Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation

Yi Arial Zeng*,†, Maryam Rahnama*, Simon Wang, Worlanyo Sosu-Sedzorme and Esther M. Verheyen‡

Drosophila Nemo is the founding member of the Nemo-like kinase (Nlk) family of serine/threonine protein kinases that are involved in several Wnt signal transduction pathways. Here we report a novel function for Nemo in the inhibition of bone morphogenetic protein (BMP) signaling. Genetic interaction studies demonstrate that nemo can antagonize BMP signaling and can inhibit the expression of BMP target genes during wing development. Nemo can bind to and phosphorylate the BMP effector Mad. In cell culture, phosphorylation by Nemo blocks the nuclear accumulation of Mad by promoting export of Mad from the nucleus in a kinase-dependent manner. This is the first example of the inhibition of Drosophila BMP signaling by a MAPK and represents a novel mechanism of Smad inhibition through the phosphorylation of a conserved serine residue within the MH1 domain of Mad.

KEY WORDS: Nemo, Nlk, BMP, Dpp, Mad, MH1, Smad, Drosophila

INTRODUCTION

The Drosophila nemo (nmo) gene was originally found to be required for epithelial planar cell polarity during eye development (Choi and Benzer, 1994). Subsequent analyses have implicated nmo in patterning events during embryogenesis and imaginal disc development as well as in controlling apoptosis (Mirkovic et al., 2002; Verheyen et al., 2001). Nemo is the founding member of the evolutionarily conserved Nemo-like kinase (Nlk) family of proline-directed serine/threonine (S/T) kinases closely related to mitogen-activated protein kinases (MAPK) (Choi and Benzer, 1994).

Biochemical and genetic studies implicate Nlk in several pathways (reviewed by Behrens, 2000; Martinez Arias et al., 1999). The best-characterized role for Nlk is in Wnt/Wg signaling in numerous species (Golan et al., 2004; Ishitani et al., 2003a; Ishitani et al., 1999; Kanei-Ishii et al., 2004; Meneghini et al., 1999; Rocheleau et al., 1999; Shin et al., 1999; Smit et al., 2004; Thorpe and Moon, 2004; Zeng and Verheyen, 2004). Nlk phosphorylates Tcf/Lef transcription factors and inhibits their activity. Depending on the cellular context, Nlk either inhibits Wnt-dependent gene expression (Ishitani et al., 2003b; Ishitani et al., 1999; Zeng and Verheyen, 2004) or promotes it (Meneghini et al., 1999; Rocheleau et al., 1999; Thorpe and Moon, 2004). There is increasing evidence that Nlk regulates additional HMG-domain-containing proteins, such as Xenopus Sox11 and HMG2L1 (Hyodo-Miura et al., 2002; Yamada et al., 2003), as well as other transcriptional regulators such as CBP/p300, Stat3 and Myb (Kanei-Ishii et al., 2004; Ohkawara et al., 2004; Yasuda et al., 2004).

Nlk can be activated by the MAPK kinase Tak1 (TGF-β activated kinase 1) in mammals (also known as Map3k7 – Mouse Genome Informatics) and in C. elegans (also known as MOM-4 – Wormbase) in certain contexts (Ishitani et al., 1999; Meneghini et al., 1999). However, in this study we describe an inhibitory relationship between Nemo and Drosophila TGF-β signaling. TGF-β signaling is initiated when a secreted ligand of the TGF-β, bone morphogenetic protein (BMP) or Activin family binds to a type II S/T kinase receptor (reviewed by Attisano and Wrana, 2002; von Bubnoff and Cho, 2001). This receptor then recruits and phosphorylates a type I S/T kinase receptor, which in turn phosphorylates a member of the R-Smad family of proteins on an SSxS motif at its C-terminus. The phosphorylated R-Smad is released from the receptor and binds the Co-Smad. In the nucleus, the Smad complex forms complexes with transcription factors on the promoters of target genes. Nuclear signaling is abrogated when the R-Smad is dephosphorylated at its C-terminus (Chen et al., 2006; Duan et al., 2006; Knockaert et al., 2006).

During Drosophila wing patterning, BMP signaling is carried out by two BMPs, Decapentaplegic (Dpp) and Glass bottom boat (Gbb) (Padgett et al., 1987; Wharton et al., 1991). Dpp acts as a morphogen during the patterning of multiple tissues during embryonic and imaginal disc development (reviewed by Raftery and Sutherland, 1999). Dpp activates the Punt receptor, which in turn phosphorylates Thickveins (Tkv), leading to the activation of the Smads. The Smad1 ortholog, Mothers against dpp (Mad), is phosphorylated by activated Tkv and together with the Co-Smad Medea (Med) accumulates in the nucleus and regulates transcription of target genes (reviewed by Moustakas et al., 2001; Shi and Massague, 2003; ten Dijke and Hill, 2004). In the wing imaginal disc, BMP signaling regulates the expression of several genes, including optomotor blind (omb; also known as bifid – Flybase), spalt major (salm) and vestigial (vg) enhancer (Burke and Basler, 1996; Grimm and Pflugfelder, 1996; Kim et al., 1997; Lecuit et al., 1996; Lecuit and Cohen, 1998; Nellen et al., 1996). The inhibitory Smad homolog Daughters against dpp (Dad) is also a BMP target gene that acts in a negative-feedback loop to inhibit BMP signaling (Tsuneizumi et al., 1997).

Dpp plays several distinct roles during larval and pupal wing development (Segal and Gelbart, 1985; Spencer et al., 1982). During larval disc development, Dpp is expressed along the anterior/posterior (A/P) boundary of the disc in response to
Hedgehog signaling (Tanimoto et al., 2000). Localized phosphorylation and activation of Mad (pMad) results in a Mad activity gradient that drives characteristic patterns of reporter gene expression across the wing disc, providing positional information to guide wing vein organization. In addition to a patterning function, BMP signaling is required for proliferation of the disc, as clones of cells lacking tkv or Mad are smaller than sister clones and are eliminated from the wing disc, whereas ectopic BMP signaling results in outgrowths (Martin-Castellanos and Edgar, 2002; Rogulja and Irvine, 2005). It is speculated that the slope and extent of the pMad gradient is important for both the proliferative and patterning functions of Dpp, but the temporal and spatial characteristics for each are distinct (Rogulja and Irvine, 2005).

In this study we describe a detailed analysis of a novel interaction between nmo and BMP signaling mediated by Mad. Genetic studies in the wing suggest a role for nmo as an antagonist of BMP signaling. These genetic interactions are supported by the finding that elevated Nemo levels can attenuate BMP target gene expression, whereas loss of nmo results in elevated target gene expression. Biochemical and cell culture studies show that Nemo can bind to and phosphorylate Mad and promote its nuclear export. Nemo phosphorylates the MH1 domain of Mad at Ser25 and mutation of Nemo was shown to inhibit Nemo-dependent phosphorylation and activation of Mad (pMad) results in a Mad activity gradient that drives characteristic patterns of reporter gene expression across the wing disc. Mutation of Ser25 results in a Mad activity gradient that drives characteristic patterns of reporter gene expression across the wing disc. This is the first example of the inhibition of Drosophila BMP signaling by a MAPK and represents a novel mechanism of Smad inhibition by a Nemo-like kinase family member.

MATERIALS AND METHODS

Fly strains
The following fly strains were used: nmoD224 (Zeng and Verheyen, 2004), nmoD224 and UAS-nmoD224 (Verheyen et al., 2001), UAS-nmoD224; nmoD2 also referred to as nmo-lacZ (Choi and Benzer, 1994; Zeng and Verheyen, 2004), Agal4-25-UAS-GFP.S65T (Ito et al., 1997; Zecca et al., 1996), UbI-GFP FRT 79D, ap-Gal4 (expressed in the dorsal wing disc compartment), dpp-Gal4 (expressed along the A/P boundary), ptc-Gal4 (expressed along the A/P boundary), vg-Gal4 (expressed along the D/V boundary), pre-Gal4 (expressed in alternating stripes in the embryo), 69B-Gal4 (expressed ubiquitously in the wing pouch), omb-Gal4 (expressed in a wide domain along the A/P axis in the wing pouch), dpp63, dppβ35, dppβ35, dppβ4, UAS-Mad, UAS-MadS25A, UAS-tkvOD (Nellen et al., 1996), UAS-tkvOD, UAS-sog (Yu et al., 2000), F{locW}Dad144 (Tsuneyuzumi et al., 1997), vgO-lacZ, salm-lacZ, rIemy/CyO, UAS-Sem1-1 (Rintelen et al., 2003) and UAS-GFP.

Clonal analysis
nmoD224 somatic clones were induced using the FLP/FRT method (Xu and Rubin, 1993). To induce nmo loss-of-function clones, embryos from the appropriate crosses were collected for 24 hours and the hatched larvae were heat shocked at 38°C for 90 minutes at 48 hours of development. More than 30 clones were examined in each experiment.

Immunostaining and wing handling
Dissection of imaginal discs, X-Gal staining and antibody staining were performed following standard protocols. The antibodies used were: rabbit anti-pMad (1:1000) (Persson et al., 1998), anti-Delta 9B ascites (1:5000; Promega) and rabbit anti-β-galactosidase (1:2000; Cappel). Secondary antibodies used were: donkey anti-mouse FITC, donkey anti-rabbit CY3, donkey anti-rabbit FITC and biotinylated goat anti-rabbit (all from Jackson ImmunoResearch), donkey anti-mouse Alexa Fluor 594 (Molecular Probes). All secondary antibodies were used at a 1:200 dilution.

Adult wings were dissected and rinsed in 100% ethanol followed by mounting in Aquatex (EM Science).

Nemo expression vectors
Full-length nmo coding sequences were cloned into the pXJ-Flag expression vector. The kinase-dead Nemo construct encodes a substitution of a lysine residue at position 69 for a methionine (K69M). This was modeled on the kinase-dead form of Nk described by Brett et al. (Brett et al., 1998).

Mutagenesis was performed using the QuickChange Site-Directed Mutagenesis Kit according to the manufacturer’s instructions (Stratagene).

Co-immunoprecipitations
HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (Gibco). Cells at 70-80% confluency were subjected to transient transfection with 8 μg total DNA using Polyfect transfection reagent (Qiagen) following the manufacturer’s instruction. Cells were lysed 24-48 hours after transfection in lysis buffer [10% glycerol, 1% Triton X-100, 50 mM Tris pH 7.5, 5 mM EDTA, 150 mM NaCl, 4% protease inhibitors (Roche), 100 mM β-glycerol phosphate, 1 mM sodium vanadate, 5 mM NaF]. Mouse anti-Flag (Sigma) or mouse anti-T7 (Novagen) coupled to protein G-sepharose beads (Sigma) were used for immunoprecipitation for 1 hour at 4°C. The immunocomplexes were washed three times with lysis buffer and boiled in Laemmli buffer, then subjected to SDS-PAGE and western analysis according to standard protocols. Primary antibodies used were mouse anti-Flag (1:1000) or mouse anti-T7 (1:5000), and the secondary antibody was goat anti-mouse HRP light chain-specific (1:5000; Jackson ImmunoResearch). The western blot was visualized using the Enhanced Chemiluminescence (ECL) Western Blotting System (Amersham).

Kinase assays
Cell lysates were precleared with protein G-sepharose beads and incubated with appropriate antibodies. Antibody-protein complexes were precipitated with protein G-sepharose beads, then washed three times with lysis buffer and once with kinase assay buffer (25 mM HEPES pH 7.2, 25 mM MgCl2, 50 mM β-glycerol phosphate, 2 mM dithiothreitol, 0.5 mM sodium vanadate, 0.1 mM ribo-ATP). Kinase reactions were initiated by the addition of kinase assay buffer containing 10 μCi of [γ-32P]ATP at room temperature and stopped after 20 minutes by the addition of Laemmli buffer. Samples were boiled and subjected to SDS-PAGE and transferred to nitrocellulose membrane (Perkin Elmer Life Sciences) according to standard protocols and visualized by autoradiography.

Immunostaining of cultured cells and nuclear export assays
COS-7 and HeLa cells were grown on glass coverslips in 6-well plates 24 hours prior to transfection. Cells at 50-70% confluency were transiently transfected with various combinations of vectors: pCMV-T7-mad; pCMV-T7-mad and pCDNA-HA-tkvQD (Inoue et al., 1998); pCMV-T7-mad; pCDNA-HA-tkvQD and pXJ-Flag-nmo; pCMV-T7-mad; pCDNA-HA-tkvQD and pXJ-Flag-nmo; pCMV-T7-mad-S25A; pCMV-T7-mad-S25D. Sixteen hours post-transfection, the cells were fixed in 4% paraformaldehyde for 15 minutes, followed by permeabilization with 0.25% Triton X-100. Following two washes in PBS, immunostaining was performed using mouse anti-T7 antibody (1:2000; Novagen) and rabbit anti-HA (1:1000; Sigma). Secondary staining was performed using donkey anti-mouse FITC and goat anti-rabbit CY3 (1:200). Coverslips were mounted cell-side down with Prolong Gold Antifade Reagent with DAPI (Molecular Probes). For Crm1-dependent nuclear export assays, leptomycin B (Sigma) was added to a final concentration of 0.53 ng/ml for 2 hours prior to fixation.

Site-directed mutagenesis of Mad and generation of the Mad MH1 deletion construct
Mutagenesis was performed on the pCMV-T7-mad plasmid, using the QuickChange Site-Directed Mutagenesis Kit according to the manufacturer’s instructions (Stratagene). Forward and reverse PCR primers were designed to harbor several nucleotide changes, with the rest of the sequence corresponding to the template. The nucleotide changes were introduced in at least one of the PCR products and then amplified. The products were then inserted into the pCMV-T7-mad plasmid, using the QuickChange Site-Directed Mutagenesis Kit according to the manufacturer’s instructions (Stratagene). The Mad-MH1 construct was made by excision of an EcoRI fragment from the 5′ coding region of the pCMV-T7-mad plasmid. The pCMV-T7-mad plasmid contains two EcoRI sites: one is located in the 5′ multiple cloning site, the
other is at the boundary of the MH1 domain and the linker domain. Mad-ΔMH1 was obtained by EcoRI digestion, gel purification of the vector plus 3' sequences and religation resulting in an in-frame fusion of T7 with the remainder of the Mad coding region, thereby deleting the MH1 domain. Untagged and T7-tagged MadS25A were cloned into pUAST and transgenic fly strains were generated by BestGene. The prd-Gal4 driver was used to express this transgene in alternating embryonic segments and en-Gal4, ap-Gal4 and vg-Gal4 were used to test for phenotypic effects in the wing.

RESULTS
nmo wing phenotypes suggest antagonism of BMP signaling

Modulation of nmo expression affects the patterning and growth of multiple tissues (Choi and Benzer, 1994; Mirkovic et al., 2002; Verheyen et al., 2001). Notably, the wing phenotypes are indicative of altered BMP signaling. The adult wing blade consists of two epithelial sheets of intervein cells intersected at regular intervals by an invariant pattern of longitudinal veins (numbered L2-L5), the anterior crossvein (ACV) and posterior crossvein (PCV) (Fig. 1A) (Bier, 2000). Mutations that target the early role of Dpp result in vein loss, vein fusions and narrowing of wing tissue (Fig. 1B,C) (Cook et al., 2004; Haerry et al., 1998; Segal and Gelbart, 1985; Spencer et al., 1982). Later, during pupal wing development, dpp expression in vein primordia functions to maintain and refine the veins (de Celis, 1997; Yu et al., 1996).

Ectopic expression of Nemo using the Gal4-UAS system causes a number of different wing phenotypes (Brand and Perrimon, 1993; Mirkovic et al., 2002; Verheyen et al., 2001; Zeng and Verheyen, 2002; Verheyen et al., 2001). Expression of nmo with omb-Gal4 resulted in a narrowing of the regions between longitudinal veins, notably L2 and L3 (Fig. 1D). A phenotype seen with certain dpp alleles (Brummel et al., 1994; Segal and Gelbart, 1985). Expression of two copies of UAS-nmo with omb-Gal4 (omb>2x nmo) resulted in loss of wing tissue, narrowing of the interval between veins, loss of the PCV and loss of some longitudinal veins (Fig. 1E,F). This phenotype is reminiscent of BMP inhibition caused by brinker (Cook et al., 2004), and phenocopies that seen with expression of dominant-negative versions of the Dpp receptors tkv and punt (Haerry et al., 1998) and in certain dpp mutants (Bangi and Wharton, 2006). 69B-Gal4>nmo results in varied loss of the PCV and a narrower wing blade (Fig. 1J) (Verheyen et al., 2001). This phenotype resembles loss-of-function mutations in the gbb, Medea and crossveinless genes (Conley et al., 2000; Hudson et al., 1998; Khalsa et al., 1998; Segal and Gelbart, 1985). Similarly, ectopic expression of the BMP antagonist sog also leads to loss of PCV tissue (Fig. 1I) (Yu et al., 1996).

By contrast, nmo loss-of-function alleles displayed a broader wing blade and ectopic veins emanating from the PCV, posterior to L5 and between L2 and L3 (Fig. 1H). The distance between the longitudinal veins was also expanded (Fig. 2H; see below). The nmo phenotype is similar to those found in flies ectopically expressing Dpp, Mad or Gbb (Haerry et al., 1998; Yu et al., 2000; Yu et al., 1996). Using vestigial-Gal4 (vg-Gal4) to express UAS-Mad along the dorsal/ventral (D/V) boundary also resulted in a broader wing and ectopic veins along L2 and L5 and emanating from the PCV (Fig. 1G) (see also Tsuneizumi et al., 1997). This affect on wing shape, size and vein position in loss-of-function and ectopic nmo flies suggests that Nemo might negatively influence BMP signaling.

Modulation of Nemo affects wing disc proliferation

To quantitate the effect of Nemo on the width of the wing blade and the spacing of veins as processes directly regulated by BMP signaling, we measured wing blades of different genotypes. Superimposition of wild-type and nmo wings (Fig. 2A-C) showed that the positions of L2 and L5 are shifted from the central A/P boundary towards the margins in nmo wings. The abnormal vein positions in both genotypes were statistically significant (Fig. 2H) and highly reproducible; namely, nmo mutant wings showed an almost identical pattern of vein spacing. Conversely, ectopic Nemo in omb>2x nmo caused a shift of L2 and L5 towards the A/P boundary (Fig. 2D-F).

To address whether the abnormal wing size in nmo mutants is a result of changes in cell proliferation, we determined cell density within a given region in the wing blade (Fig. 2I-L, Table 1) and also measured overall wing area. Each wing blade cell possesses a single hair (trichome) and counting trichomes thus reflects cell number. nmo wings possessed more cells per given area, and this difference was statistically significant (Table 1, P<0.01). This suggests that nmo mutant cells are slightly smaller than wild type cells. Area measurements determined that nmo wings were consistently larger than wild type wings (Table 1, P<0.0001). This indicates that there is more proliferation in a nmo wing. Since BMP signaling is required for proliferation, it follows that a putative antagonist of the pathway would normally act to inhibit growth, and its mutation would result in increased growth.

Fig. 1. Opposing effects of nmo and the Dpp pathway on Drosophila wing growth and patterning. (A) A wild-type adult wing. (B,C) Wings from transheterozygous combinations of dpp loss-of-function alleles (B, dpp²⁵/dpp^{hr56}; C, dpp²⁵/dpp^{nmo}) show reductions in vein spacing and loss of veins. (D-F) Ectopic Nemo decreases spacing of veins in a dose-sensitive manner. (D) omb-Gal4+/UAS-nemo+; UAS-nemo+. (E,F) omb-Gal4+/UAS-nmo+; UAS-nmo+. (G) UAS-Mad+/vg-Gal4+. (H) A nmo^{adk2}/nmo^{adk2} loss-of-function wing. (I) Ectopic expression of the BMP antagonist Sog (UAS-sog+; 69B-Gal4+). (J) UAS-nmo+; 69B-Gal4+ phenocopies reduced BMP signaling.
nmo is an antagonist of BMP signaling

To test the hypothesis that Nemo inhibits BMP signaling we carried out genetic interaction studies. Several Gα4-driver strains were used to activate BMP signaling, and the ability of *nmo* to modulate the induced phenotypes was then examined. In all cases, expression of UAS-*nmo* caused a dramatic reduction in the severity of phenotypes resulting from activation of BMP signaling. Specifically, constitutively active Tkv driven by dpp-Gal4 (UAS-tkvΔD)(Nellen et al., 1996) resulted in a 20.8% penetrant bifurcated wing blade phenotype (*n* = 53), which was completely suppressed by co-expression of UAS-*nmo* (Fig. 3A-C; *n* = 49). Although the bifurcation was suppressed, ectopic *nmo* was unable to fully restore the wing to wild-type morphology. Use of patched (ptc-Gal4) to drive expression of wild-type UAS-tkv caused a vein defect along the A/P boundary (Fig. 3D) that was suppressed by UAS-*nmo* (Fig. 3F). Marquez et al. (Marquez et al., 2001) also observed ectopic vein phenotypes upon ectopic expression of Mad. *vg>Mad* caused a broader wing shape and an abnormal wing vein phenotype (Fig. 1G, Fig. 3G). Whereas *vg>nmo* caused no discernable phenotype (Fig. 3H), co-expression of UAS-*nmo* and UAS-Mad led to dose-sensitive suppression of the phenotype induced by UAS-Mad (Fig. 3I), as two copies of Nemo almost completely suppressed the *vg>Mad* phenotype (Fig. 3D).

In addition to suppression of activated BMP phenotypes, flies heterozygous for the *nmoD* hypomorphic mutation showed an enhancement in the penetrance of the dpp>tkvΔD bifurcated wing phenotype from 20.8% to 86.3%. This finding demonstrates that reduction of *nmo* can lead to even higher levels of BMP signaling.

The observation of a synergistic interaction between *nmo* and *Dad* provided further support for the proposal that Nemo antagonizes BMP signaling. Dad is an antagonist that is also a transcriptional target of the pathway (Tsuneizumi et al., 1997). A P-element enhancer trap insertion into the *Dad* gene caused no discernable wing phenotype in homozygous flies (Fig. 3J), yet in the *Dad1kD; nmoDk2* double-mutant fly we observed ectopic vein phenotypes much more severe than *nmoDk2* normally displayed (Fig. 3, compare L with K). This suggests that both genes contribute to the inhibition of the pathway and that this *Dad* allele might have partially reduced function, but not below the threshold needed to see a defect on its own.

Nemo can modulate BMP-dependent gene expression

To further characterize the inhibitory effect of *nmo*, the expression of BMP-target genes was monitored in third instar larval wing discs bearing either *nmo* mutant clones or ectopic expression of *nmo*. The vestigial quadrant (*vgL*) enhancer is expressed in domains flanking the D/V and A/P boundaries (Fig. 4A). Mad has been shown to bind directly to the Dpp-responsive element within the *vgL* enhancer (Kim et al., 1997); thus, this gene serves well as a readout of Mad-mediated gene expression. UAS-*nmo* driven by the dorsally

Table 1. Altered cell density and area of wing blades in the nmo mutant

<table>
<thead>
<tr>
<th>Density of wing blade cells within a defined area</th>
<th>Cell no.</th>
<th>s.d.</th>
<th>n</th>
<th>Area of wing blade</th>
<th>Relative area</th>
<th>s.d.</th>
<th>n</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>69.33</td>
<td>2.81</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nmoadk2/nmoadk2</td>
<td>73.25</td>
<td>3.67</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Each wing blade produces a single hair, which was counted within a box of fixed size and position (as shown in Fig. 2) to give overall cell density.

1Area was measured using ImageJ software by outlining the circumference and measuring relative area.
expressed *apterous-Gal4* severely reduced vg\(^{0}\)-lacZ staining in the dorsal wing pouch (Fig. 4B). To further characterize this effect, vg\(^{0}\) expression was monitored in wing discs containing *nmo* loss-of-function somatic clones (Fig. 4C-E). *nmo*\(^{DB24}\) clones in the central region of the wing where Dpp signaling is most active (and *nmo* was no detectable change in the levels of pMad (Fig. 4N and merged image in Fig. 4M). In *omb>*2x *nmo* discs where the width of the *salm* expression domain was altered (data not shown), we observed a slight narrowing of the interval between pMad stripes (Fig. 4Q), whereas in homozygous *nmo* mutant discs the domain was subtly wider (Fig. 4P). Although the mechanism responsible for this observation is not yet known, it is possible that the early role of Nemo in regulating proliferation affects cell numbers in the disc and wing (Fig. 2, Table 1).

The narrowed wing seen in *omb>*2x *nmo* (Fig. 1F) flies suggests an inhibition of Mad signaling, which sets up the width of wing vein intervals. Staining for the target gene *salm* confirmed that modulation of *nmo* can affect the width of the BMP response gradient. *salm* is expressed in the central portion of the wing pouch and the breadth of the strip indicates the degree of BMP signaling (Fig. 4) (Barrio and de Celis, 2004; Lecuit and Cohen, 1998; Sturtevant et al., 1997). Measurements of the width of *salm* expression at the D/V boundary (Fig. 4, white lines) were normalized against wild type (taken as 100%). In *nmo* mutants, the width of the *salm* domain was consistently wider than in the wild type (113.92%, *n=20*, Fig. 4G), whereas in *omb>*2x *nmo* the width was dramatically reduced to just 56.62% (*n=20*, Fig. 4H).

nmo has a dynamic expression pattern in wing discs (Verheyen et al., 2001; Zeng and Verheyen, 2004). In addition to expression along the D/V boundary, in late third instar wing discs *nmo* is enriched in two stripes flanking the A/P boundary of the wing and is expressed ubiquitously throughout the disc at lower levels (Fig. 4I). This expression overlaps with the peaks of pMad staining and corresponds to the site of the future longitudinal veins L3 and L4 (Fig. 4I-K) (Tanimoto et al., 2000). During pupal wing development, *nmo* is expressed in intervein regions and is enriched in the cells flanking the presumptive veins (Verheyen et al., 2001). This pattern of expression together with phenotypic observations suggest a role for *nmo* during BMP function in vein patterning and refinement (Conley et al., 2000).

To determine if *nmo* can affect levels of pMad, we examined pMad antibody staining in *nmo* mutant clones. In *nmo*\(^{DB24}\) mutant clones (Fig. 4L, marked by the absence of GFP fluorescence) there was no detectable change in the levels of pMad (Fig. 4N and merged image in Fig. 4M). In *omb>*1x *nmo* discs where the width of the *salm* expression domain was altered (data not shown), we observed a slight narrowing of the interval between pMad stripes (Fig. 4Q), whereas in homozygous *nmo* mutant discs the domain was subtly wider (Fig. 4P). Although the mechanism responsible for this observation is not yet known, it is possible that the early role of Nemo in regulating proliferation affects cell numbers in the disc and wing (Fig. 2, Table 1).

Inhibition of Mad is specific to Nemo and not a general feature of MAPK in *Drosophila* wings

There is a precedent for inhibition of Smad signaling by MAPK proteins from a number of studies using mammalian cell culture (Aubin et al., 2004; Grimm and Gurdon, 2002; Kretzschmar et al., 1997; Kretzschmar et al., 1999; Pera et al., 2003). We sought to examine whether *Drosophila* Erk MAPK, encoded by the *rolled (rl)* locus, could play a similar role. In flies, both Epidermal growth factor receptor (Egfr) and BMP signaling are required for vein specification (Bier, 2000). Hyperactivity of Erk, as found in the *rl*\(^{hypermorphic}\) allele, results in ectopic veins (Fig. 5C) (Brunner et al., 1994), similar to those seen upon loss of *nmo* (Fig. 1H). Whereas co-expression of Nemo and Mad suppressed the ectopic veins induced by Mad (Fig. 3I, Fig. 5D), the combination of ectopic Mad and *rl*\(^{hypermorphic}\) (either through ectopic expression of a *UAS-rl* transgene or introduction of the *rl*\(^{hypermorphic}\) hypermorphic mutation) resulted in an extreme synergistic vein promotion and excess proliferation (Fig. 3E,F). We conclude that in this context, Erk MAPK does not inhibit Mad signaling.

Nemo binds to and phosphorylates Mad

Since Nemo can genetically inhibit BMP signaling, we sought to address the underlying biochemical mechanism. Nlk can target a number of transcriptional regulators and affect their function both positively and negatively. Since Nemo can antagonize Mad-dependent target gene expression in vivo, co-immunoprecipitation studies were carried out. HEK293 cells were transfected with T7-tagged Mad and Flag-tagged Nemo and immunoprecipitations revealed binding of Mad and Nemo (Fig. 6A).
Next we addressed whether Nemo could phosphorylate Mad. In vitro kinase assays were performed on cell lysates and Nemo was found to phosphorylate Mad, as well as to autophosphorylate (Fig. 6B). This was dependent on the kinase activity of Nemo as a dominant-negative Nemo (K69M) construct, in which the lysine residue in the ATP-binding domain was changed to methionine, did not show phosphorylation of Mad, nor did it show Nemo autophosphorylation (Fig. 6B).

Fig. 4. nmo modulates Mad-dependent target gene expression and the pMad gradient. (A) vg\(^2\)-lacZ expression in the wild-type Drosophila third instar wing imaginal disc. (B) vg\(^2\) expression is abolished in the dorsal wing pouch when UAS-nmo is expressed using the dorsal-specific driver ap-Gal4. (C,D) nmo\(^{DB24}\) somatic clones (marked by the absence of GFP, green). (E) Expression of vg\(^2\)-lacZ is increased in the clone abutting the A/P boundary (arrow) but shows no detectable change in the clone further away from the levels of highest Dpp signaling, in which nmo expression is normally low (arrowhead). (F-H) Salm expression in wild-type, nmo\(^{DB24}/nmo^{ok2}\) and omb>2x nmo third instar wing discs. The width of Salm expression along the DV boundary is indicated by a white line. (I-K) nmo\(^{DB24}\) expression in late third instar stage wing discs (green) co-localizes in the L3 and L4 vein primordia flanking the A/P boundary with highest levels of pMad staining (red in J,K), (L-N) nmo\(^{DB24}\) somatic clones (marked by the absence of GFP, green). (M,N) pMad staining is unchanged in nmo clones. (O-Q) pMad staining in wild-type (O), nmo\(^{DB24}/nmo^{ok2}\) (P) and omb>1x nmo (Q) discs. Arrowheads indicate the position of peaks of pMad staining.

Nemo targets serine 25 in the MH1 domain of Mad

The Mad protein consists of a highly conserved N-terminal Mad homology domain 1 (MH1), a non-conserved linker region and the conserved C-terminal MH2 domain (Fig. 6C) (reviewed by Kretzschmar and Massagué, 1998). Since Nemo is a proline-directed S/T kinase, we sought to identify Nemo target residues in Mad. We identified all S/T residues followed directly by prolines (S/TLP). Based on the precedent seen with Erk-mediated inhibition of Smads, we first targeted residues within the linker region of Mad. Site-directed mutagenesis was employed to alter serine 212 (S212) to alanine in the single consensus Erk phosphorylation site (PNSP) in the linker domain. In addition, two putative phosphorylation sites (S202 and S226) in the linker and one in the C-terminus of the MH1 domain (S146) were mutated to alanine (Fig. 6C). Surprisingly, a construct expressing Mad in which these four sites were altered to alanine residues (Mad-4SA) was still phosphorylated by Nemo (Fig. 6D).

BMP receptor activation leads to phosphorylation of serines (SSVS) at the C-terminus of Mad (reviewed by ten Dijke and Hill, 2004). A Mad construct in which these sites were altered (Mad-AAVA; Fig. 6C) was also still phosphorylated by Nemo (Fig. 6D), ruling out these residues as possible Nemo target sites.

To map the domain in which the target residue was located, a truncated Mad protein was generated from which the MH1 domain was deleted (Mad-ΔMH1; Fig. 6C). This protein was no longer phosphorylated by Nemo (Fig. 6D), indicating that the target site was contained within the deleted fragment. Within the deleted MH1 fragment there are two putative Nemo target sites, S25 and S146. Since the S146 residue had been altered in the Mad-4SA construct that was still phosphorylated by Nemo, we focused on S25. Site-directed mutagenesis of S25A was performed and in vitro kinase assays from transfected cells revealed that Nemo was unable to phosphorylate Mad-S25A (Fig. 6D). Thus, we determined that Nemo can phosphorylate the single serine 25 residue in the MH1 domain of Mad. This residue has not previously been shown to be targeted by any MAPK proteins and has not previously been implicated in regulation of Mad function. The serine found in Mad at position 25 is conserved in the mammalian ortholog Smad1, but not in the related Smads 2 and 3.

Nemo blocks Tkv-dependent nuclear accumulation of Mad

Activation of BMP signaling leads to nuclear accumulation of receptor-phosphorylated Smads (reviewed by ten Dijke and Hill, 2004). In vertebrate cell culture experiments, Erk MAPK can inhibit this nuclear localization through its phosphorylation of Smads in the linker domain (reviewed by Massague, 2003). Since we have shown that Nemo can also phosphorylate Mad, we examined whether this affected the nuclear localization of Mad in transfected cells. Transfection of COS-7 cells with T7-Mad resulted in a uniform subcellular distribution of Mad (Fig. 7A). Quantitation showed that Mad expression is nuclear in 11.9% of transfected cells (n=388), and cytoplasmic in the remaining cells. Co-transfection of an activated Tkv receptor (tkv\(^{QD}\)) led to the dramatic nuclear accumulation of Mad (91.2% of cells; n=457; Fig. 7B). This nuclear localization was inhibited by co-transfection of wild-type Nemo with Mad and Tkv (Fig. 7C). Quantitation showed that Mad is nuclear in 40.1% (n=424) of transfected cells. This effect is kinase-dependent, as transfection with kinase-dead Nemo (K69M) was unable to inhibit nuclear accumulation of Mad (Fig. 7D), with 87.1% of cells (n=417) showing nuclear Mad.
Nemo phosphorylation of Mad promotes nuclear export

Examination of the subcellular localization of the MadS25A protein in COS-7 and HeLa cells revealed a primarily nuclear localization as compared with wild-type Mad (compare Fig. 7E and Fig. 8A with Fig. 7A). Significantly, the nuclear localization was found to be constitutive and unaffected by either expression of activated receptor or the presence of Nemo (data not shown). This suggests that the phosphorylation of Mad by Nemo at S25 regulates its nuclear accumulation, and this regulation is disrupted when the residue is rendered immune to Nemo phosphorylation (MadS25A). Consistent with the prediction that the phosphorylation status of S25 influences the localization of Mad, we found that MadS25D was localized primarily in the cytoplasm (Fig. 8B), even in the presence of activated receptor (data not shown).

Such observations suggest that Nemo is either involved in cytoplasmic sequestration of Mad or that phosphorylation by Nemo increases its rate of nuclear export. In both scenarios, the result would be removal of Mad from the nucleus and reduced target gene expression. To test which of these roles Nemo is carrying out, we examined the effect of leptomycin B (LMB) on Mad localization. LMB acts to inhibit Crm1 (Emb – Flybase) -dependent nuclear export, a process involved in the nucleocytoplasmic shuttling of BMP Smads, but not TGF-β Smads (Inman et al., 2002; Xiao et al., 2001). If Nemo is required for cytoplasmic tethering of Mad, then LMB treatment should not affect the cytoplasmic localization of Mad after co-transfection with Nemo. If, however, Nemo participates in stimulating nuclear export, then treatment with LMB should result in Mad accumulation in the nucleus, even in the presence of Nemo. We found that the nuclear retention of Mad...
increased upon treatment with LMB (Fig. 8E,F), supporting the second scenario, i.e. that Nemo acts to promote nuclear export of Mad, thus reducing the effectiveness of Mad signaling.

In vivo consequences of the MadS25A mutation
To examine the potential role of the S25 residue in regulating Mad function, transgenic fly strains expressing a UAS-MadS25A transgene were generated. Expression of MadS25A was induced with numerous Gal4 drivers known to induce phenotypes upon expression of wild-type Mad. Since Mad proteins have to shuttle between the nucleus and cytoplasm to maintain their active state (Xiao et al., 2003; Xiao et al., 2001), our prediction would be that a nuclear-trapped Mad would signal weakly, at most. Consistent with this prediction, we found that in vivo expression of MadS25A with engrailed-Gal4 (en-Gal4) resulted in very mild phenotypic consequences (Fig. 7G), as compared with the severe defects caused by expression of wild-type Mad (Fig. 7F). Among 20 independently generated transgenic lines, this S25A line displayed the strongest phenotypic consequences. In situ hybridizations performed with several independently isolated lines confirmed that the UAS transgenes were expressed (data not shown).

DISCUSSION
Nemo antagonizes BMP signaling by inhibition of Mad
In this study, we demonstrate a novel regulatory role for the Drosophila Nlk family member Nemo in a TGF-β-superfamily signal transduction pathway. We provide evidence that Nemo is an antagonist of BMP signaling in Drosophila by examining its role in wing development through genetic analysis and monitoring of BMP-dependent gene expression. The genetic interaction studies show that phenotypes caused by activation of the BMP pathway can be suppressed by ectopic nmo and enhanced by loss of nmo. Our data suggest that Nemo participates in the BMP pathway by modulating Mad activity. This is seen in the inhibition by Nemo of Mad-dependent gene expression and in the elevated expression of Mad target genes observed in nmo mutant clones. Nemo can bind to and phosphorylate Mad and this phosphorylation has direct consequences on the nuclear localization of Mad in cell culture. We mapped the single Nemo target residue to serine 25 within the MH1 domain of Mad, a site distinct from those previously implicated in the regulation of Mad activity and nuclear localization.

Regulation of Mad nuclear localization by phosphorylation
The vertebrate Mad ortholog Smad1 normally shuttles between the cytoplasm and nucleus in the absence of signal, but upon receptor activation becomes phosphorylated at its C-terminus, binds the Co-Smad and accumulates primarily in the nucleus (Xiao et al., 2001). Such nucleocytoplasmic shuttling is observed with R-Smads participating in both BMP and TGF-β signaling (reviewed by ten Dijke and Hill, 2004). The shuttling provides a tightly regulated mechanism for monitoring the activation status of the receptors (Inman et al., 2002). Receptor-phosphorylated Smads are dephosphorylated in the nucleus, most likely causing them to detach from Co-Smads and DNA and allowing them to shuttle back to the cytoplasm (Chen et al., 2006; Duan et al., 2006; Knockaert et al., 2006). Their nuclear retention is aided by the formation of the R-Smad–Co-Smad complex and DNA binding. Thus, receptor activation leads to elevated nuclear retention. The actual rates of nuclear import are not altered by receptor-mediated phosphorylation (Schmierer and Hill, 2005).

From our findings we conclude that under normal conditions, endogenous Nemo acts to modulate the level of active Mad that is retained in the nucleus. Since Nemo is expressed ubiquitously at low levels and is enriched in cells with elevated levels of pMad, it fulfills the requirements for such a molecule involved in fine-tuning the BMP response. The phosphorylation by Nemo might control a delicate balance between promoting cytoplasmic localization of Mad, while allowing certain levels of Mad signaling to proceed in a receptor-dependent manner.

Differential control of Mad by Nemo and Erk MAPKs
We show that Nemo can inhibit BMP signaling by antagonizing the nuclear localization of Mad in a kinase-dependent manner. Such a mechanism has been attributed previously to crosstalk between Erk...
MAPK signaling and TGF-β/BMP signaling (reviewed by Massague, 2003). Our research presents Nemo as the first MAPK-like protein to attenuate Drosophila BMP pathway activity through phosphorylation of Mad. We have also found that murine Nlk can bind to Mad (data not shown), raising the intriguing possibility that this mechanism is conserved across species.

MAPK can repress TGF-β-superfamily signaling by targeting several Smads (Aubin et al., 2004; Grimm and Gurdon, 2002; Kretzschmar et al., 1997; Kretzschmar et al., 1999; Pera et al., 2003). The BMP-specific Smad1 is a target of cross-regulation by EGF signaling through the Erk MAPK pathway. Erk phosphorylates Smad1 in the linker domain and inhibits both the nuclear accumulation and transcriptional activity of Smad1 in cell culture and, in consequence, the in vivo function of Smad1 in neural induction and tissue homeostasis (Aubin et al., 2004; Kretzschmar et al., 1997; Pera et al., 2003). Ras-stimulated Erk also phosphorylates two R-Smads involved in TGF-β/Activin signaling and prevents their nuclear accumulation (Kretzschmar et al., 1999). The phosphorylation sites within these Smads differ, thus providing a mechanism for preferentially selective inhibition of one subtype (reviewed by Massague, 2003). Thus, the distinct Nemo phosphorylation site in the MH1 domain represents an additional level of regulation of these proteins.

Interestingly, in our studies, we have found that the Drosophila Erk MAPK does not inhibit Mad during wing development. In fact, Erk and Mad appear to synergize in the wing blade, as would be predicted given that both Egfr and BMP signaling are required for vein specification.

Targeting of the Mad MH1 domain by Nemo kinase

The phosphorylation of serine 25 in the MH1 domain of Mad represents a novel site of regulation of Smads. This protein domain is involved in nuclear localization, DNA binding and association with transcriptional regulators (Kretzschmar and Massagué, 1998). Based on known protein structures of Smads, one can predict that the Mad MH1 domain is composed of several elements. The most N-terminal sequence predicts a flexible region, then a short alpha-helix followed by a linker region and a longer, second alpha-helix (Chai et al., 2003). The second alpha-helix contains the predicted nuclear localization sequence (NLS) (Xiao et al., 2001). Serine 25 is located just N-terminal to the first alpha-helix. The added negative charge following phosphorylation by Nemo could modify the interaction between the two alpha-helical regions by potentially neutralizing the positively charged NLS and thereby influencing nuclear localization of Mad. Such a model is also supported by our finding that mutation of serine to alanine renders Mad constitutively nuclear. Interestingly, Kretzschmar et al. (Kretzschmar et al., 1997) observed a similar constitutively nuclear localization when they mutated the Erk phosphorylation sites in Smad1. This suggests that both Nemo and Erk MAPK are involved in the inhibition of BMP signaling and that their distinct sites of action function to block the nuclear accumulation of Smads. Thus, the cellular factors that induce either Nlk or Erk activity can oppose the functions of BMP signaling.

In vivo inhibition of BMP signaling by Nemo during wing patterning and growth

In addition to the biochemical and cell culture evidence that Nemo targets the MH1 domain of Mad to promote its nuclear export, we present in vivo evidence which clearly demonstrates that the expression of Nemo or absence of nmo has a measurable effect on the readout of the BMP pathway in terms of Mad target gene expression, wing size, wing vein spacing and vein patterning. Specifically, elevated Nemo can attenuate the expression of vg6 and salm, whereas nmo somatic clones and mutant discs show elevated or expanded target gene expression. Genetic interaction studies confirm such an antagonistic role, as elevated Nemo can suppress the mutant phenotypes induced by elevated BMP signaling, and reductions in

![Fig. 8. Drosophila Nemo phosphorylation promotes the nuclear export of Mad. COS-7 cells were transfected with the constructs indicated and stained for the localization of Mad (green, upper panel of each pair) and with DAPI to indicate nuclei (blue, lower panel of each pair). MadS25A is primarily nuclear (A), whereas MadS25D is heavily enriched in the cytoplasm (B). Percentages indicate the number of cells displaying a primarily nuclear localization. (C,D) The localization of Mad is influenced by Tkv receptor activation. (E,F) Co-transfection of Nemo inhibits the Tkv-induced nuclear accumulation in the absence of leptomycin B (LMB) (E), but does not block nuclear retention in the presence of LMB (F).](image)
nmo enhanced the penetration of activated BMP phenotypes. Thus, the phenotypic analyses support and extend the biochemical model of the inhibition of Mad and BMP signaling by Nemo.

Modulation of Nemo does not affect the levels of pMad found at the peaks of the BMP response gradients, suggesting that the effect of Nemo is at the level of the nuclear function of Mad. Our LMB studies demonstrate that Nemo can affect the nuclear localization of Mad. Thus, we propose that Nemo promotes the nuclear export of Mad and that this results in a fine-tuning of the levels of target genes in regions where nmo is expressed.

We propose that one role for nmo is in refining the level of BMP signaling regulating proliferation. This early role for BMP signaling also relies on Mad and is therefore a candidate for Nemo-mediated inhibition. The effect on proliferation may affect the spacing, but not levels, of the pMad gradient. We consistently observe that the genotypes in which wing width is affected do have a mild effect on the spacing of pMad stripes, and we suggest this might be due to actual changes in cell number in the disc. Additionally, nmo mutations manifest in alterations in wing size, wing shape and cell density. nmo mutations also affect the later larval and pupal patterning and differentiation functions of BMP, and these can be correlated to changes in target gene expression and with vein patterning abnormalities. Thus, it appears that Nemo can modulate levels of BMP signaling at several developmental stages in wing growth and patterning.

Nlk is stimulated by Tak1 after Wnt induction (Ishitani et al., 2003a; Verheyen, 2004). Others have found that the kinase activity of Nemo of pathway-dependent target gene expression. These results demonstrate that Nemo can antagonize Drosophila Wg signaling during wing development (Zeng and Verheyen, 2004). In this study we demonstrate that Nemo also acts to attenuate BMP signaling by targeting the activity of Mad. In both of these signaling pathways the net outcome is the inhibition by Nemo of pathway-dependent target gene expression. These results demonstrate that Nemo — and by extension the Nemo-like kinases — play important roles in refining signaling pathways during development.

An intriguing but still incomplete picture is emerging regarding the regulation of both Nlk expression and activity and it represents a potential point of crosstalk between signaling pathways. We have shown that nmo is transcriptionally regulated by Wg signaling (Zeng and Verheyen, 2004). Others have found that the kinase activity of Nlk is stimulated by Tak1 after Wnt induction (Ishitani et al., 2003a; Smit et al., 2004; Kaneki-Isihii et al., 2004) and that Tak1 can be activated by BMP signaling (Yamaguchi et al., 1995). Activated Nlk can inhibit Tcf/Lef proteins and modulate Wnt-dependent gene expression (Ishitani et al., 2003b; Ishitani et al., 1999; Zeng and Verheyen, 2004). In this study, we found that Drosophila Nlk is playing an important role in modulating BMP signaling and Mad-dependent gene expression, revealing an additional point of cross-regulation and refinement between signaling molecules.

We are grateful to many researchers for providing fly strains and reagents: L. Raftery, H. Nakagoshi, T. Imamura, D. Wotton, E. Bier, K. Wharton, K. Basler, E. Hafen, S. Cohen, T. Tabata, G. Campbell, P. ten Dijke, M. Go, M. Leroux and the Bloomington Drosophila Stock Center. We thank D. Bessette for generating the kinase-dead Nemo construct; M. Trapp and L. Quarmby for microscopy assistance; M. Leroux for the use of his tissue culture facility; and L. Raftery, K. Wharton, P. Haghighi, N. Harden, H. Clevers and members of the Verheyen laboratory for helpful discussions and comments. Y.A.Z. was supported by a MacMillan Bloedel Graduate Scholarship. This work was supported by an operating grant from the Canadian Institutes of Health Research (CIHR).

References
Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, T. E., Khalsa, O., Raftery, K., Wharton, K., Basler, E. Hafen, S. Cohen, T. Tabata, G. Campbell, P. ten Dijke, M. Go, M. Leroux and the Bloomington Drosophila Stock Center. We thank D. Bessette for generating the kinase-dead Nemo construct; M. Trapp and L. Quarmby for microscopy assistance; M. Leroux for the use of his tissue culture facility; and L. Raftery, K. Wharton, P. Haghighi, N. Harden, H. Clevers and members of the Verheyen laboratory for helpful discussions and comments. Y.A.Z. was supported by a MacMillan Bloedel Graduate Scholarship. This work was supported by an operating grant from the Canadian Institutes of Health Research (CIHR).

