Cohesin-dependent regulation of Runx genes

Julia A. Horsfield1,*, Sasha H. Anagnostou1, Jimmy Kuang-Hsien Hu1,1, Kitty Hsiao Yu Cho1, Robert Geisler2, Graham Lieschke3, Kathryn E. Crosier1 and Philip S. Crosier1,
‡

Runx transcription factors determine cell fate in many lineages. Maintaining balanced levels of Runx proteins is crucial, as deregulated expression leads to cancers and developmental disorders. We conducted a forward genetic screen in zebrafish for positive regulators of runx1 that yielded the cohesin subunit rad21. Zebrafish embryos lacking Rad21, or cohesin subunit Smc3, fail to express runx3 and lose hematopoietic runx1 expression in early embryonic development. Failure to develop differentiated blood cells in rad21 mutants is partially rescued by microinjection of runx1 mRNA. Significantly, monoallelic loss of rad21 caused a reduction in the transcription of runx1 and of the proneural genes ascl1a and ascl1b, indicating that downstream genes are sensitive to Rad21 dose. Changes in gene expression were observed in a reduced cohesin background in which cell division was able to proceed, indicating that cohesin might have a function in transcription that is separable from its mitotic role. Cohesin is a protein complex essential for sister chromatid cohesion and DNA repair that also appears to be essential for normal development through as yet unknown mechanisms. Our findings provide evidence for a novel role for cohesin in development, and indicate potential for monoallelic loss of cohesin subunits to alter gene expression.

KEY WORDS: Runx1, Runx3, Rad21, Scc1, Cohesin

INTRODUCTION

Runx proteins form part of complexes called core binding factors (CBFs); multi-lineage transcriptional regulators with roles in both proliferation and differentiation. CBFs act as dimers that incorporate one of three distinct DNA-binding α subunits (Runx1, Runx2 or Runx3) plus a common non-DNA-binding CBFβ subunit. The Runx component specifies the biological activity of CBF; Runx1 is an essential regulator of hematopoiesis, Runx2 is involved in osteogenesis, and Runx3 is important in neurogenesis and gastric epithelial cell growth control (Blyth et al., 2005; Ito, 2004). Deregression of Runx function is commonly associated with disease. For example, Runx1 is involved in several chromosomal translocations underlying human leukemias. In addition, changes in the dose of Runx1 can contribute to neoplasia (Blyth et al., 2005). An important route toward understanding the pathology of Runx-mediated cancers is the elucidation of factors that control either the expression of Runx genes, or the activity/stability of their protein products.

In early zebrafish embryogenesis, runx1 is expressed in two discrete hematopoietic regions; the anterior lateral-plate mesoderm (ALM), which generates primitive myeloid cells, and the posterior lateral-plate mesoderm (PLM) from which primitive erythroid cells develop ((Hsia and Zon, 2005). By around 18 hours post-fertilization (h.p.f.), cells in the PLM have migrated medially to form a central lateral-plate mesoderm (PLM), which generates primitive myeloid cells, and the posterior lateral-plate mesoderm (PLM) from which primitive erythroid cells develop (Hsia and Zon, 2005). By around 18 hours post-fertilization (h.p.f.), cells in the PLM have migrated medially to form a central island of hematopoietic precursors: the intermediate cell mass (ICM). Hematopoietic expression of runx1 is downregulated in all but the most posterior cells of the ICM at 21 h.p.f., and subsequently reappears in definitive hematopoietic precursors in the ventral wall of the dorso-lateral aorta by 24 h.p.f. (Kalev-Zylinska et al., 2002). runx1 is also expressed in Rohon-Beard (RB) mechanosensory neurons and in specific neuronal cells (Kalev-Zylinska et al., 2002).

Studies in zebrafish (Burns et al., 2005; Gering and Patient, 2005) and mice (Nakagawa et al., 2006) have shown that Runx1 is a transcriptional target of Notch signaling during definitive hematopoiesis. In zebrafish, Hedgehog signaling is required for the migration of hematopoietic progenitors to the midline, and for the subsequent formation of runx1−/− definitive precursors (Gering and Patient, 2005). Early PLM runx1 expression appears to be downstream of a Hox pathway regulated by caudal-related homeobox genes cdx1a and cdx4 (Davidson et al., 2003; Davidson and Zon, 2006). In addition the timely initiation (but not maintenance) of runx1 expression depends on the transcription factors Scl and Lmo2 (Patterson et al., 2007; Patterson et al., 2005). Other factors known to contribute to Runx gene regulation include the BMP signaling pathway (Pimanda et al., 2007), and epigenetic modifications, such as promoter methylation (Lau et al., 2006; Mueller et al., 2007).

To search for potential regulators of runx1 expression in zebrafish, we conducted an in situ hybridization-based haploid genetic screen of F1 females carrying mutations generated by ethynitrosourea (ENU). We isolated a mutant, termed nz171, which lacks some neuronal, and all hematopoietic runx1 expression in early embryogenesis. Through a positional cloning and candidate gene approach, we determined that the gene underlying nz171 was rad21, an integral subunit of mitotic cohesin.

Cohesin is a protein complex composed of four major subunits: SMC1, SMC3, RAD21 and SA1 (or SA2), which interact to form a giant ring-like structure. Mitotic cohesin acts as a ‘molecular glue’ to hold replicated sister chromatids together until the onset of anaphase (Losada and Hirano, 2005; Nasmith and Haering, 2005). Cohesin also has a DNA repair function (Watrin and Peters, 2006). Intriguingly, it seems that cohesin has additional non cell cycle-related functions (Dorsett, 2007; Hagstrom and Meyer, 2003). In Drosophila, loss of Nipped-B, a protein that loads cohesin onto chromosomes, affects expression of the cut gene (Dorsett et al.,...
Microinjection

Full-length zebrafish and human rad21 clones (RZPD) were subcloned into pcS2*. Amplified full-length rad21G2277X was subcloned using a ZeroBluntTOPO Kit (Invitrogen), sequenced entirely to confirm the mutation, and subcloned into pcS2*. mRNAs for microinjection were generated using a mMessage mMachine Kit (Ambion), and 100 pg of each was injected into nz171 mutant and sibling embryos at the 1-cell stage. Full-length zebrafish runx1 in pcS2* (Kalev-Zylinska et al., 2002) was transcribed as above and 200 pg was injected as above. Morpholino oligonucleotides were obtained from GeneTools LLC and diluted in water. For microinjection, 2 nl of morpholino was injected into the yolk of wild-type embryos from the 1- to 4-cell stages. Morpholino oligonucleotides targeting rad21 were: rad21UTRMO, 5'-CTACATCCGTGAGAAGAACG-3'; rad21ATGMO 5'-TCTCGTCTACCCAGGATTTTGTAAC-3' (start codon underlined); rad21Sp1x3MO 5'-GATACTATACCTGCGGAGAAA-3' (targets 3' donor of exon 3). Morpholino oligonucleotides targeting smc3 were: smc3UTRMO, 5'-GGCAACAAACCTCCTCAGAACC-3'; smc3ATGMO, 5'-TGATCAAGGGGTTGGATATGTC-3' (start codon underlined); smc3Sp1x1MO, 5'-GTGATGGCGCCCTACCTAAG-3' (targets 3' donor of exon 1) and smc3Sp1x5MO, 5'-TTTTCTACGAGAGTCTTGAGCAG-3' (targets 3' donor of exon 5). All morpholinos were effective over the range of 0.5-3.0 pmol injected.

Immunofluorescence and confocal microscopy

For immunofluorescence, embryos were fixed and stained with anti-Rad21 (Chemicon International) 1:100, anti-α-tubulin (Sigma-Aldrich) 1:500, and DAPI as described previously (Shepard et al., 2004). FITC- or TRITC-conjugated secondary antibodies (Sigma, 1:500) were used. Flat-mounted samples were imaged using a Leica TCS SP2 confocal microscope.

Quantitative immunonanalysis and quantitative RT-PCR

For immunoblotting, embryos were deyolked in Ringer’s solution with EDTA and PMSF, and 20 μg total protein was loaded per lane. For embryos under 12 h.p.f., entire single, or pools of up to 10 embryos were lysed in loading buffer. Sample processing and immunoblotting was performed as described previously (Westferder, 1995) using anti-Rad21 (Chemicon, 1:500), or anti-α-tubulin (Sigma, 1:2000). Horseradish peroxidase-linked secondary antibodies (Sigma, 1:2000) and enhanced chemiluminescence were used according to the manufacturer’s instructions (ECL Plus, Amersham Biosciences, Inc.). Signals were analyzed using Fuji LAS-3000 imager and Fuji Image Gauge software. For quantitative PCR, total RNA from pools of 30-100 embryos was extracted using Trizol (Invitrogen), DNase-treated, and used to synthesize random-primed cDNA (Invitrogen, SuperScript III). SYBR green PCR Master Mix (Applied Biosystems) was used to amplify cDNA, and relative start quantities were normalized to β-actin and wnt5a expression. Samples were analyzed using an Applied Biosystems Sequence Detection System 7900HT. Primers for quantitative PCR were designed using the Primer Express program (Applied Biosystems). Sequences are: runx1 forward, 5'-AGACGTCCTCACCTGCGTCTGA-3'; reverse, 5'-GGCGGTTAGGCTGAGTAA-3'; runx2 forward, 5'-CGGCATCAATGCACCTACCT-3'; reverse, 5'-GTTTACTGCTTGAGCAGTC-3'; runx3 forward, 5'-GGACATCAACCCAGAGATCTTTGAC-3'; reverse, 5'-GTGAAGCCCTCTCTCTCTGAC-3'.

RESULTS

Loss of early runx1 and runx3 expression in the zebrafish ENU mutant, nz171

The nz171 mutant was isolated in a haploid in situ hybridization screen because of a marked lack of runx1 expression in the PLM in early embryogenesis, and lack of blood at 48 h.p.f. In nz171 diploids, runx1 expression was confirmed lost from the ALM and PLM, but was retained in a subset of RB neurons at the 14-somite stage (Fig. 1A,G compared with D). The runx3 gene is expressed in...
a subset of RB cells and in the trigeminal ganglia (TGG) during early embryogenesis (Kalev-Zylinska et al., 2003) (Fig. 1E). Strikingly, its expression was completely absent in nz171 mutants at early embryogenesis (Fig. 1E). Although both runx1 and runx3 are downregulated in nz171, their common binding partner, cbfb was expressed normally in neuronal and hematopoietic tissues in equivalent embryos (Fig. 1I compared with 1F). This indicates that the cell types that would normally express runx1 and runx3 are present, and that loss of runx1 and runx3 expression was not due to gross developmental defects. Early neurogenesis was abnormal in nz171 embryos; the TGG failed to develop properly (although they are specified), and the number of RB neurons was reduced by 30-40% (data not shown). Furthermore, although genes that mark blood vessel formation were expressed (see Fig. S1 in the supplementary material), no visible circulation developed. From the 20-somite stage, nz171 embryos started to exhibit developmental delay, which became increasingly apparent until homozygotes arrested in development at around 3 days postfertilization.

Developmental delay in nz171 mutants is due to a block in mitosis

Giemsa-stained sections of nz171 mutants at the 20-somite stage and older revealed cells that contained abnormal condensed chromosomes, consistent with abnormal mitoses (Fig. 2G,H). To test whether developmental arrest in nz171 mutants is caused by a defect in cell division, we monitored cells in S phase with BrdU incorporation, and cells in M phase with an antibody to phosphorylated histone H3 (pH3). We found no significant difference in the number of cells in S phase between wild-type siblings and nz171 mutants (Fig. 2A,B); however, there were many more cells in mitosis. Cells in M phase started to accumulate from the 14-somite stage, well before a developmental delay is evident (Fig. 2C,D). By the 20-somite stage, there was a marked overrepresentation of cells in M phase in nz171 mutant embryos (Fig. 2E,F). These results are consistent with a block at M phase, in which nz171 mutant embryos take longer to complete mitosis and eventually arrest with all cells blocked in M phase. Giemsa staining of sections revealed that chromosomes in developmentally arrested embryos are condensed and disorganized (Fig. 2G,H). High power microscopy of pH3+ cells indicated that the condensed, disorganized chromosomes are mitotic (Fig. 2H-J). Cells arrested in mitosis probably undergo apoptosis, as revealed by TUNEL. Cell death was particularly prevalent in the ICM and nervous system (Fig. 2K,L).

nz171 embryos have a nonsense mutation in the rad21 gene

We mapped the nz171 mutation to chromosome 16 between simple sequence length polymorphism (SSLP) markers z25049 and z51029 (Fig. 3A). The cohesin subunit rad21 also maps to this region, and because of the observed mitotic defect, it was a strong candidate gene for the mutation. rad21 cDNA was isolated from nz171 homozygotes, sequenced, and a mutation identified in the coding region of the gene (nucleotide 829, exon 8) changing codon 277 from GGA, specifying glycine, to the stop codon TGA (G277X) (Fig. 3B and see Fig. S2 in the supplementary material). An antibody directed against the C-terminal region of human RAD21 detected a specific band in wild-type, but not in mutant embryos (Fig. 3C). An insertion mutant previously mapped to the rad21 locus (Amsterdam et al., 2004) has a severe early embryonic phenotype (ZFIN ID: ZDB-LOCUS-041006-4) similar to that of nz171, consistent with these defects affecting the same gene.

In wild-type embryos, rad21 mRNA was detected by RT-PCR at the oocyte stage (Fig. 3D), indicating that the transcript is maternally deposited. Whole-mount in situ hybridization analysis showed that rad21 was expressed throughout the embryo in early embryogenesis (Fig. 3E,F; data also available on ZFIN, http://zfin.org/). Expression in the brain and posterior tail regions at 26 h.p.f. was particularly robust, most likely because these are areas of active cell division. By contrast, rad21 transcription was dramatically downregulated in nz171 mutants (Fig. 3E, Fig. 8D), probably owing to nonsense-mediated mRNA decay (Chang et al., 2007). At 48 h.p.f., rad21 was strongly expressed in discrete areas of the brain, the mandibular cartilage and branchial arches, the otic vesicle and developing pectoral fins (Fig. 3F). Although some cells in these regions would be proliferating rapidly (e.g. the pectoral fins) it is surprising that this expression pattern is so specific. This might reflect a tissue-specific function for Rad21 that is not related to the cell cycle.
To provide further evidence that we had found a mutation in zebrafish rad21, we designed antisense morpholino oligonucleotides (MOs) directed against the rad21 transcript (see Fig. S2 in the supplementary material). MO-injected embryos (termed ‘morphants’) phenotypically resembled nz171 mutants, had excess pH3\(^{\text{+}}\) cells and showed dramatic reduction in hematopoietic runx1 expression (Fig. 4A-L). Furthermore, we were able to rescue nz171 mutants with rad21 mRNA: nz171 mutants approached wild-type morphology at 48 h.p.f. following injection of zebrafish rad21 mRNA (Fig. 4J,K). In addition, hematopoietic runx1 expression was rescued (Fig. 4N compared with L), as were mitoses (see Table S1 in the supplementary material; data not shown). By contrast, rad21 mRNA containing the G277X mutation (zrad21\(^{G277X}\)) was unable to rescue nz171 mutants (see Table S1 in the supplementary material). Significantly, runx1 expression was also rescued by human \(RAD21\) mRNA (Fig. 4O and see Table S1 in the supplementary material), indicating conservation of Rad21 function in both the cell cycle and gene expression through evolution. These results provide conclusive evidence that the nz171 mutation affects the rad21 locus. We have named our mutant allele \(rad21^{nz171}\) accordingly.

Although \(rad21^{nz171}\) mutants lack hematopoietic runx1 expression, most other early hematopoietic transcription factors are expressed normally

Initial experiments revealed that runx1 expression in \(rad21^{nz171}\) mutants was absent from the ALM and PLM. To determine the exact nature of the runx1 expression defect, we performed a time-course analysis of runx1 expression in \(rad21\) morphant and \(rad21^{nz171}\) mutant embryos (Fig. 5). We found that runx1 expression was never initiated in the PLM of morphants and mutants (Fig. 5A), but was still expressed in most RB cells (Fig. 5A,B, Fig. 6A). runx1 mRNA was also deficient in the ALM of \(rad21^{nz171}\) mutants, although the occasional runx1-positive cell was found (Fig. 5C). Loss of rad21 did not prevent later initiation of neuronal runx1 expression, as evidenced by expression of runx1 in neuronal regions of 28 h.p.f. \(rad21^{nz171}\) mutants (although at reduced levels compared with wild type; Fig. 5D). Since the dorsal aorta does not form in \(rad21^{nz171}\) mutants (Fig. 2H), later expression of runx1 there could not be assessed.

In early \(rad21^{nz171}\) embryos, we observed normal expression of many other early transcription factors essential for hematopoiesis, such as cbfb (Fig. 1I) scl (also known as tal1 – ZF-IN) and pu.1 (also known as spi1 – ZF-IN) (Fig. 6A,B), cmyb, celpa, dhl and gata2 (see Fig. S1 in the supplementary material). The only other early hematopoietic transcription factor affected in \(rad21^{nz171}\) was gata1, which is reduced to about half its normal expression in 10-somite embryos (Fig. 6A). A time-course analysis of gata1 expression revealed that its onset is slightly delayed in \(rad21\)-compromised embryos, with levels consistently reduced during early embryogenesis (see Fig. S3 in the supplementary material). This might, at least in part, be due to the positive autoregulation of gata1 (Kobayashi et al., 2001) by a transcriptional regulatory complex that also contains Runx1 (Elagib et al., 2003; Waltzer et al., 2003).

Normal expression of early blood markers in \(rad21^{nz171}\) embryos occurred at the same stage that runx1 expression is lost. Therefore, loss of runx1 is not due to a developmental delay, or loss of hematopoietic precursors in the regions where runx1 is normally expressed.

Markers of differentiated blood cells are reduced or absent in \(rad21^{nz171}\)

In contrast to markers of early hematopoiesis, we determined that later expressed markers, such as cebpg, lyz, hbbe3 (Fig. 6C,D), lcp1 and mpx (data not shown) were severely reduced or entirely absent.

Fig. 2. Cell cycle status of zebrafish nz171 mutant embryos compared with wild-type siblings. (A,B) BrdU-labeling to detect cells in S-phase in forebrain and eyes of flat-mounted 18-somite embryos, anterior to top. (C-F) Dorsal (C,D) and lateral (E,F) views of anti-phospho-histone H3 (pH3)-labeling to detect cells in M phase at the stages indicated (anterior to the left). (G-J) Disordered mitotic chromosomes in nz171 mutants. (G,H) Transverse sections bisecting the yolk extension of wild-type (G) and nz171 mutant (H) embryos stained with Giemsa (dorsal to top). Whereas recognizable structures (s, somite; da, dorsal aorta) and normal nuclei (example marked by asterisk) are visible in wild-type embryos, no such structures are visible in nz171 mutants, which have abnormal nuclei with condensed, disorganized chromosomes. pH3-labeled chromosomes of a similar configuration to H (blue arrowheads) appear in nz171 (J) but not in wild-type (I); lateral flat-mounted embryos, mid-trunk (high magnification inset). Scale bar: 20 μm. (K,L) TUNEL labeling indicates prevalent cell death in the ICM and neuronal regions of nz171 embryos; lateral views of tail regions, anterior to the left, showing the ICM region just above the yolk extension (ye).
in 24 h.p.f. \textit{rad21}^{nz171} mutants. A summary of the blood defects present in \textit{rad21}^{nz171} is shown in Fig. S1 (see Fig. S1 in the supplementary material). Injection of 200 pg \textit{runx1} mRNA into \textit{rad21}^{nz171} homozygotes at the 1-cell stage rescued expression of \textit{lyz} (Fig. 6D, \(n=21/23\)), demonstrating an ability for \textit{Runx1} to exert function in early myeloid cells (see Discussion). It was not possible to analyze the impact of early \textit{runx1} loss on definitive hematopoiesis in \textit{rad21}^{nz171} because of the developmental arrest by 35 h.p.f.

Cells in \textit{rad21}^{nz171} homozygotes eventually arrest in mitosis with lack of chromosome cohesion

By 48 h.p.f., \textit{rad21}^{nz171} embryos have arrested in development with extensive mitotic defects (Fig. 2G-J). We used immunofluorescence and confocal microscopy to examine cell cycle defects in \textit{rad21}^{nz171} embryos during development. At the 14-somite stage, \textit{rad21}^{nz171} embryos can be identified by greater numbers of pH3+ mitotic cells (Fig. 2D). Interestingly, \textit{Rad21} protein was still detectable by immunofluorescence in 14-somite \textit{rad21}^{nz171} embryos (Fig. 7A), a stage when \textit{runx1} and \textit{runx3} expression was abrogated. \textit{Rad21} was associated with the nuclei of non-mitotic cells, and became displaced from nuclei in M phase (Fig. 7A). Although there were greater numbers of \textit{M} phase cells in \textit{rad21}^{nz171} embryos (Fig. 2C,D), mitotic cells appeared normal. The increase of \textit{M} phase cells in \textit{rad21}^{nz171} mutants at this stage probably reflects an increase in the length of time taken for cells to complete mitosis, as the available pool of maternal \textit{Rad21} becomes progressively depleted. From 29 h.p.f., \textit{Rad21} protein is no longer detected in \textit{rad21}^{nz171} embryos (Fig. 3C). In 48 h.p.f. \textit{rad21}^{nz171} embryos, multiple cells in a field had arrested in mitosis with highly abnormal spindles (Fig. 7B,C). Condensed chromosomes were spread throughout these cells with clumping at the poles (see also Fig. 2H,J). These observations were reiterated in \textit{rad21} morphants (Fig. 7D). Our data are consistent with previous findings that \textit{Rad21} function in the cohesin complex is essential for holding sister chromatids together prior to anaphase (Nasmyth and Haering, 2005).
Intact cohesin is necessary for correct regulation of Runx gene expression

We next asked if Rad21 is operating as part of the cohesin complex in the regulation of Runx gene expression. We used MOs to knock down the function of Smc3, another integral subunit of the cohesin complex (see Fig. S4 in the supplementary material). smc3 morphants appeared morphologically similar to rad21 morphants and the rad21 nz171 mutant (see Fig. S4 in the supplementary material). We observed mitotic cells in smc3 morphants that had condensed chromosomes spread throughout the cell, similar to cells lacking Rad21 (Fig. 7E), indicating a similar role in chromosome cohesion. Lagging chromosomes and ectopic location of chromosomes at the poles were frequently observed. Furthermore, smc3 morphants lacked early runx1 and runx3 expression (Fig. 7F-I). By contrast, a hydroxyurea and aphidicolin S-phase block of the cell cycle had no effect on runx1 expression (data not shown). Since cells in rad21nz171 homozygotes successfully complete mitosis at the 14-somite stage, it is unlikely that loss of Runx gene expression at this time is due to a cell cycle block or the activation of cell cycle checkpoints. We therefore believe that the loss of Runx gene expression in rad21nz171 homozygotes is directly related to a reduction in cohesin. Taken together, our data indicate that the cohesin complex is necessary for normal expression of Runx genes, in addition to its function in sister chromatid cohesion.

Gene expression is dependent on Rad21 dose

Since cells lacking Rad21 cannot divide properly (Sonoda et al., 2001), a maternal complement of rad21 mRNA or Rad21 protein is likely to sustain proliferation until cells in rad21nz171 embryos eventually arrest in mitosis on depletion of Rad21 protein. In support of this notion, we found that rad21 mRNA is maternally inherited...
If cells in early rad21nz171 mutants contain Rad21 protein and continue to proliferate (Fig. 7A), but are unable to express runx1 or runx3 (Fig. 1G,H, Fig. 5A-C), then the correct regulation of Runx genes might depend on the dose of Rad21 protein. To determine whether Rad21 protein levels change as a result of gene dose, we quantified Rad21 protein in a rad21nz171 sibling pool (of which two out of three are heterozygotes) in comparison with wild-type embryos. Rad21 protein was reduced by 40\% (Fig. 8C) out of three are heterozygotes) in comparison with wild-type rad21 during early embryogenesis (J.A.H. and J.K-H.H., unpublished) and 48 h.p.f. (Fig. 3F). To determine if changes in the dose of rad21 affect the expression of neuronal genes in older embryos, we used quantitative RT-PCR to monitor expression of selected neuronal genes in 48 h.p.f. embryos. We found that expression of proneural genes asc1\textalpha, asc1\textbeta, which are strongly expressed in the brain during embryogenesis (Allende and Weinberg, 1994), was severely reduced in rad21nz171 mutants and significantly reduced in siblings (Fig. 8D, lower graphs). Our data indicate that although rad21nz171 siblings appear to grow and develop normally, they are unable to express wild-type levels of downstream genes. This finding points to a regulatory function for cohesin that can be separated from its cell cycle role.

Cohesin contributes to a novel regulatory mechanism for early runx1 expression

To understand how Rad21/cohesin might influence Runx gene expression, we investigated whether loss of rad21 affects pathways known to be upstream of runx1. The cdx (hox) pathway specifies blood development from mesoderm, and is essential for runx1 expression in embryogenesis (Davidson et al., 2003; Davidson and Zon, 2006). We determined that the expression of cdx4 and its downstream hox targets (hoxa9\alpha, hoxb4, hoxb6\alpha, hoxb7) were unaffected in 10-somite rad21nz171 homozygotes (data not shown). The Notch signaling pathway is upstream of definitive runx1 expression in zebrafish (Burns et al., 2005). Interestingly, we found that several genes induced by Notch signaling are downregulated in rad21nz171 embryos (J.A.H. and S.H.A., unpublished results). However, consistent with previous data (Burns et al., 2005; Gering and Patient, 2005), we found that early expression of runx1 is not Notch dependent (data not shown), thereby eliminating this pathway as an intermediate between cohesin and early runx1 expression. In
Fig. 6. Expression of genes that mark ‘early’ versus differentiated hematopoietic cells in zebrafish nz171 mutants, and partial rescue of differentiated cells by microinjection of runx1 mRNA. (A,B) Expression of runx1 and gata1 is altered in nz171 mutants. Flat preparations of 10-somite embryos, anterior to the left. Expression of runx1, gata1 and scl in the ALM (A), and pu.1 in the ALM and PLM (B) of wild-type siblings and nz171 mutants. gata1 expression in nz171 mutants is noticeably reduced compared with wild type. (C,D) Expression of genes that mark differentiated hematopoietic cells is reduced or absent in nz171 mutants. Whole-mount embryos, anterior to the left. (C) Reduced expression of hbbe3 (hemoglobin beta embryonic3) in nz171 mutant embryos (lower panels) compared with wild type (upper panels). (D) Loss of lyz (lysozyme) expression in nz171 is rescued by microinjection of runx1 mRNA. Upper left, whole-mount 26 h.p.f. embryo stained for lyz expression. The box indicates the region shown at higher magnification in the other panels. Upper panels, wild-type expression of lyz and cebpg in 26 h.p.f. embryos, as indicated. Lower center and right, similar views of 26 h.p.f. nz171 homozygotes, showing no expression of lyz and cebpg. Lower left panel, rescued expression of lyz in 26 h.p.f. embryos indicated by white arrowheads (21/23 mutant embryos rescued).

DISCUSSION

Cohesin specifically regulates early runx1 expression

The impact of cohesin loss on runx1 expression appears to be extraordinarily specific. Other zebrafish mutations affecting early runx1 transcription also perturb the expression of multiple hematopoietic transcription factors (e.g. spl, kgg) (Hsia and Zon, 2005). Therefore, rad21mut1 appears to be the first mutant that affects early expression of runx1 alone. Although most other early hematopoietic markers are expressed normally in rad21mut1, early myelopoiesis is deficient and hbbe3 expression is reduced. By 24 h.p.f., the cell cycle is severely affected in rad21mut1 (Fig. 2) and therefore hematopoietic progenitors might be unable to divide to form differentiated progeny. In addition, cell death in the ICM almost certainly contributes to a reduction in differentiated cells (Fig. 2L). However, live hematopoietic progenitors remain in the ICM of rad21mut1 mutants, as indicated by robust scl and gata2 expression at 24 h.p.f.; furthermore, inappropriate maintenance of scl expression in the ICM at 48 h.p.f. points to the persistence of immature precursors that cannot differentiate (see Fig. S1 in the supplementary material). Loss of differentiated cells in rad21mut1 might be due in part to loss of runx1 and reduction in gata1 mRNA. Rescue of lyz+ cells by runx1 mRNA indicates that either, (1) runx1 is necessary for early myelopoiesis and its restoration rescues differentiated cells, or (2) expression of runx1 is able to overcome a developmental block in the myeloid precursors of rad21mut1 by driving more cells toward a myeloid fate at an earlier time. In support of the latter, we observed an increase in the number of lyz+ cells in siblings of runx1-injected rad21mut1 crosses (n=41/41, data not shown). Unfortunately, the cell cycle block in rad21mut1 prevented an analysis of effects on definitive hematopoiesis.

Our results add to increasing evidence that chromatin-modifying proteins can have specific roles in hematopoiesis. In previous studies, a nucleosome assembly protein NAP1L was shown to operate upstream of scl in Xenopus hematopoiesis (Abu-Daya et al., 2005). Furthermore, Brg1 (a SWI/SNF subunit) appears to have a distinct role in the activation of the β-globin locus in erythropoiesis (Bultman et al., 2005). The involvement of trithorax (Ernst et al., 2004a; Ernst et al., 2004b) and polycomb (Lessard and Sauvageau, 2003; Lessard et al., 1999) group members as epigenetic regulators of hematopoietic stem cell development is relatively well characterized.

A role for cohesin in vertebrate gene regulation

We report the first direct example of cohesin-dependent gene regulation in a vertebrate. Previous studies in Drosophila implicated cohesin loading protein, Nipped-B, and cohesin subunits in
Cohesin-dependent regulation of Runx genes

Fig. 7. Zebrafish cohesin functions in sister chromatid cohesion and is necessary for normal expression of Runx genes in early embryogenesis. (A–C) Mitotic defects in nz171 embryos. Confocal immunofluorescence images, stained for Rad21 (green) and α-tubulin (red), with DNA stained with DAPI (blue), as indicated on top of the panels; embryo identity is on the left. By 48 h.p.f., Rad21 protein is absent from nz171 embryos, and multiple cells have arrested in mitosis (C–C'). (D,E) Knocking down the function of Rad21 (D–D') or Smc3 (E–E', exon 5 splice site) reproduces the mitotic phenotype observed in nz171 embryos at 48 h.p.f. Confocal immunofluorescence images, stained for α-tubulin (red), with DNA stained with DAPI (blue), as indicated in the panels (top); embryo identity is on the left. For A–E, images are of flat-mounted embryo tails; scale bar is 30 μm. (F–I) Loss of runx1 and runx3 expression in smc3 morphants. Flat-mounted 10-somite embryos, anterior to the left. smc3 morphants (exon 2 splice site) show loss of runx1 expression in the PLM (H), and runx3 expression in the RB cells (I).

Fig. 8. Maternally inherited Rad21 protein can sustain further cell division, but not gene expression; loss of one copy of rad21 affects transcription of runx1, ascl1a and ascl1b. (A,B) Rad21 protein is detectable in early rad21 morphant and mutant zebrafish embryos at stages when gene expression is compromised, but cell division can still occur. Protein was isolated from wild-type embryos and rad21ATGMO morphants (A) or nz171 homozygotes (B) at the stages indicated. Protein quantities were assessed by immunoblotting, with levels relative to α-tubulin. The graphs on the right show quantification of the immunoblots on the left. (C,D) Loss of one copy of rad21 reduces rad21 transcript and protein levels, and affects gene expression. (C) Protein was isolated from nz171 siblings (Sibs: includes +/+ and +/– embryos, which are phenotypically indistinguishable) and wild-type (+/+) controls at 48 h.p.f. Relative levels of Rad21 protein in nz171 siblings and wild-type embryos were quantified by immunoblotting and results are presented in the graph on the right (values represent the mean±s.e.m. of three independent experiments performed in triplicate. *P<0.01, Student’s t-test). A representative immunoblot appears on the left. (D) Quantitative RT-PCR of cDNA generated from pooled wild-type (+/+), nz171 sibling (Sibs) and nz171 mutant (–/–) embryos. Bar charts are representative results from three independent experiments. Values are relative to wild type, bars represent the mean of samples run in triplicate; all values are significant with P<0.05.
regulation of the cut and Ultrabithorax loci (Dorsett et al., 2005; Rollins et al., 1999). In C. elegans, the cohesin-loading factor MAU-2 (the Scc4 ortholog) is essential for axon migration during development (Seitan et al., 2006). Our observations of neuronal abnormalities and altered neuronal gene expression in rad21(nz171) embryos, together with the C. elegans data, are consistent with the idea that chromosome cohesion proteins have specific roles in neuronal development.

Significantly, we uncovered a potent dose effect of Rad21 levels on gene expression (Fig. 8). Our results raise the possibility that there is a threshold level of Rad21, below which cell proliferation can be sustained, but gene expression is compromised. Perhaps the mitotic function of cohesin is prioritized at the expense of its alternative (potentially regulatory) functions in a depleted cohesin pool.

Linking cohesin function and Runx gene regulation

It is tempting to speculate that loss of early runx1 and runx3 expression in rad21(nz171) is causally related to the connection between the Runx family and the cell cycle. Runx protein levels are dynamically regulated during the cell cycle; e.g. expression of Runx2 oscillates during the cell cycle of MC3T3 osteoblasts (Galindo et al., 2005). In cell lines, Runx1 levels were also shown to oscillate in a cell cycle-dependent manner: Runx1 protein levels increase during S phase and G2 (Bernardin-Fried et al., 2004) and at the G2-M phase transition, Runx1 is degraded by the anaphase-promoting complex (Biggs et al., 2006; Wang et al., 2006). Cohesin becomes stably associated with chromatins during S and G2 (Gerlich et al., 2006), and perhaps this is necessary for runx1 expression in a particular developmental context. Runx1 degradation is also concomitant with cohesin cleavage at G2-M.

Runx proteins appear to have cell cycle-specific functions. Overexpression of Runx1 causes a shortening of G1 phase (Strom et al., 2000) and Runx1 physically interacts with cyclin D3 to repress its own transcription (Peterson et al., 2005). During mitosis, Runx2 selectively regulates specific target genes (Young et al., 2007b), and represses transcription of ribosomal RNA genes (Young et al., 2007a). These authors also reported similar unpublished observations for Runx1. Therefore, Runx proteins might regulate cell growth through control of ribosomal biogenesis, and it was proposed that by this mechanism Runx proteins might coordinate cell proliferation and differentiation. Clearly, Runx proteins provide a mechanistic link between the cell cycle and development. Therefore a mechanism by which Runx gene expression is coordinated with the cell cycle would make sense. Cohesin is an integral part of the cell cycle machinery, and is therefore a good candidate to participate in cell cycle-dependent gene regulation.

Cohesin-dependent gene regulation and the implications for development

There are a number of human developmental disorders associated with loss of sister chromatid cohesion, including CdLS (Krantz et al., 2004; Musio et al., 2006; Strachan, 2005). This raises the interesting possibility that such developmental disorders might be contributed to by a reduction in Runx gene expression in embryogenesis, as a result of reduction in cohesin function. CdLS patients present with neurodevelopmental, gastrointestinal and skeletal abnormalities (Strachan, 2005). The development of each of these systems depends on the proper regulation of Runx proteins, which are themselves dose-sensitive in function (Blyth et al., 2005).

In summary, our findings provide strong evidence for a novel developmental function for cohesin. The next challenge will be to determine exactly how cohesin contributes to regulation of gene expression and developmental pathways.

The authors thank Wendy Flühler for excellent technical assistance, Anassuya Ramachandran for help with quantitative PCR, Alhad Mahagaonkar and Peter Cattin for zebrafish husbandry, and Latifa Khan for help with screening the F1. We also thank Debbie Yelon, Didier Stainier, Joan Heath and members of the Stainier, Heath and Lieschke laboratories for screening and mapping advice, and Helen Richardson for critical reading of the manuscript. This work was supported by Health Research Council of New Zealand grant 04/120 to P.S.C., J.A.H., and K.E.C.

Supplementary material

Supplementary material for this article is available at http://dev.biologists.org/cgi/content/full/134/14/2639/DC1

References

Cohesin-dependent regulation of Runx genes

Table S1. Homozygous rad21^{nz171} embryos are rescued by microinjection of mRNA from zebrafish rad21 and human RAD21, but are not rescued by the zebrafish rad21^{G277X} mutant mRNA

<table>
<thead>
<tr>
<th>mRNA injected, amount</th>
<th>Rescue read-out</th>
<th>Number of experiments</th>
<th>Number of embryos injected</th>
<th>Number of rad21<sup>nz171</sup> mutants</th>
<th>Number of mutants rescued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zebrafish rad21, 100 pg</td>
<td>Rescue of hematopoietic runx1 expression</td>
<td>3</td>
<td>156</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Decrease in phosphohistone H3 labeling</td>
<td>3</td>
<td>90</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>1</td>
<td>49</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Human RAD21, 100 pg</td>
<td>Rescue of hematopoietic runx1 expression</td>
<td>5</td>
<td>254</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>1</td>
<td>57</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Zebrafish rad21<sup>G277X</sup> mutant mRNA, 100 pg</td>
<td>Morphology</td>
<td>1</td>
<td>87</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

Embryos were injected at the 1-cell stage with capped mRNA, and rescue of mutants was scored at 14 somites for runx1 rescue, 24 h.p.f. for phosphohistone H3 labeling and at 48 h.p.f. for morphology. Partial rescue alone was scored because completely rescued embryos would be indistinguishable from wild-type siblings.