Transgenesis upgrades for Drosophila melanogaster

Koen J. T. Venken1 and Hugo J. Bellen1,2,3,4

Drosophila melanogaster is a highly attractive model system for the study of numerous biological questions pertaining to development, genetics, cell biology, neuroscience and disease. During the past few years, transgenic techniques available in this organism, particularly with respect to integrating DNA at specific sites in the genome. These new approaches will greatly facilitate the structure-function analyses of Drosophila genes, enhance the ease and speed with which flies can be manipulated, and should advance our understanding of biological processes during normal development and disease.

Introduction

During the past few years, Drosophila melanogaster has gained in popularity because of the availability of its genome sequence (Adams et al., 2000), its rapid life cycle, the relative ease with which it can be handled and the multitude of genetic tools that are available for its study (Greenspan, 2004). The fly’s genome permits the most sophisticated manipulations of any of the known eukaryotes. Indeed, the number of existing and recently developed technological improvements, such as genome-wide transposon tagging and gene targeting (Venken and Bellen, 2005) and the availability of numerous resources, including online databases such as FlyBase and stocks from fly stock centers (see Box 1 for links to some of these resources) (Matthews et al., 2005), greatly facilitate research in the field and move it forward at a relentless pace. These technologies and resources further the study of various aspects of developmental biology, genetics, cell biology, neuroscience and behavior. Indeed, the identification of novel genes and their functional characterization in vivo greatly depends on these available tools. Moreover, as most human disease genes have a counterpart in the Drosophila genome, including those involved in genetic disorders and cancer (Bier, 2005; Vidal and Cagan, 2006), the fly is also becoming increasingly popular for studying the molecular mechanisms of human disease. Much of this research relies on an efficient and reliable transgenesis system.

Transgenesis in general can be defined as a group of technologies that allow DNA to be introduced into an organism of choice. The main goal of transgenesis is to integrate a foreign piece of DNA – a transgene – into an organism’s genome to result in germ line transmission (see Fig. 1), in order to study gene function. Insect transgenesis, in general, has been dominated by transposon-mediated integration (Handler and James, 2000). In Drosophila, transgenesis mainly relies on the P element transposon and this has been the foundation for most of the innovative developments within the fly field (Ryder and Russell, 2003). However, various improvements in fly transgenic techniques have been recently reported that predominantly employ the site-specific integration of transgenes at specific genomic docking sites (see glossary, Box 2) via the use of different recombinases and integrases (Groth et al., 2004; Oberstein et al., 2005; Horn and Handler, 2005; Bateman et al., 2006; Venken et al., 2006; Bischof et al., 2007). Many of these advances have their origins in mouse molecular genetics (Seibler and Bode, 1997; Betke and Sauer, 1997; Bouhassira et al., 1997; Groth et al., 2000; Thyagarajan et al., 2001) and have been very useful for developing new fly transgenic techniques, as discussed below.

Here, we summarize many of the current methods that are used to generate transgenic flies. We first review classical transposon-mediated transgenesis and site-specific integration methods, before describing a plethora of recent improvements that have their basis in site-specific integration systems.

Transposon-mediated transgenesis in Drosophila

Transgenesis can be performed through various techniques. In Drosophila, transgenesis mainly relies on the P element transposon, the introduction of which (Rubin and Spradling, 1982) has been one of the most important breakthroughs in germ line transgenesis in Drosophila. As such, Drosophila research has been highly dependent on P element-mediated transgenesis, even though it has two major drawbacks: the size of the DNA that can be integrated is limited and the insertion sites cannot be controlled.

P elements are transposable elements, or transposons, which were originally identified within the fly’s own genome (Castro and Carareto, 2004). P elements, like other transposons, contain two terminal repeats, including inverted repeat sequences and other internally located sequence motifs absolutely required for their

Box 1. Relevant websites

DrosDel: docking site stock center for FLP remobilization. http://www.drosdel.org.uk
FlyBase: general online fly resource. http://www.flybase.org
C31 fly stocks at the Bloomington Drosophila Stock Center: http://flystocks.bio.indiana.edu/Browse/misc-browse/phiC31.htm
RMCE website: F′C31 integrase-mediated RMCE, plasmids and fly stocks. http://genepath.med.harvard.edu/WuLab/RMCE
Vienna Drosophila RNAi Center: transgenic RNAi fly lines. http://www.vdrc.at
transposase and the element-mediated transgenesis requires the separation of the P transposition through both terminal repeats of the transposon. A plasmid that encodes P transposase, a so-called helper plasmid, is provided in trans with another plasmid (the transgene) that contains the transposon backbone, the sequence of interest and a marker (see Fig. 2B) (Karess and Rubin, 1984). In vitro synthesized mRNA that encodes the transposase or purified transposase protein itself (Kaufman and Rio, 1991) can also be co-injected with modified P elements. Co-injections limit transposase activity, which is often advantageous. Alternatively, the transposase can be expressed from a genomic source (Cooley et al., 1988), allowing the injection of a P element without a helper plasmid. Transgene expression can be rendered constitutive or inducible through the inclusion of a heat-shock promoter. A hyperactive form of P transposase has been isolated that results in increased transposition rates (Beall et al., 2002). In general, transposons are injected into fly strains that are devoid of the same transposon, avoiding unwanted mobilization events of transposons present in the genome, thereby ensuring the stable integration and maintenance of the injected transgene. The unbiased identification of integration events is crucial for transgenesis and predominantly relies on the incorporation of dominant markers, which are identified through screening or selection (see Table 2 and Box 3 for more information).

Transposition occurs by the excision or replication of the transposon from the injected plasmid and its insertion into the host genome. Different transposons have unique insertion site characteristics. Integration events of P elements are strongly biased towards the 5′ end of genes. Hot spots – insertion sites that attract P elements at a much higher frequency than others – also exist within the Drosophila genome (Spradling et al., 1995; Bellen et al.,

Fig. 1. Drosophila transgenesis. *white* transgene DNA (red) is injected into generation zero Drosophila embryos (G0) of less than 1 hour old, which have been obtained from a parental (P) generation. The early developmental stages of Drosophila embryos are characterized by rapid nuclear divisions that occur without accompanying cell divisions, creating a syncytium. Prior to cellularization, pole cells (black) bud off at the posterior end. For germ line transmission to occur, the transgenic DNA must be taken up into the pole cells that are fated to become germ cells. Transgenic DNA integrated into a pole cell (red pole cell) can be transmitted from one generation (G0) to the next (G1 progeny). The resulting integration events are identified using an appropriate marker, such as as *white*. When used in a mutant *white* strain, this transgene marks transgenic flies by giving them a darker eye color (see Table 2 and Box 3 for more information on the markers used in fly transgenesis).
Insertion site duplication because elements do not remobilize efficiently (Lozovsky et al., 2002), and *mauritiana* (Franz and Savakis, 1991) and *Drosophila hydei* (hAT) family members. *Drosophila* transposons function in a variety of organisms, but their use in *melanogaster* (*Musca domestica* (Blackman et al., 1989; Smith et al., 1993), isolated from the *hobo* Box 3).

Events are identified by dominant markers (green, and see Table 2 and regulated transposition of transgenes into the genome. Transposition vector/helper transposon transformation system that allows the transposon-mediated integration of transgenes has been used for numerous experiments in the fly field. These experiments can be broadly subdivided into two main groups: gene disruption methods and transgenic technologies. Gene disruption occurs when a transposon insertion interferes with the function of a gene. Transgenic technologies usually involve introducing the different components of novel techniques (see below) or performing rescue experiments.

Almost all technological progress in flies depends on our ability to transform them. Indeed, *P* element-mediated enhancer detection (O‘Kane and Gehring, 1987; Bellen et al., 1989; Bier et al., 1989), the use of the FLP/FRT system to create mutant clones by inducing mitotic recombination (see glossary, Box 2) (Xu and Rubin, 1993), the gene knockout methods in flies (Rong and Golic, 2000; Gong and Golic, 2003), the creation of molecularly defined deletions throughout the genome (Thibault et al., 2004; Ryder et al., 2004), the generation of marked mutant clones by MARCM (see glossary, Box 2) (Lee and Luo, 1999), and many other technological advances have relied on transgenesis. The recent availability of a genome-wide library of RNAi transgenic insertions that allows the knockdown of most fly genes (Dietzl et al., 2007) will also provide an invaluable tool to study gene function.

In addition, transposon-mediated phenotypic rescue of a mutation is considered to be the best and most convincing evidence that a piece of DNA contains a gene of interest. Unfortunately, traditional high-copy-number plasmids, including the *P* element-containing plasmids, have a limited cargo capacity of ~20-25 kb of DNA owing to plasmid instability in bacteria. To circumvent this, *P* elements were engineered in a medium-copy-number cosmid backbone (Haenlin et al., 1985; Steller and Pirrotta, 1985), providing a higher cargo capacity of up to 40-50 kb. Unfortunately, the difficulties associated with obtaining integration of 30-50 kb *P* element-based cosmids did not promote the use of this methodology. As a result, a transgenic cDNA rescue based on the GAL4/UAS system (see glossary, Box 2) (Fischer et al., 1988; Brand and Perrimon, 1993) or heat-shock induction (Basler and Hafen, 1989) became more popular.

Neutralization of position effects

One of the major drawbacks of *P* element-mediated transgenesis is that *P* elements most often integrate into the 5' regulatory regions of genes (Bellen et al., 2004), thereby causing two unwanted consequences. First, the insertion often disrupts another gene that may or may not be relevant (e.g. within the same pathway) to the gene that is being studied (Norga et al., 2003). Second, the gene within the transposon may be subject to unwanted position effects or to position effect variegation (see glossary, Box 2) dictated by the surrounding

<table>
<thead>
<tr>
<th>Transposon</th>
<th>Inverted repeats (bp)</th>
<th>Insertion site preference</th>
<th>Target site duplication (bp)</th>
<th>Species compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>P element</td>
<td>31</td>
<td>5' end of genes</td>
<td>8</td>
<td>Drosophilidae only</td>
</tr>
<tr>
<td>piggyBac</td>
<td>13</td>
<td>TAA</td>
<td>4</td>
<td>Broad</td>
</tr>
<tr>
<td>Minos</td>
<td>255</td>
<td>TA</td>
<td>2</td>
<td>Broad</td>
</tr>
<tr>
<td>Mariner</td>
<td>28</td>
<td>TA</td>
<td>2</td>
<td>Broad</td>
</tr>
<tr>
<td>Hermes</td>
<td>17</td>
<td>Low sequence specificity</td>
<td>8</td>
<td>Broad</td>
</tr>
<tr>
<td>hobo</td>
<td>12</td>
<td>Low sequence specificity</td>
<td>8</td>
<td>Broad</td>
</tr>
</tbody>
</table>
Development 134 (20)

Table 2. Dominant marker genes for Drosophila transgenesis

<table>
<thead>
<tr>
<th>Dominant marker*</th>
<th>Screening/selection (compound)</th>
<th>Mutant line required</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>Screening</td>
<td>Yes</td>
</tr>
<tr>
<td>yellow</td>
<td>Screening</td>
<td>Yes</td>
</tr>
<tr>
<td>rosy</td>
<td>Screening</td>
<td>Yes</td>
</tr>
<tr>
<td>vermilion</td>
<td>Screening</td>
<td>Yes</td>
</tr>
<tr>
<td>3xP3 ‘fluorescent protein’</td>
<td>Selection (G418)</td>
<td>No</td>
</tr>
<tr>
<td>hs-opd</td>
<td>Selection (paraoxon)</td>
<td>No</td>
</tr>
<tr>
<td>Resistant to dieldrin (Rfd)</td>
<td>Selection (dieldrin)</td>
<td>No</td>
</tr>
<tr>
<td>Alcohol dehydrogenase (Adh)</td>
<td>Selection (ethanol)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*white, rosy, rough and vermilion are eye color markers, whereas yellow is a body color marker. hs-neo encodes a heat shock–inducible neomycin-selectable marker (Steller and Pirrotta, 1985), hs-opd encodes a heat shock–inducible insecticide-degrading enzyme (Benedict et al., 1995), Resistant to dieldrin (Rfd) encodes the GABA-A receptor (Stilwell et al., 1995) and Alcohol dehydrogenase (Adh) encodes an enzyme involved in ethanol catabolism (Goldberg et al., 1983).

Genomic environment. Insertions in the regulatory region of a gene, on which nearby cis-acting elements typically act, bring the gene into an environment that is almost certainly subject to unwanted regulation. Indeed, position effects and position effect variegation were observed early on for markers such as white (Hazelrigg et al., 1984; Levis et al., 1985) and were eventually exploited in different kinds of enhancer-trap screens to identify temporally and spatially restricted expression patterns of developmentally regulated genes (O’Kane and Gehring, 1987; Bellen, 1999).

Position effects can be partially neutralized through the incorporation of insulator sequences (Roseman et al., 1995). Insulators (see glossary, Box 2) tend to shield the transgene from regulatory influences imposed by the surrounding genome. Insulators, such as gypsy, have been used in some P element vectors because they are more mutagenic than other P elements that do not contain insulators (Roseman et al., 1995). They were also incorporated into P element reporter transposons developed to analyze gene regulatory sequences (Barolo et al., 2000; Barolo et al., 2004). Insulators allow for a better comparison of different transgene insertions at different loci. Yet insulators may also influence the expression of the gene that they flank within the construct and are still somewhat subject to position effects in the genome.

There are at least four alternative genetic strategies to neutralize position effects when different transgenes are being compared at the same locus. The simplest method is transgene coplacement (Siegal and Hartl, 1996), which allows any two transgenes, such as a rescue fragment and its mutant version, to be compared in the same locus. Both transgenes are integrated into a P element that contains the site-specific recognition sites FRT and loxp, the targets of FLP and Cre recombinases, respectively (see Box 4 for more information on these recombinases). After integration of the P element, FLP can remove one transgene and Cre can remove the other. Recognition sites are oriented such that either recombination event results in an identical configuration for either transgene. This method also introduced the use of Cre recombinase into the Drosophila field (Siegal and Hartl, 1996; Siegal and Hartl, 2000). One drawback of the technique is that only two transgenes can be compared at the same locus.

A second method is based on FLP recombinase-mediated transgene mobilization (Golic et al., 1997) (Fig. 4A). First, a ‘donor’ P element (see glossary, Box 2), containing a transgene together with the white* marker flanked by FRT sites, is integrated into the fly genome using P transposition, resulting in a donor site.

Second, the transgene with the white* marker, flanked by FRT sites, is mobilized through FLP excision. This episomal fragment (see glossary, Box 2) can integrate into a second single FRT-containing ‘acceptor’ transposon (see glossary, Box 2), which also carries another dominant marker and is located elsewhere in the genome. Successful mobilization events can be identified through screening, as relocation usually results in changes in white* marker expression owing to position effects. This strategy is facilitated if a split white* marker strategy is integrated into the system (Fig. 4B): the white* marker is separated into 5’ and 3’ fragments, and only becomes functional after the reconstitution of these fragments through site-specific recombination within an intron located between both fragments (Golic et al., 1997). In FLP recombinase-mediated transgene mobilization, white expression is only obtained after correct mobilization and site-specific integration (Fig. 4C), facilitating the screening procedure of integration events. Interestingly, thousands of P element insertions obtained by the Box 3. Dominant marker genes for Drosophila transgensics

Identifying transgene integration events is crucial for transgenesis and relies on the incorporation of dominant markers, which are identified through screening or selection (Table 2). The former relies on the rescue (see glossary, Box 2) of a visible mutant phenotype that minimally affects viability.

Two popular markers are the adult eye color marker white and body color marker yellow (see Table 2). The mini-white gene is one of the most widely used white markers (Pirrotta, 1988), and is present in two of the most often used P element plasmids, p(PUAST) for G418(LAS overexpression (see Box 2) (Brand and Perrimon, 1993) and the pP(CaSpeR) plasmid series for genomic rescue experiments (Thummel and Pirrotta, 1992; Le et al., 2007). A useful variant is hsp70-white, a heat shock promoter-driven white (Klemenz et al., 1987). Transgenic events are identified by the expression of eye color, which ranges from pale yellow to wild-type red owing to strong gene dosage and position effects (see Box 2), in a white mutant background. See Table 2 for more on the other eye markers, rosy (Rubin and Spradling, 1982), vermilion (Fridell and Searles, 1991) and rough (Lockett et al., 1992). The most frequently used body color marker is mini-yellow, an intron-less version of the yellow gene that is less subject to position effects (Patton et al., 1992) and which imparts a gray/tan color to the adult cuticle in a yellow mutant background (see Table 2).

Recently, fluorescent protein-based markers have been developed, which are also used in other insects and organisms (Horn et al., 2002). One popular marker is a fusion between an artificial eye-directed promoter, 3xP3, and a fluorescent protein, such as enhanced green fluorescent protein (EGFP) (Berghammer et al., 1999; Horn et al., 2000). A combination of different fluorescent proteins permits the identification of various transgenes (Horn and Wimmer, 2000; Horn et al., 2002); transgenic events are identified visually under a stereomicroscope. The polyubiquitin promoter is also used to drive fluorescent protein expression (handler and Harrell, 1999). Fluorescent markers are less position-dependent than white* (Handler and Harrell, 1999; Horn et al., 2000), especially when used with insulator sequences (see Box 2) (Sarkar et al., 2006). Because wild-type eye pigmentation quenches fluorescence, 3xP3-driven transgenesis is often best performed on a white mutant background (Horn and Wimmer, 2000; Horn et al., 2000). A 3xP3-white transgene, containing the 3xP3 promoter fused to a white cDNA, has recently been described (egli et al., 2006). Four selectable markers are also available (see Table 2 for more information) (Goldberg et al., 1983; Steller and Pirrotta, 1985; Benedict et al., 1995; Stilwell et al., 1995).
DrosDel project (see Box 1) were generated by the mobilization of the P[RS5] and P[RS3] transposons (Golic and Golic, 1996) and were subsequently used for the generation of precise deletions (Ryder et al., 2004). Both transposons can be used as acceptor elements for in vivo FLP-mediated DNA mobilization using the split white+ marker strategy, and they provide numerous docking sites that are dispersed all over the fly genome (Fig. 4D,E). A drawback of FLP recombinase-mediated transgene remobilization in general is that a second round of crossings for remobilization and screening has to be performed after an initial P element-mediated transformation to obtain the required integration events of donor elements.

A third genetic trick to neutralize position effects is P element replacement or targeted transposition (Gloor et al., 1991; Lankenau and Gloor, 1998). An ‘acceptor’ P element inserted at one location is replaced by a second ‘donor’ P element, integrated at another location, through in vivo gap repair (Fig. 5). The technique requires homologous recombination between the 10-20 bp footprints of the 31 bp inverted terminal repeat that remain after excision of the acceptor element and the homologous counterpart of the donor element. The homologous recombination event is promoted owing to a double-stranded gap that is generated after the excision of the acceptor element. Various donor P elements can be targeted to the same locus, allowing different transgenes to be directly compared with each other. A drawback of the technique is that replacement can occur in both directions, requiring additional molecular verification. The technique has not been used to perform structure-function analysis of differently mutagenized transgenes but has been proven useful for converting existing lacZ enhancer-detector...
Site-specific recombinases and integrases (SSRIs) often require only two components: a site-specific enzyme, which, preferentially, functions without additional proteins, and a pair of DNA recombination sites (RSs) (Sorrell and Kolb, 2005). SSRIs are subdivided into the tyrosine and serine recombinases, which use a conserved tyrosine and serine residue during recombination, respectively. Commonly used tyrosine recombinases are Cre and FLP. Cre (causes recombination of the bacteriophage P1 genome) recognizes minimal loxP (locus of crossing-over) (P1) RSs of 34 bp, which consist of two 13 bp perfect inverted repeats (red) flanking an 8 bp asymmetric spacer (black) that confers directionality (Hoess et al., 1982) (see figure). Likewise, FLP (flips DNA) recognizes minimal FRT (FLP recombination target) RSs of 34 bp and has a similar configuration to loxP but with a different sequence (McLeod et al., 1986) (see figure). A genuine FRT RS, absolutely required for site-specific integration, consists of 48 bp, containing an additional isolated base pair and a third 13 bp direct repeat (see figure).

A commonly used serine recombinase is the integrase from the Streptomyces bacteriophage ΦC31 (see figure) (Thorpe and Smith, 1998). ΦC31 integrase recognizes a minimal high-efficiency attP RS (attachment site in the phage genome) of 39 bp and a minimal high-efficiency attB RS (attachment site in the bacterial genome) of 34 bp (Groth et al., 2000). attP and attB sites contain imperfect inverted repeats (red) flanking a short recombination core (TTG, black) that provides directionality (see figure).

Recombination between two RSs can lead to an inversion, integration/excision or recombinase-mediated cassette exchange (RMCE), depending on the orientation and types of RS (see figure). A translocation can also occur if the RSs are on two different chromosomes (not shown). The presence of two compatible RSs results in a recombination event, which in the case of FRT or loxP leads to the reformation of a still functional RS, potentially resulting in additional recombination (see figure). A translocation can also occur if the RSs are on different chromosomes (not shown). Recombination between two RSs can lead to a duplication that can be resolved during a second round of homologous recombination (Fig. 6A) (Rong et al., 2002). Replacement gene targeting results in the substitution of an endogenous DNA sequence with exogenous DNA through a double-reciprocal recombination event between two stretches of homologous sequence (Fig. 6B). Both strategies require the introduction of a ‘donor’ element, which contains the gene-targeting cassette, through transgenesis prior to in vivo homologous recombination, and require extensive screening. Although the techniques have not been used to compare the phenotypic outcome of different transgenes at the same locus, they are gaining in popularity for creating targeted mutations (O’Keefe et al., 2007).

Recent efforts have focused on making gene targeting more efficient in Drosophila through the use of site-specific zinc-finger-nuclease–stimulated gene targeting (Bibikova et al., 2003; Beumer et al., 2006). Zinc-finger nucleases are protein fusions between the FokI nuclease and (generally) three zinc-finger DNA-binding domains that introduce sequence specificity. Because each zinc finger recognizes 3 bp, zinc-finger nucleases can be designed to bind to a unique segment of 9 bp. As these nucleases need to dimerize at the target site before they can cut the target DNA, a recognition site of 18 bp is effectively required, a sequence that is
likely to be unique in the fly genome. Thus, cutting by zinc-finger nucleases can be directed to specific target sites to create a double-stranded break, resulting in increased gene-targeting efficiency when a linearized donor targeting element is introduced.

Site-specific transgenesis for Drosophila

Although all the strategies of site-specific integration described above are elegant and useful, they have not been used extensively. The main drawbacks are that they allow only a limited number of transgenes to be compared and are too labor-intensive, as they require transgenesis of a donor construct prior to extensive genetic screening to obtain the required site-specific transgenic insertion event. Hence, the primary goal of true-targeted transgenesis is to achieve efficient site-specific integration upon injection of the DNA without the need for further manipulations.

This strategy was pioneered in the fly field using the bacteriophage ΦC31 integrase, which can integrate transgenic constructs at defined docking sites (Groth et al., 2004). Moreover, ΦC31 integrase-mediated transgenesis allows large DNA fragments to be integrated into the fly genome, well beyond the fragment sizes that can be introduced by P element-mediated integration (Venken et al., 2006). As discussed in more detail below, this approach has also introduced a user-friendly DNA modification platform, called recombinase-mediated cassette exchange (RMCE) (Baer and Bode, 2001).

![Diagram of P element replacement](image)

Fig. 5. P element replacement. (A) Two P elements, an acceptor element, containing marker 1 (orange), and a donor element, containing transgenic insert (red) and marker 2 (yellow), are brought together. (B) In the presence of P transposase, the acceptor element might excise. (C) This excision might promote double-stranded gap repair through homologous recombination between the 10-20 bp footprints (pink) of the 31 bp inverted terminal repeats at the acceptor site (blue) and the similar sequence at the donor site (green). (D) This results in the integration of the donor element into the acceptor locus.

shown that the ΦC31 integrase can catalyze the site-specific integration of attB-containing plasmids into so-called attP-containing ‘docking’ or ‘landing’ sites that have been introduced into mammalian cell lines (Groth et al., 2000; Thayagarajan et al., 2001). Interestingly, attB-containing plasmids integrate more readily into attP-containing genomic docking sites than do attP sites in the reciprocal reaction, indicating that the integration reaction is asymmetric in nature (Thayagarajan et al., 2001; Beltki et al., 2003). This phenomenon was recently confirmed in *Drosophila* (Nimmo et al., 2006).

In *Drosophila*, recombination is mediated via ΦC31 integrase, provided through an mRNA source, between an attP docking site, previously integrated with a transposon into the fly genome, and an attB site present in an injected plasmid (Groth et al., 2004) (Fig. 7A). Three so-called pseudo-attP docking sites have been identified within the *Drosophila* genome. As one of these pseudo-sites is located in the endogenous transposable element *copia*, the true number of available pseudo-sites is likely to be high (Kaminker et al., 2002). Fortunately, these pseudo-sites were shown not to be receptive to attB plasmids, as all integration events were at the desired attP sites (Groth et al., 2004). However, rare non-specific integrations have been documented in *Drosophila* (Venken et al., 2006; Nimmo et al., 2006; Bischof et al., 2007). The ΦC31 integrase-mediated transformation technique has also recently been introduced successfully in the yellow fever mosquito *Aedes aegypti* (Nimmo et al., 2006).

After the original report describing two attP P element docking sites (Groth et al., 2004), numerous additional docking sites have been created. One set is embedded in a piggyBac backbone (Venken et al., 2006), whereas a second set is embedded in a Mariner backbone (Bischof et al., 2007). Venken et al. (Venken et al., 2006) observed that one out of seven docking sites tested was not receptive, suggesting that the genomic position of the docking site can affect integration efficiency. This was not observed for the 19 sites tested by Bischof et al. (Bischof et al., 2007). A detailed characterization and comparison of all the available docking sites will allow us to determine which ones are the most useful for specific purposes, such as cDNA overexpression, RNAi, genomic rescue or promoter/enhancer analysis.

Although the first reports used mRNA-encoded ΦC31 integrase to integrate the DNA (Groth et al., 2004; Bateman et al., 2006; Venken et al., 2006), Bischof et al. (Bischof et al., 2007) recently reported an efficient germ line ΦC31 integrase source that is driven by *nanos* or *vasa* regulatory elements. Interestingly, through ΦC31 integrase-mediated transgenesis, different ΦC31 integrase sources have been incorporated at the same docking sites. Additionally, the same ΦC31 integrase source was integrated into different docking sites, allowing the most efficient genomic ΦC31 integrase source to be selected. In the same study, a *Drosophila* codon-optimized ΦC31 integrase was described that performs better than the non-optimized version (Bischof et al., 2007).

Site-specific integration using a single recombination site results in the integration of the vector backbone, which may interfere with transgene expression (Chen et al., 2003). This can be minimized through marker genes strategically positioned between transgene and vector backbone (Venken et al., 2006). Alternatively, appropriately engineered recombinase sites in both the docking site and integration plasmid can be used to remove unwanted vector backbone sequence after correct integration events are isolated (Bischof et al., 2007). Finally, the integration of the backbone can be directly avoided through recombinase-mediated cassette exchange (RMCE) (Baer and Bode, 2001).
In RMCE, both docking site and transgene are flanked by a recombination site (see Box 4 and Fig. 7). Double reciprocal crossover results in the integration of a transgene without its vector backbone. However, two sets of directly oriented loxP or FRT sites will favor deletion over RMCE. This problem can be overcome with sites, called spacer variants, that support recombination between themselves but not with others (see Box 4 for more information). The use of RMCE with spacer variants was initially utilized in the mouse in Cre- (Bethke and Sauer, 1997; Bouhassira et al., 1997) and FLP- (Seibler et al., 1998) based genetic engineering. This approach has been recently exploited in Drosophila for both recombinases (Oberstein et al., 2005; Horn and Handler, 2005) (Fig. 7B). For example, RMCE has been used elegantly to perform structure-function analysis of the eve2 (eve – FlyBase) enhancer with a lacZ reporter (Oberstein et al., 2005). An alternative way to ensure that RMCE avoids the deletion or integration of plasmid backbone when employing FLP or Cre, is to use inverted recombination sites (as shown for ΦC31 integrase in Fig. 7C), which was pioneered in the mouse using Cre (Feng et al., 1999). This strategy eliminates the deletion problem but causes inversions.

Interestingly, RMCE events can be locked using the ΦC31 integrase system, as these recombination reactions are unidirectional. Pioneered in the yeast Schizosaccharomyces pombe (Thomason et al., 2001) and in mouse (Belteki et al., 2003), a modification of this system using inverted att recombination sites was recently described for Drosophila (Bateman et al., 2006) (Fig. 7C). This study demonstrated that unmarked constructs can be integrated through RMCE, as site-specific integration events are identified by loss of the marker (Bateman et al., 2006).

Recombineering: BAC transgenesis for Drosophila

Transposons are generally characterized by a low cargo capacity, limiting the amount of DNA that can be integrated and mobilized. Transgene size limitation can be overcome by the incorporation of a site-specific integration system, such as ΦC31 integrase, as shown in a chicken cell culture system (Dafhnis-Calas et al., 2005), or by gene targeting at the Hprt1 locus in mouse embryonic stem (ES) cells (Heaney et al., 2004). Unfortunately, an intermediate cell culture system supporting both in vitro gene manipulation and subsequent germ line transmission, similar to mouse ES cells, is not available for Drosophila. Moreover, there

Fig. 6. Gene targeting in Drosophila. (A) Ends-in insertional gene targeting. The donor construct, within a P element, contains a region of homology (the targeting construct, red) interrupted by a restriction recognition site for the meganuclease I-SceI and flanked by FRT recognition sites for FLP recombinase. It also contains a marker (white*) and an appropriately located restriction recognition site for the meganuclease I-CreI for a second round of homologous recombination. After P element transgenesis, a linearized episome is generated in vivo by FLP and I-SceI. Correct targeting results in white* expression and a tandem duplication of the locus. This duplication can be reduced to single copy using I-CreI, resulting in loss of white*.

(B) Ends-out replacement gene targeting. The donor construct, within a P element, contains a region of homology interrupted by a white* marker and is flanked by restriction recognition sites for the meganuclease I-SceI and FRT recognition sites for FLP recombinase. After P element transgenesis, identified by white*, linearized targeting DNA is generated in vivo by FLP and I-SceI. Correct targeting results in a white* phenotype and replacement of part of the locus.
is a strong negative correlation between the upper size limit of the insert and plasmid copy number: large DNA fragments are unstable when present in high-copy-number vectors in bacteria. Therefore, low-copy-number plasmids, such as P1 bacteriophage (Sternberg, 1990), bacterial artificial chromosomes (BACs) (Shizuya et al., 1992) and P1 artificial chromosomes (PACs) (Ioannou et al., 1994), were developed to maintain large inserts. Therefore, low-copy-number plasmids, such as P1 bacteriophage insert and plasmid copy number: large DNA fragments are unstable when present in high-copy-number vectors in bacteria. Consequently, the manipulation of large DNA fragments in these vectors has been facilitated through recent developments in in vivo recombineering-mediated genetic engineering, also known as recombineering (Copeland et al., 2001; Heintz, 2001; Muyrers et al., 2001; Sawitzke et al., 2007).

Three recently developed technologies – recombineering, the ability to amplify plasmid copy number at will, and P element transposase for integration – have recently been integrated into a single transformation system (Venken et al., 2006). This system provides an efficient recombineering platform for Drosophila, permitting the integration of large DNA fragments into the fly genome. Selected fragments that encode the gene of interest are obtained in the amplifiable BAC backbone through recombineering-mediated gap repair, which can be performed at low copy number (Fig. 8A). Gap repair in high-copy and medium-copy plasmids has an upper size limit of ~30 and 80 kb, respectively (Lee et al., 2001). However, by maintaining the plasmid at low copy number, large fragments of up to 102 kb can be efficiently gap-repaired (Venken et al., 2006), as observed by others (Kotzamanis and Huxley, 2004). Interestingly, one 133 kb fragment that encodes one of the largest genes in the fly genome, Tenascin major, was reconstituted from two different BACs, each containing part of the gene (Venken et al., 2006). Gap-repaired DNA was induced to high copy number, isolated, and integrated into the fly genome using both P transposase and P element transposase (Venken et al., 2006). Gap-repaired DNA was used to integrate gap-repaired fragments of up to 39 kb, whereas P element transposase was used to integrate gap-repaired fragments of up to 133 kb.

A similar gap-repair approach was recently used to generate transgenes for Drosophila in vivo (Takeuchi et al., 2007). The gap-repaired constructs were obtained in flies through homologous recombination into the endogenous locus after the in vivo linearization of the transgene between both homology arms using the meganuclease I-SceI (Fig. 8B). The technique relies on endogenous fly enzymes, rather than on bacterial enzymes, to mediate the gap repair. The authors observed an upper size limit of 28 kb for correct gap repair.

An important reason for the development of recombineering is the ease with which DNA can be modified. Indeed, restriction enzymes and DNA ligase are not user-friendly when handling large DNA fragments.
fragments, as the occurrence of unique cutting sites decreases with increasing plasmid size. Recombineering does not suffer from those limitations and allows BACs to be modified more rapidly using PCR products or oligonucleotides that contain the desired mutation as recombination templates (Copeland et al., 2001; Court et al., 2002) (Fig. 9A). This strategy can easily be combined with positive/negative selectable markers, such as $galK$ and $thyA$ (Warming et al., 2005; Wong et al., 2005). Positive/negative selectable markers are targeted to the desired site for mutagenesis during a first round of recombineering using selection, and are then replaced by the desired mutation or tag during a second round of recombineering using counterselection (Fig. 9B). An alternative way to modify DNA constructs uses the recombinogenic protein RecA, also known as RecA-assisted modification (Yang et al., 1997; Gong et al., 2002), a methodology that is somewhat different from traditional recombineering. In a first recombination step, a modifying plasmid is integrated into the target plasmid, resulting in a co-integrate that becomes resolved during a second round of recombination (Fig. 9C). The technique allows the integration and deletion of fragments within a genomic fragment (Misulovin et al., 2001) and has been applied on a high-throughput level in the mouse field to create an atlas of gene expression in the mouse central nervous system (Gong et al., 2003). BAC modification was pioneered in the mouse field because most mouse genes tend to have multiple distant regulatory regions and are therefore too large to be handled using high-copy plasmid backbones (Heintz, 2001). The efficient recombineering-mediated tagging of genes in a genomic context has also been recently demonstrated in Caenorhabditis elegans and C. briggsae (Dolphin and Hope, 2006; Sarov et al., 2006).

Future applications

The advent of site-specific integration combined with recombineering and other methodologies will impact the fly field in numerous ways. These techniques make it possible to carry out structure-function studies at a higher resolution with fewer transgenes, as position effects can be mitigated using some of these approaches. Moreover, we are no longer confined to the study of single genes but can now tackle entire gene complexes that play key roles in development. Through repeated rounds of mutagenesis via recombineering, one can dissect the in vivo role of each gene and each regulatory region within a gene complex. Similar manipulations are now also possible for larger genes and for loci that have previously had no available mutations to study. These loci can now be identified and studied through the introduction of small deletions by FLP/FRT recombination (Parks et al., 2004; Ryder et al., 2004).

Combinations of the different methodologies described here should also greatly enhance our ability to manipulate the fly genome. For example, P replacement with an $attP$-containing P element could be used to convert many of the existing P elements into a useful docking site for $\Phi C31$ integrase-mediated transgenesis or RMCE. Alternatively, gene targeting of recombination sites at desired locations might allow the site-specific integration of any DNA fragment. Finally, $\Phi C31$ integrase-mediated transgenesis can be used to insert the donor constructs that are required for gene targeting. These are just a few examples of possible future fly manipulations.

In another vein, these technologies will also help to improve genome-wide studies of Drosophila. For example, one could try to identify optimal genomic sites for the integration of all RNAi...
constructs. These sites should permit the optimal expression of RNA hairpin loops in all tissues at all developmental stages to allow the efficient RNAi-mediated knockdown of any gene. This approach may alleviate some of the potential drawbacks that are associated with P transposase-mediated transgenesis of RNAi constructs, such as poor transgene expression or misregulation (Dietzl et al., 2007). Furthermore, many different genomic DNA fragments containing cis-regulatory elements that drive GAL4 expression could be integrated at the same docking site to allow the labeling and manipulation of specific cell populations. Finally, the integration of overlapping duplications of defined areas of the X chromosome into the same docking site would be a useful way to map essential genes on the X chromosome.

Each transgenesis technique might result in unwanted side effects. Transposases might cause multiple insertion and excision events before the final transgenic insertion is stabilized. Recombinases and integrases may recognize pseudo-sites localized within the genome, as previously identified for Cre in the mammalian genome (Thyagarajan et al., 2000). Moreover, at high doses, Cre has been demonstrated to result in undesired effects in both vertebrates (Schmidt et al., 2000; Loonstra et al., 2001) and Drosophila (Heidmann and Lehner, 2001). Detrimental side effects have been observed for ΦC31 integrase in mammalian cell culture (Ehrhardt et al., 2006; Liu et al., 2006), although ectopic expression in vivo in mice and Drosophila indicates that it has minimal side effects in these organisms (Belteki et al., 2003; Raymond and Soriano, 2007; Bischof et al., 2007). Even gene targeting in Drosophila has not been spared from artifacts, and second-site mutations have been shown to cause interference with phenotypic characterization (O’Keefe et al., 2007). Interestingly, so far no such observations have been documented for FLP, which is widely used within the fly community (Blair, 2003).

Unfortunately, the solution to an important problem such as efficient site-specific integration, immediately results in the creation of new challenges: the handling of thousands of fly strains associated with typical high-throughput projects, as well as the maintenance of thousands of new stocks. Recent methods for the automated microinjection of fly embryos for high-throughput in vivo RNAi experiments have been developed (Zappe et al., 2006), and it should now be possible to adapt this technology for DNA microinjections. However, no solution has yet been developed to maintain numerous additional fly stocks, except through the expansion of existing or new stock centers.

We apologize to those whose work could not be cited owing to space limitations. We thank Karen Schulze for comments on the manuscript. K.J.T.V. and H.J.B. are supported by the NIH and the Howard Hughes Medical Institute.
References

