The Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance

Mark Lucanic1, Maureen Kiley2, Neville Ashcroft3, Noelle L'Etoile1,4 and Hwai-Jong Cheng1,2,*

P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other species. Here we examine their roles in the postembryonic migration of the P cell neuroblastasts and the axon guidance of the ventral cord commissural motoneurons (VCCMs). We find that the two PAKs, max-2 and pak-1, are redundantly required for P cell migration and function with UNC-73/Trio and the rac GTPases (CED-10 and MIG-2). During axon guidance of the VCCMs, PAK-1 also acts with the rac GTPases, CED-10 and MIG-2, and is completely redundant with MAX-2. Interestingly, we find that unlike MAX-2 activity during P cell migration, for motoneuron axon guidance max-2 is also required in parallel to this PAK-1 pathway, independent of rac GTPase signaling. Finally, we provide evidence that MAX-2 functions downstream of the UNC-6/netrin receptor UNC-5 during axon repulsion and is an integral part of its signaling.

KEY WORDS: Axon guidance, Netrin, unc-73, rac, P21-activated kinase

INTRODUCTION

Neuronal connectivity is achieved by guidance of axonal growth cones to their targets through various environmental cues (Dickson, 2002; Tessier-Lavigne and Goodman, 1996). Cellular interpretation of these cues requires the presence of proper cell surface receptors and the execution of complex signaling pathways inside the growth cones. In Caenorhabditis elegans, analysis of the factors required for axon guidance has led to the discovery of the highly conserved UNC-6/netrin signaling pathway (Hedgecock et al., 1990; Ishii et al., 1992; Serafini et al., 1994). UNC-6/netrin functions as both an attractant and a repellent. The receptor UNC-5 is required for repulsion from UNC-6/netrin, while the UNC-40 receptor is required for both repulsion and attraction (Colavita and Culotti, 1998).

During development, the ventral cord commissural motoneurons (VCCMs), which include DA, DB, DD, VD and AS neurons, are born on the ventral midline of the animal. They express both UNC-5 and UNC-40, and their commissural axons are thereby repelled by UNC-6/netrin located on the ventral side of the animal (Wadsworth, 2002). These commissures migrate circumferentially around the animal along the dorsoventral axis. The putative chemoeffectant UNC-129, a TGFβ homolog, is thought to direct these axons into the dorsal cord (Yu and Bargmann, 2001). They then extend along the dorsal cord, innervating their target muscle cells. Collectively these VCCMs function to control forward and reverse locomotion of the animals. Among them, the cholinergic (DA, DB and AS) motoneurons activate the dorsal muscles of the animals, while the GABAergic (DD and VD) motoneurons coordinate firing of the ventral and dorsal muscles (White et al., 1986). While the attractive and repulsive molecules that direct these neurons are fairly well understood, much less is known about the subcellular signaling events that interpret these cues. We have taken advantage of this system and used forward genetics to identify new components in this conserved signaling pathway (Huang et al., 2002). We have identified max-2, a C. elegans P21-activated kinase (PAK) that is necessary for the dorsal guidance of the VCCMN axons.

PAKs are a group of highly conserved signaling molecules that control cytoskeletal dynamics. Previous studies have demonstrated that PAKs are effectors of the rac/cdc42 subfamily of rho type GTPases. PAKs were initially discovered through their ability to bind activated (GTP-bound) forms of these small GTPases (Manser et al., 1994). Each PAK consists of an N-terminal GTGase-binding domain and a C-terminal serine/threonine kinase domain. The nominal activation pathway for conventional PAKs has been described, in which an activated rac/cdc42 molecule binds a PAK dimer, allowing relief from its self-inhibition and subsequent activation of its kinase domain (Bokoch, 2003). This activated PAK then goes on to target other downstream effectors, which include multiple regulators of the cytoskeleton, such as myosin light chain kinase and LIM kinase. In yeast, PAKs are required for invasive and vegetative growth (Hofmann et al., 2004). In Drosophila, Pak1 is required for photoreceptor axon guidance (Hing et al., 1999). In humans, a deficiency of PAK3 results in non-syndromic mental retardation, attributed to a loss of dendritic complexity (Allen et al., 1998).

Here, we describe and characterize the three C. elegans PAKs. We find that two C. elegans PAKs function redundantly in P cell migrations with UNC-73/Trio and the rac GTPases, but are differentially required for UNC-6/netrin-mediated commissural motor axon guidance. We provide evidence that while PAK-1 is completely redundant with MAX-2 and functions with the rac GTPases during axon guidance, the newly identified max-2 is additionally required in a rac-independent pathway. Finally, we show that MAX-2 functions downstream of the receptor UNC-5 during UNC-6/netrin-mediated axon repulsion.
MATERIALS AND METHODS

C. elegans and culture methods

Worm cultures were maintained as described (Brenner, 1974). For RNAi experiments, dsRNA was microinjected into the intestine or gonad of young adult animals as described (Fire et al., 1998). The following commercially available RNAi clones (Ahringer Library Clones unless otherwise specified) were used in this study: I 2J23, II 8F19, X 3E04, C09B8.7 (Open Biosystems).

The following mutant alleles were used in these studies: LG I: unc-40(e1430), dpy-5(e61), unc-73; gm33, unc-73(e936), unc-73(e936); LG II: max-2(cy2), max-2(mv162), rol-1(e91); LG III: pag-1(ls2); LG IV: unc-5(e533), dpy-20(e1282), unc-129(ev557), eri-1(tm366); LG V: pak-2(ok332), unc-34(e566), him-5(e1490), max-1(cy2); evl-4[pmc-7::GFP](Pmc-7::unc-3); LG X: oxy-12[unc-47::GFP, lin-15(+)], pak-1(ok448), unc-6(evo00), unc-6(ju152), mgi-2(mu28).

Genetic mapping

max-2(cy2) was mapped to LG II by standard SNP methods (Wicks et al., 2001). Mapping analysis placed max-2(cy2) between SNPs Y38F1A(4,752) and W09E7(4,859). dsRNA of open reading frames (ORFs) from within this genomic region were tested for their ability to elicit a phenotype (Fraser et al., 2000). Only dsRNA from the predicted ORF Y38F1A.10 was found to cause axon guidance defects. Sequencing of max-2(cy2) genomic DNA found a G→A transition at Y38F1A (69,599 bp).

Deletion library screening

The max-2(mv162) allele was isolated by PCR screening of a C. elegans UV/TMP mutagenized deletion library using the following primers: nv162.f1, CTCTCCTCACAACCGGAGGAAG; nv162.r1’, CCGGCGGAGACTATATGATCCTG; nv162.r1, TGTGTCGGCTCTTCTCAGCGACT; and nv162.r1’ CACAAGAGGGAAGAAGGCTC. Genotyping max-2(mv162) was subsequently performed by using the inner (nv162.f1’ and nv162.r1’) primers along with primer nv162.r2 CACTTCTCTGTACGGCGAGACTG, which lies inside the max-2(mv162) deletion.

Molecular biology

Cloning of DNA and generation of transgenes were accomplished by standard techniques (Hobert, 2002; Shevchuk et al., 2004). cDNAs were generated by RT-PCR from total N2 RNA samples. One max-2 cDNA was generated by ligating the 3’ end of YK651h1 (gift from Yuji Kohara) onto the 5’ end of one of our cDNAs to generate a full-length max-2 cDNA free of sequence changes. This was then cloned into a pBluescript SK(+)-vector to give the clone pHJ101. To generate the max-2 rescue construct, a full-length max-2 cDNA was fused to the promoter region of max-2 with PCR fusion techniques. Briefly PCR was used to generate a partial max-2 cDNA (lacking the two exons) out of pHJ101 with primers PMM.f1 (CAGAAGTTCAAGCGGACTGGCAAG) and PBK.r1 (CAGCATGACCATTGGCGCA). The following primers ex.f (GTGCGCTCATATAGTTGCACAGT) and ex.r (TTGCGGAGTGCAGGCAATCTTCTG) (complimentary to PMM.f1) were used to generate a max-2 promoter region through the beginning of the third exon from genomic DNA. The resulting two PCR fragments were used as a template to generate the max-2 rescue construct by PCR with primers mx2r.f1 (CCTGTCGAGTGTCGAAATTGGTG) and mx2r.2’ (AATGTGTAATACATTACAGATTATTAGATT). This PCR fusion product was cloned into a TOPO XL vector to yield pHJ101.

Scoring of animals

DD and VD commissural defects were scored as previously described (Huang et al., 2002). Briefly, the number of wild-type or defective commissures from a sample population was counted and percent defects were determined by summing all the defective commissures and dividing this by the number of commissures expected in the same number of wild-type animals (17 commissures/animal). A commissure was deemed to fail to reach the dorsal cord only if no part of the commissure could be observed to connect to the dorsal cord. For constitutively active rac experiments, the number of animals scored (n) was the combination of at least two independently generated lines. All lines assayed showed the same trends. Constitutively activated rac [rac(GF)] lines were crossed into the mutant [pak-1(ok448) or max-2(cy2)] background and rac(GF):wild type and rac(GF):mutant animals were isolated. The rac(GF):wild type and rac(GF):mutant animals were scored as first cousins. For rac(GF) RNAi experiments transgenic lines were generated in an eri-1(unc66)[V:oxts12X background. Transgenic animals were picked to a single plate and approximately half were injected with dsRNA. The progeny of the injected and non-injected animals were then scored. The rac(GF) constructs were generously donated by Erik Lundquist, and each contains a rac gene with the equivalent to the canonical G12V mutation under the control of the unc-115 promoter (Struckhoff and Lundquist, 2003).

P cell migration defects were scored by counting the number of laterally displaced VD neurons. VD neurons were identified by the expression of GFP in an oxts12[V:punc-47::GFP] background and by their gross morphology. VD neurons were counted as being laterally displaced if the cells were more than two cell widths from the ventral cord or had no visible connection to the ventral cord.

For the suppression of ectopic UNC-5 experiments, animals were fixed and stained as described (Colavita and Culotti, 1998). Touch receptor cells were scored as reaching the dorsal cord if any part of the neuron reached the dorsal cord. Only the anteriormost touch receptor cells (the ALMs and the AVM) were scored. Only animals in which all of the anterior touch receptor cells could be seen to extend long axons (or were directed into the DC) were scored.

RESULTS

max-2 is required for commissural axon guidance of the VCCMNs and represents a gene with homology to p21-activated kinases

In a forward genetic screen for C. elegans mutants in motor axon guidance we have identified max-2(cy2) (Huang et al., 2002). max-2(cy2) animals have defects in the guidance of the axons of the VCCMNs (Fig. 1). All max-2 mutant animals show some percent of misguided commissures, yet have only subtle defects in locomotion and appear superficially wild type. Newly hatched max-2 animals exhibit defects in the embryonically connected DA, DB and DD motoneurons (Fig. 1D,H), as well as in the postembryonic VD motoneurons (Fig. 1F). In max-2 mutant animals, many motoneuron commissures turn either anteriorly or posteriorly before reaching the dorsal cord (Fig. 1D,F,H). Those commissures that fail to reach the dorsal cord often possess the length necessary to reach the dorsal cord but had been guided in the proper direction. This is consistent with max-2 being required for the dorsal guidance of these motoneurons and not solely required for axonal outgrowth.

We mapped the max-2(cy2) mutation to an approximately 200 kb region on chromosome II (Fig. 2A). We next used a reverse genetics candidate screen to identify the max-2 gene. dsRNA from only one of the genes in this area elicited an axon guidance phenotype. This predicted ORF Y38F1A.10 has homology to PAKs (Hofmann et al., 2004). A partial cDNA clone (a gift from Yuji Kohara) was found to span this predicted ORF and an adjacent one (F18A11.4) indicating that they are, in fact, a single gene (Fig. 2A boxed region). Comparison with a syntenic region of C. briggsae and knowledge of published PAK sequences allowed us to predict a probable ORF consisting of parts of these two annotated ORFs. Isolation and analysis of cDNAs confirmed this and demonstrated the genomic organization of the max-2 gene (Fig. 2B). A minigene consisting of a 5 kb upstream element fused to a max-2 cDNA (Fig. 2B) was found to rescue the max-2(cy2) defect (Fig. 2C).

max-2(cy2) and max-2(nv162) are likely null alleles

The max-2(cy2) allele has a missense mutation in the ATP-binding region of the kinase domain. The resulting amino acid sequence change is expected to convert a highly conserved glycine to a glutamate (Fig. 2B, Fig. 4A). This glycine is the third in a group of glycines (gly-X-gly-X-X-gly) that are in the conserved region of...
Fig. 1. *max-2* is required for ventral cord commissural motoneuron guidance. (A,B) A schematic of the DD and VD cell bodies (solid dots) and commissural axons in wild-type (A) and *max-2*(cy2) (B) animals. In each panel, a cross-section is on the left and a lateral view of the entire animal is on the right. (C-H) Confocal images of representative animals: anterior is to the left and dorsal is up. (C,D) First larval stage (L1) animals before the formation of the VD neurons. In wild-type animals (C), the dorsal commissures of the DD neuron all reach and enter the dorsal cord, but the DD commissures in *max-2*(cy2) animals (D) often fail to reach the dorsal cord. (E,F) L4 animals, after the migration of the VD commissures. In wild-type animals, all commissures reach the dorsal cord (E). In *max-2*(cy2) animals, many commissures fail to reach the dorsal cord (F). All animals in C-F are in the *evls12*[^1] background to visualize the DD and VD motoneurons. (G,H) *max-2* animals have defects in the DA and DB motoneurons. Shown here are examples of commissural axons in wild-type (G) and *max-2*(cy2) animals (H) at early L4 stage. All animals in G,H are in the *evls82*[^1] background to visualize the DA and DB neurons. Scale bar: 10 μm.

max-2 expression is required in neurons for axon guidance

To examine the expression of *max-2*, we generated promoter-GFP fusions (Chalfie et al., 1994; Fire et al., 1990). GFP expression is nearly ubiquitous in the early embryo. At early comma stage expression becomes intensely focused in the anterior of the embryo (Fig. 3A). Strong expression is observed from the pharynx and some unidentified head neurons beginning around the 1.5-fold stage. After hatching, GFP expression is present in the ALM and PLM neurons (Fig. 3D). Beginning in late L1 stages expression comes on in the PVD neurons and some time later in the AVM (Fig. 3D,E). Despite using the same upstream DNA elements utilized for our rescue constructs with these promoter-GFP constructs, we did not observe significant expression of GFP in VCCMNs.

To test whether *max-2* functions cell autonomously to guide motoneurons we expressed *max-2* cDNAs under the control of tissue-specific promoters. There are 26 GABAergic neurons, 19 of these (six DD and 13 VD) send commissures dorsally and have defects in *max-2* mutants. We used promoters from the characterized *unc-25* and *unc-47* genes (Jin et al., 1999; McIntire et al., 1997) to drive expression of a *max-2* cDNA specifically in the GABAergic neurons of *max-2*(cy2) animals. Both these promoter-cDNA fusions could rescue the defects of *max-2*(cy2) mutants (Fig. 3F). We conclude that *max-2* functions cell autonomously in these neurons.

The *C. elegans* genome contains three p21-activated kinases

A database search of the *C. elegans* genome demonstrates the existence of three *C. elegans* PAKs, including *max-2*. *Caenorhabditis elegans* *pak-1* has previously been cloned by degenerate PCR and has been shown to co-localize with CED-10 and CDC-42 at late embryonic stages (Chen et al., 1996). Few data exist on the other PAK (*C45B11.1*), which we find is SL1 transspliced and will be hereafter referred to as *C. elegans* *pak-2*. Presented in Fig. 4A is a kinase domain alignment of the three *C. elegans* PAKs in axon guidance
elegans PAKs and some closely related PAKs from other species. The overall structural differences of the C. elegans PAKs are also compared in Fig. 4B. These differences are striking with respect to the site and number of the putative SH3-binding motifs. An analysis of the PAK sequences from worms, flies and humans demonstrates that C. elegans PAK-1 is most closely related to group I/A PAKs and C. elegans PAK-2 is most closely related to group II/B PAKs (Fig. 4C). The kinase domain of MAX-2 is most closely related to group I/A PAKs (Fig. 4A), while the N-terminal region is more divergent than classic group I/A PAKs (Zhao and Manser, 2005). In this respect, MAX-2 is most similar to Drosophila DmPAK3.

MAX-2 and PAK-1 function with partial redundancy to guide the VCCMNs

The motor axon defect of max-2(cy2) is the first mutant phenotype reported for any of the C. elegans PAKs. To begin to understand the in vivo functions of the other C. elegans PAKs, we created promoter-GFP fusions to examine their expression (see Fig. S1 in the supplementary material). We confirmed previous studies that pak-1 is expressed in the VCCMNs (Iino and Yamamoto, 1998), pak-1 was also expressed in the migrating distal tip cell (DTC), in the developing uterus and later in the vulval muscle cells (see Fig. S1 in the supplementary material, and data not shown). pak-2 did not appear to be neuronally expressed (see Fig. S1 in the supplementary material). To further address whether all three C. elegans PAKs are involved in UNC-6/metrin axon guidance, we analyzed pak-1 and pak-2 mutants for neuronal defects similar to those found in max-2 mutants. pak-1(ok448) and pak-2(ok332) mutant alleles were obtained from the C. elegans Gene Knock Out Consortium. Both these mutants are expected nulls. The pak-1(ok448) allele has a deletion that removes the majority of the kinase coding region and results in a frame shift that is expected to cause a premature stop codon. The pak-2(ok332) allele has a deletion that removes the start codon. Both these PAK mutants appear superficially wild type and we have found them to be wild type for DD and VD axon guidance (Fig. 5E).

The double PAK mutants max-2(cy2);pak-1(ok448) were severely defective for DD and VD axon guidance (Fig. 5D,E). These animals were also uncoordinated, defective in egg laying and in DTC migrations, and exhibited ventral enclosure defects. RNAi was used to confirm these results independently (data not shown). max-2(cy2);pak-2(ok332) animals were superficially wild type and did not have DD and VD defects significantly worse than max-2(cy2) animals (Fig. 5E). pak-1(ok448);pak-2(ok332) animals had defects in embryogenesis and exhibited L1 lethality, but escapers were wild type for VCCMN guidance and appeared relatively coordinated. We conclude that PAK-2 does not play a role in the axon guidance of the VCCMNs, while max-2 and pak-1 function with some redundancy to control axon guidance.

PAK mutants are phenotypically similar to unc-73/Trio and rac mutants

PAKs are activated by racs. Racs are rho family GTPases, implicated in controlling cell migrations and axon guidance by acting as molecular switches that can relay and amplify cellular signals (Hall, 1998; Lundquist, 2003; Luo et al., 1997). Racs are activated by guanine exchange factors (GEFs). Of the rac activators, which coordinate rac activity during axon guidance, UNC-73/Trio is the best known (Steven et al., 1998). In C. elegans, unc-73/Trio mutants have major defects in cell migrations, axon
outgrowth and axon guidance. The three *C. elegans* racs (MIG-2, CED-10 and RAC-2) are activated during multiple developmental processes by the GEF UNC-73/Trio (Lundquist et al., 2001; Wu et al., 2002; Zipkin et al., 1997). Consistent with *C. elegans* PAKs being used in this UNC-73/Trio-rac pathway, we found that *max-2(cy2);pak-1(ok448)* double mutants were phenotypically very similar to *unc-73* mutants and also to *ced-10(n1993); mig-2(mu28)* double rac mutant animals with respect to their mutant phenotypes in DD and VD axon guidance and in P cell migrations (Fig. 5 and Table 1). We chose to examine in detail the roles that the *C. elegans* PAKs play during these two different cellular processes. We first present data on PAK function in P cell migrations and then examine PAK function in the UNC-6/netrin VCCMN axon repulsion pathway.

The *C. elegans* PAKs function redundantly in the UNC-73/Trio-RAC pathway to guide P cell migrations

Immediately after hatching, the 12 P cells migrate from their lateral positions down into the ventral cord and subsequently divide, generating the P cell lineage. A failure in this migration can lead to the ectopic placement of cells in the P cell lineage. Among the P cell descendants are the VD neurons (Sulston and Horvitz, 1977). We used ectopically placed VD neurons as an indicator of defects in P cell migrations. Two racs (CED-10 and MIG-2) are implicated in acting with UNC-73 during the migration of the P cells (Spencer et al., 2001; Wu et al., 2002). Both *unc-73* and double rac mutants have defects in P cell migrations. We found that, while no single PAK mutant exhibited defects, the double PAK mutant *max-2(cy2);pak-1(ok448)* had defects in P cell migrations similar to those of the *unc-73* mutants and the *ced-10(n1993); mig-2(mu28)* double rac mutants (Fig. 5B-D,F and Table 1). As with the racs, we found that the PAKs, *max-2* and *pak-1*, were completely redundant with each other for this process.

We found that either *max-2(cy2) or pak-1(ok448)* only slightly increased the P cell migration defect of a weak *unc-73* allele (*unc-73(rh40)*). Interestingly, a double mutant of *max-2(cy2) and a strong allele of *unc-73* (*unc-73(gm33)* did not increase the average number of ectopic P cells per animal found in the *unc-73(gm33)* allele alone (Table 1). It is important to note that null alleles of *unc-73* are lethal, which precludes a definitive conclusion that the PAKs act entirely with UNC-73 during P cell migrations. However, our observation that a loss of *max-2* did not enhance the strong *unc-73* allele, along with the weak enhancement observed in *PAK; unc-73(rh40)* double mutants, indicates that the two *C. elegans* PAKs (MAX-2 and PAK-1) act with UNC-73 in guiding P cell migrations. Finally, we found that any combination of *rac;PAK* double mutants either did not enhance, or only weakly enhanced, the defects of the single mutants (Table 1). This indicates that the PAKs function linearly with the racs to guide this process.
The C. elegans PAKs function differentially to control UNC-6/netrin-mediated VCCMN axon guidance

Of all the C. elegans rac and PAK single mutants, only max-2 animals had significant defects in UNC-6/netrin-mediated VCCMN axon guidance (Fig. 6A). To determine if these molecules act together or in parallel, we systematically analyzed double mutant combinations. Double mutants of either of the two rac genes (ced-10 or mig-2) with pak-1 did not cause defects in VCCMN guidance greater than any single mutant (Fig. 6A). This is consistent with PAK-1 and the racs acting linearly in this VCCMN guidance pathway. Surprisingly, we found that max-2 double mutants with either of these two rac genes greatly enhanced the VCCMN defects of max-2 (Fig. 6A). This indicates that MAX-2 functions in parallel to the racs and PAK-1 during VCCMN guidance.

It has previously been reported that the racs function with (and probably downstream of) UNC-73 to guide the DD and VD motoneuron axons (Wu et al., 2002). We found that double pak mutants were phenotypically similar to unc-73 mutants, yet single PAK mutants enhanced non-lethal unc-73 alleles for DD and VD axon guidance defects (Fig. 5B,D, Fig. 6A and data not shown). This has previously been reported for the rac as well (Wu et al., 2002).

To further address whether this parallel rac-independent pathway exists, we tested whether a loss of function in PAK gene activity could suppress the defects resulting from constitutively active racs. We hypothesized that the defects caused by a constitutively active molecule would be decreased when one of its downstream effectors was lost, or conversely the loss of parallel activity would cause an increase in these defects. We generated transgenic animals that express constitutively active C. elegans racs under a pan-neuronal promoter (Struckhoff and Lundquist, 2003). We found that loss of function in pak-1 (ok448) significantly suppressed the axon guidance defects caused by the constitutively active rac, MIG-2 (Fig. 6B). We also found consistent but non-significant suppression of the defects caused by constitutively active CED-10 when we used RNAi to knock out pak-1 function. Generally, RNAi yields a weaker phenotype than null mutants, particularly in neurons. For this reason we cannot conclude that PAK-1 does not function downstream of at least some of the rac GTPases.

Unlike pak-1, a loss of function in max-2 considerably enhanced the defects caused by constitutively active racs in all cases (Fig. 6C). This indicates that max-2 functions in a rac-independent pathway during commissural axon guidance. It is important to note that this does not exclude MAX-2 from functioning downstream of the rac as well. In our assay, the loss of MAX-2 parallel activity may have masked any suppression [of the rac(GF) induced defects] that was occurring. Collectively, our results indicate that PAK-1 functions with the racs, downstream
of MIG-2 (at least) and that MAX-2 functions in parallel (at least partly) to this UNC-73-rac-PAK-1 pathway to guide the VCCMN axons.

MAX-2 likely acts with UNC-6/netrin during DD and VD commissural axon guidance

As max-2 mutants exhibited defects specifically in an axon guidance process controlled by UNC-6/netrin, we analyzed max-2 genetic interactions with genes that are implicated in this pathway. Mutations in the dorsally expressed orphan ligand *unc-129* (Colavita et al., 1998) exhibited an additive enhancement in a max-2 background. However, max-1 and unc-34 mutants were dramatically enhanced in a max-2 background (Fig. 6D). Double mutants of *unc-40/DCC* (the UNC-6/netrin receptor) and max-2 exhibited synergistic genetic interactions (Fig. 6D). This indicates that the two (*unc-40* and max-2) are required in parallel but interconnected signaling pathways. Null mutants of unc-6/netrin and unc-5 have VCCMN axon guidance defects that are absolutely severe. Because of this, unc-6 and unc-5 double mutant combinations with max-2 were less than informative. As an alternative we tested max-2 dosage interactions with these genes. max-2 mutants synergized with a hypomorphic allele of unc-6 to nearly complete severity [from 20% failure in unc-6(ju152) to 75% in max-2(mu162);unc-6(ju152)]. Additionally, we found that max-2 mutants were dramatically enhanced when they had only a single copy of unc-6 or unc-5. A much weaker enhancement was observed when only a single copy of unc-40 was present (Fig. 6D). Collectively, our data indicate that MAX-2 functions with UNC-6/netrin and its repulsion receptor UNC-5 in parallel to UNC-40 to mediate commissural motor axon guidance.

The axon guidance defects caused by ectopic expression of the UNC-6/netrin receptor UNC-5 are partially suppressed by a loss of max-2

To test directly whether max-2 functions downstream of UNC-5 and UNC-6/netrin, we determined whether a loss of max-2 function could suppress the axon guidance effects of ectopically expressed UNC-5. Previously, Hamelin and colleagues (Hamelin et al., 1993) demonstrated that if UNC-5 is ectopically expressed in the touch receptor cells their axonal processes are re-routed away from UNC-6/netrin. This effect absolutely requires UNC-6/netrin and demonstrates that the machinery necessary for UNC-5 signaling is present in these cells. This is the basis for a classic screen that has identified many genes required for UNC-5 repulsion (Colavita and Culotti, 1998). Our max-2 expression studies indicate that MAX-2 is present in several of these touch receptor cells. In particular, high expression was observed in the anteriormost touch receptor cells (the ALMs and the AVM) (Fig. 3D,E). We reasoned that MAX-2 might be part of the signaling machinery usurped by the ectopically expressed UNC-5, to misguide these axonal projections.
Table 1. MAX-2 and PAK-1 function with redundancy in the UNC-73-rac pathway to control P cell migrations

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Percentage of animals with laterally displaced VDs*</th>
<th>Average number of laterally displaced VDs/animal†</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>max-2(cy2)/I</td>
<td>0</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>pak-1(ok448)/X</td>
<td>0</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>max-2(cy2)/I;pak-1(ok448)/X</td>
<td>50</td>
<td>0.71</td>
<td>133</td>
</tr>
<tr>
<td>unc-73(rh40)/I</td>
<td>27</td>
<td>0.38</td>
<td>52</td>
</tr>
<tr>
<td>max-2(cy2)/I;unc-73(rh40)/I</td>
<td>35</td>
<td>0.42</td>
<td>122</td>
</tr>
<tr>
<td>pak-1(ok448)/X;unc-73(rh40)/I</td>
<td>31</td>
<td>0.45</td>
<td>96</td>
</tr>
<tr>
<td>unc-73(gm33)/I</td>
<td>100</td>
<td>4.8</td>
<td>46</td>
</tr>
<tr>
<td>max-2(cy2)/I;unc-73(gm33)/I</td>
<td>100</td>
<td>4.8</td>
<td>58</td>
</tr>
<tr>
<td>ced-10(n1993)/IV</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>mig-2(mu28)/X</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>ced-10(n1993)/IV;mig-2(mu28)/X</td>
<td>100</td>
<td>3.4</td>
<td>59</td>
</tr>
<tr>
<td>max-2(cy2)/I;ced-10(n1993)/IV</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>max-2(cy2)/I;mig-2(mu28)/X</td>
<td>6.3</td>
<td>0.11</td>
<td>95</td>
</tr>
<tr>
<td>pak-1(ok448)/X;ced-10(n1993)/IV</td>
<td>5.5</td>
<td>0.05</td>
<td>55</td>
</tr>
<tr>
<td>pak-1(ok448)/X;mig-2(mu28)/X</td>
<td>1.5</td>
<td>0.01</td>
<td>68</td>
</tr>
</tbody>
</table>

*aThe number of animals with a laterally displaced VD neuron divided by the total number of animals scored.
†Animals were scored for the number of laterally displaced VD neurons and the sum of these numbers was divided by the total number of animals.

DISCUSSION

We have identified MAX-2 as a p21-activated kinase. There are three PAK genes in the *C. elegans* genome. Sequence analysis indicates that each *C. elegans* PAK is representative of a distinct group of PAKs previously identified in other species. Importantly, none of the *C. elegans* PAK mutants is embryonic lethal. With these mutants, we can therefore perform in vivo genetic analysis on phenotypes to study specific PAK functions. Our genetic and expression pattern studies demonstrate that pak-1 and max-2 are key players in regulating cell migration and axon guidance: they function redundantly as rac effectors in P neuroblast migration and differentially for VCCMN axon guidance. We conclude that these *C. elegans* PAKs function both redundantly and independently to regulate multiple cellular processes.

Each of the three *C. elegans* PAKs represents a distinct group of PAKs

In mammals, the PAK family is divided into two subgroups (I/A and II/B) based on structural differences. Members from both PAK groups are implicated in neuronal morphogenesis. The human PAK3, a group I/A PAK, is mutated in an X-linked mental retardation (Allen et al., 1998). Knockout mice deficient for PAK4, a group II/B PAK, show clear neuronal migration defects (Qu et al., 2003).

Drosophila melanogaster has three PAKs. The *Drosophila* group I/A PAK (Pak1; previously known as Dpak1) has been shown to be required along with NCK/Dock and UNC-73/Trio, for the guidance of photoreceptor axons (Hing et al., 1999; Newsome et al., 2000) and has also been shown to function downstream of the chemorepellent slit in midline axon guidance (Fan et al., 2003). The *Drosophila* group II/B PAK (Mbt), is believed to regulate neuronal morphogenesis, rather than axon guidance (Melzig et al., 1998). A third *Drosophila* PAK (Pak3) has sequence similarity to both group I/A and group II/B PAKs (Mentzel and Raabe, 2005). In vivo functional data on *Drosophila* Pak3 have yet to be reported.

We found that there are three PAKs in the *C. elegans* genome. Humans and mice contain six PAKs. Interestingly, we have found that the *C. elegans* PAKs consist of single representative members from the two mammalian PAK groups (I/A and II/B) and also a third more divergent member of the PAK family. This phenomenon has previously been reported of *D. melanogaster* (Mentzel and Raabe, 2005). The differences in PAK representatives between mammals and invertebrates may imply that an expanded repertoire of PAKs in both groups can replace the functions of more divergent PAKs. The expansion probably suggests a specialization of PAK activity for members within each group. Studying and comparing PAK functions will lead to a better understanding of the signaling specificity of different PAK member activities in vivo.

A model for PAK activity in P cell migration and VCCMN axon guidance

The *C. elegans* PAKs function redundantly in the UNC-73/Trio-rac pathway to control the migration of P cells. Mutations in the individual PAK genes did not lead to defects. However, double mutants of pak-1 and max-2 did have defects in P cell migration. PAK mutants only weakly enhanced unc-73(rh40). Mutations in max-2 did not enhance the defects of a strong *unc-73/Trio* allele. These data indicate that these PAKs function with UNC-73/Trio (see Fig. S2 in the supplementary material). Loss of either of two of the rac genes (*mig-2* or *ced-10*) in either a max-2 or pak-1 mutant background either weakly enhanced or had no defect greater than any of the single mutants. These data indicate that the PAKs function with the races during this process. By examining the average number of ectopic cells per animal, we noted that in the double PAK mutant the severity...
of the P cell migration defects were less than that of the double rac mutant, which in turn was less severe than the strong unc-73(gm33) allele (Fig. 5F and Table 1). This is consistent with a model in which a fraction of the P cell migration activity of UNC-73 is controlled by the racs, and a fraction of this rac activity is controlled by the PAKs (see Fig. S2 in the supplementary material). This supports previous findings that UNC-73/Trio also stimulates rho activity (in addition to racs), which in turn activates the rho kinase (LET-502), facilitating the migration of P cells (Spencer et al., 2001).

The *C. elegans* PAKs act both rac-dependently and rac-independently in the guidance of VCCMN axons. In VCCMN axon guidance, as with the migrations of the P cells, the rac genes are reported to function downstream of the GEF UNC-73/Trio (Wu et al., 2002). Indeed, the phenotypes of double rac mutants and unc-73/Trio are remarkably similar (Fig. 5B,C). We found that, as has been reported for the racs, PAK mutants enhanced unc-73 mutant defects for DD and VD axon guidance. This may indicate that there is another rac-GEF acting in parallel to UNC-73/Trio during this process (see Fig. S2 in the supplementary material). Although the *C. elegans* PAKs (pak-1 and max-2) appeared to function in a typical manner with this GEF-rac pathway to guide the P cell migrations, the two did not function solely in this GEF-rac pathway for the dorsal guidance of commissural axons. While PAK-1 acts with the racs in guiding these axons, we found that MAX-2 has a unique role outside this pathway. Because MAX-2 can act redundantly with pak-1, we conclude that max-2 is probably also acting in part downstream of the racs in VCCMN guidance (see Fig. S2 in the supplementary material). Interestingly, max-2 mutants enhanced unc-73/Trio axon guidance defects much more than pak-1 mutants did (Fig. 6A). This is consistent with the rac-independent activity of MAX-2 acting in parallel to the GEF, UNC-73/Trio.

It is interesting to note that several lines of evidence indicate a subtle preference by the racs for the PAKs. We found that for P cell migrations double mutants of ced-10 and pak-1 were weakly
MAX-2 is involved in UNC-6/netrin-mediated commissural axon repulsion

The dorsal guidance of the VCCMN axon is controlled by the chemorepellent UNC-6/netrin and its receptor UNC-5. Null mutants of the two genes showed a complete absence of the commissurals. Although the absolute severity of null mutants precludes double mutant analysis, several lines of evidence indicate that MAX-2 acts downstream of UNC-6/netrin and UNC-5. First, the neurons that showed defects in max-2 mutants appeared to be disrupted specifically in their dorsal commissural migrations. In max-2 mutants the neuronal processes in the ventral cord of the VCCMNs were normal. Second, max-2 mutants synergized with other mutants involved in this pathway. MAX-1 has been shown to mediate UNC-5 signaling in the VCCMN guidance. UNC-40 is another UNC-6/netrin receptor that is partially required in this guidance. Double mutants of max-2 with max-1 or unc-40 showed profound commissural guidance defects, suggesting that max-2 acts in parallel to both max-1 and unc-40. Interestingly, max-2 was also found to enhance a weak unc-6 allele, suggesting that MAX-2 does not function downstream of UNC-6 with a simple linear relationship. Finally, max-2 was required for axon guidance effects of ectopically expressed UNC-5. The axons of touch neurons were guided dorsally when UNC-5 was ectopically expressed in these cells. This phenotype absolutely requires UNC-6/netrin and is suppressed in max-2 mutants. Taken together, our studies demonstrate that MAX-2 acts downstream of UNC-6/netrin and UNC-5 to regulate the dorsal guidance of VCCMN axons.

We thank Marc Tessier-Lavigne, Joseph Culotti, Eric Lundquist, Eric Struckhoff, Yishi Jin, Andy Fire, Yuji Kohara, Alan Coulson, Antonio Colavita, Scott Kennedy, Gary Ruvkun, Robert Steven, the C. elegans Gene Knockout Consortium and the Caenorhabditis Genetics Center for materials. We thank Judy Nguyen for technical help. We thank Dan Starr, Leslie Rose, Jin Lee, Damien O’Halloran and members of the UC Davis C. elegans Group for comments and advice. This work was partially supported by an NIH Training Grant to M.S.L. and by grants from the Klingenstein Fund and the Sloan Foundation to H.-J.C.

Supplementary material

Supplementary material for this article is available at http://dev.biologists.org/cgi/content/full/133/22/4549/DC1

