonic lens in F. White arrowheads indicate the anterior ends of posterior fiber cells and a large white arrow indicates the anterior epithelium. (G) A high magnification image of the selected area in F shows punctate fluorescent spots (indicated by white arrows). (H) TEM shows bona fide gap junctions (indicated by white arrows) between posterior fiber cells of the E15.5 α8S50P+ α3+/+ lens. Scale bars: 50 μm for A-D; 100 μm for E,F; 5 μm for G; 100 nm for H.

The combination of wild-type α3 and mutant α8S50P subunits disrupts the formation of postnatal secondary fibers

In order to understand why both α8S50P+ α3+/+ and α8S50P/SS50P α3+/+ mice developed whole cataracts at weaning age (Fig. 2), we further examined the postnatal lens phenotypes of α8S50P+ α3–/– and α8S50P+ α3–/– mice. Surprisingly, the α8S50P+ α3–/– mice developed a nuclear cataract rather than a whole cataract. A lens from a P21 α8S50P+ α3–/– mouse revealed a nuclear cataract with a transparent cortex (Fig. 4E). Histological data showed degenerated nuclear fibers but normal peripheral cortical fibers in the P14 α8S50P+ α3–/– lens (Fig. 4C). By contrast, α8S50P–/– α3+/+ mice developed microphthalmia with whole cataracts similar to the α8S50P+ α3+/+ and α8S50P/SS50P α3+/+ mice. A lens from a P21 α8S50P–/– α3–/– mouse was small and ruptured with a cataract (Fig. 4F). Disrupted secondary fiber cells, enlarged vacuole-like extracellular spaces and posterior capsule rupture were observed in the P14 α8S50P–/– α3–/– lens (Fig. 4D).
Mutant α8-S50P subunits alone have no effect on the formation of lens primary or secondary fiber cells
We have also generated α8S50P−/− α3−/− mutant mice that lack both endogenous wild-type α8 and α3 connexins and compared their lens phenotypes with those of double knockout α8S50P−/− α3−/− mice. Histological data revealed that both α8S50P−/− α3−/− and α8S50P−/− α3−/− embryos had normal elongation of primary fiber cells, and both mutant mice developed large nuclear cataracts at the age of three weeks (Fig. 5A). A histological section of a P14 α8S50P−/− α3−/− lens displayed normal secondary fiber cells in lens periphery but degenerated inner mature fiber cells (Fig. 5B). Lens phenotypes of different types of α8-S50P mutant mice are summarized in Table 1. In summary, these data suggest that mutant α8-S50P subunits probably have no function in vivo and that the interactions between these mutant subunits and endogenous wild-type α8 or α3 connexins perturb primary fiber cell elongation or secondary fiber cell formation, respectively.

DISCUSSION
Intercellular gap junction channels formed by α1 (Cx43), α3 (Cx46) and α8 (Cx50) subunits have been suggested to provide a sophisticated regulatory network to coordinate lens growth and to maintain lens transparency throughout life (Goodenough, 1992). Lens fiber cells are coupled by gap junction channels consisting of α3 and α8 connexin subunits. This work demonstrates that the combination of α8-S50P and endogenous wild-type α8 subunits specifically inhibits the elongation of primary fiber cells in embryonic lenses, while the combination of α8-S50P and endogenous wild-type α3 subunits disrupts the proper formation of secondary fiber cells in postnatal lenses. These results suggest that gap junctions formed by α8-S50P and wild-type α8 subunits alter a unique mechanism required for the elongation of lens primary fiber cells, while gap junctions formed by α8-S50P and wild-type α3 subunits perturb a separate and distinct mechanism needed for proper formation of secondary fiber cells in postnatal lenses. Thus, this work provides the first in vivo evidence for a working model that diverse gap junction communications modulate different signaling mechanisms for primary fiber cell elongation or secondary fiber cell formation during lens development (Fig. 6).

This work provides an in vivo model to understand a fundamental mechanism for why and how diverse gap junction channels are used in almost all organs supported by the fact that two or more types of connexin subunits are commonly co-expressed in cells (Goodenough et al., 1996; Kumar and Gilula, 1996). It is generally accepted that diverse gap junctions provide a broad spectrum of pathways to ensure the homeostasis needed for various cellular functions in vivo. However, studies to define the roles of these diverse gap junctions have previously been hindered by an inability to distinguish gap junction channels formed by different types of subunits from the channels formed by one type of subunits in vivo.

<table>
<thead>
<tr>
<th>Mouse line/genotype</th>
<th>Primary fiber/secondary fiber</th>
<th>Lens clarity/morphology/size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 heterozygous/α8S50P+/α3+/+</td>
<td>Elongation inhibition/disruption</td>
<td>Whole cataract/posterior rupture/very small</td>
</tr>
<tr>
<td>L1 homozygous/α8S50P/α3−/−</td>
<td>Normal elongation/disruption</td>
<td>Whole cataract/posterior rupture/very small</td>
</tr>
<tr>
<td>L1 heter w/o α3/α8S50P+/α3+/+</td>
<td>Elongation inhibition/normal</td>
<td>Nuclear cataract/no rupture/small</td>
</tr>
<tr>
<td>L1 heter w/o α8/α8S50P+/α3−/−</td>
<td>Normal elongation/disruption</td>
<td>Whole cataract/posterior rupture/very small</td>
</tr>
<tr>
<td>L1 heter w/o α3 & α8/α8S50P+/α3−/−</td>
<td>Normal elongation/normal*</td>
<td>Large nuclear cataract/no rupture/small</td>
</tr>
</tbody>
</table>

*aLike double homozygous knockout α8−/− α3−/− lenses, α8S50P−/− α3−/− lenses display normal peripheral secondary fiber cells, but inner mature fiber cells undergo degeneration to form a large nuclear cataract.
Previous results from studies of loss-of-function knockout mice suggest that α8 connexin is essential for maintaining lens transparency, while α8 connexin is required for lens growth. Functional differences between channels consisting of mixed α8 and α3 subunits and channels consisting of either α8 or α3 subunits in vivo are unclear (Martinez-Wittinghan et al., 2003). Studies of the α8-G22R mutation (a mutation in the N-terminal domain) have demonstrated that severe lens phenotypes are partly caused by the mutation gap junction channels consisting of both mutant α8-G22R and endogenous wild-type α3 subunits (Chang et al., 2002). The α8-G22R mutant probably acts as a dominant-negative inhibitor to perturb gap junction communication by oligomerizing with wild-type α8 and/or α3 subunits. This predication is also supported by the fact that the elongation of primary fiber cells is normal in both α8-G22R heterozygous and homozygous embryonic lenses (C.-h.X, unpublished), and in α8−/− α3−/− lenses without gap junction channels. Therefore, based on the result that a combination of α8-S50P and wild-type α8 subunits inhibits the elongation of primary fiber cells, we propose that α8-S50P mutant connexin interacts with endogenous α3-WT to disrupt the formation of secondary fiber cells in postnatal lenses but does not affect the elongation of primary fiber cells (following the green arrows).

To date, six α3 mutants (F32L, P59L, N63S, P187L, S380fs and N188T) and five α8 mutants (R23T, E48K, P88S, I247M and V64G) have been linked to dominant cataracts in humans (Bennett et al., 2004; Berry et al., 1999; Jiang et al., 2003; Li et al., 2004; Mackay et al., 1999; Polyakov et al., 2001; Rees et al., 2000; Shiels et al., 1998; Willoughby et al., 2003; Zheng et al., 2005). In addition, three α8 mutants (G22R, D47A and V64A) cause different dominant cataracts in mice (Chang et al., 2002; Graw et al., 2001; Steele et al., 1998). An arrow indicates the S50P mutation.
development. Therefore, our current work demonstrates a new mechanistic explanation for why and how different connexin mutations lead to a variety of cataracts. Moreover, this new mechanism explains how mutations of other connexin isoforms cause different diseases in other organs, such as a recent finding that the Cx43-G60S mutation in extracellular loop 1 causes ocudolodentodigital dysplasia (Flienniken et al., 2005). The α1 connexin (Cx43 or Gja1) is predominantly expressed in lens epithelial cells. We have not characterized the properties of epithelial cells in different α8-S50P mutant mice. It would be an interesting area to explore in future studies.

Fiber cell elongation is a morphological hallmark of lens fiber cell differentiation. The mechanism for fiber cell elongation has never been investigated in vivo due to a lack of proper experimental systems. Current understanding of fiber cell elongation is based on the results obtained from elongation studies of cultured lens epithelial cells in vitro (Beebe et al., 1982; Parmelee and Beebe, 1988) and some descriptive in vivo information (Bassnett, 2005; Kuszak et al., 2004). Several transcriptional factors have been reported to be essential for the formation of lens primary fiber cells (Kim et al., 1999; Ogino and Yasuda, 2000; Wigle et al., 1999). However, mechanistic differences between lens primary and secondary fiber formation are unknown. No previous results have ever demonstrated the involvement of α8 connexin or gap junction channels in the regulation of elongation or formation of lens primary fiber cells. This work provides molecular evidence for regulatory differences between lens primary and secondary fiber cells.

The α8-S50P mutant subunits alone are nonfunctional in the lens. The mutant subunits must rely on the presence of wild-type α8 subunits to inhibit the elongation of primary fiber cells. However, the combination of α8-S50P and wild-type α8 subunits does not disrupt the formation of secondary fiber cells in postnatal lenses. As neither α8–/– nor α8–/– α3–/– double knockout inhibits the elongation of lens primary fibers, a complete blockage of fiber-to-fiber coupling is not responsible for the inhibition of primary fiber cell elongation. Normal fiber-to-fiber coupling does not inhibit primary fiber cell elongation in wild-type lenses. We hypothesize that gap junction channels formed by α8-S50P and wild-type α8 subunits gain their mutant function by increasing channel permeability to facilitate the fiber-to-fiber transport or by transmitting a unique signal that inhibits the elongation of primary fiber cells. Future experiments will be needed to evaluate this hypothesis or an alternative hypothesis that the interaction of α8-S50P and wild-type α8 subunits perturbs a non-junction signaling event to inhibit the elongation of primary fiber cells.

The molecular basis for the proper formation of differentiating secondary fiber cells and the maturation of fiber cells remains largely unknown despite substantial descriptive information that have been published in the last few decades. This work demonstrates that α8-S50P must rely on the presence of endogenous wild-type α3 to disrupt the formation of secondary fiber cells in postnatal lenses. A previous study of the α8-G22R mutation also revealed the importance of the interaction between mutant α8 and wild-type α3 connexins in regulating the formation of secondary fiber cells (Chang et al., 2002). These results suggest that the intercellular gap junctions formed by α8 and α3 connexin subunits modulate the formation of secondary fiber cells in the lens periphery.

In summary, this work reveals that the α8-S50P mutation causes lens cataracts via distinct mechanisms, which are different from those causing cataracts in the α8–/– knockout and α8-G22R mutant mice. More importantly, this study clearly demonstrates that connexin point mutations such as α8-S50P can be used as useful experimental models to investigate fundamental mechanisms during lens development and cataractogenesis in vivo.

We thank Alex Park and Eliza Lee for their assistance. We also thank other members of the Gong laboratory for critical reading this manuscript. This work was supported by the National Eye Institute grants EY13849 to X.G. and EY05314 to W.K.L.

References

