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1985; Li and Vaessin, 2000; Walsh and Perlman, 1997). By contrast,
relatively little is known about the relationship between the cell cycle
progression and terminal differentiation in the heart.

Our previous work has demonstrated that cardiac cells that initiate
terminal differentiation retain the ability to divide (Goetz and
Conlon, 2007; Goetz et al., 2006). In the current study, we have
extended these findings to demonstrate that while cardiomyocytes
of the adult frog ultimately exit the cell cycle, cells expressing
markers of terminal differentiation are still undergoing cell division
at stage 42. By this stage, cardiac morphogenesis is largely complete
and all cardiac cells, including those still dividing, possess the
anatomical and molecular hallmarks of differentiation, suggesting
that in the heart the onset of terminal differentiation does not require
cell cycle exit. Our findings are broadly consistent with recent work
showing that cell cycle exit and terminal differentiation are
mechanistically separable processes (Goetz and Conlon, 2007;
Grossel and Hinds, 2006; Nguyen et al., 2006; Vernon and Philpott,

2003). As a corollary to these experiments, we have also examined
here the consequences of induced cell cycle arrest on cardiac
differentiation and found that blocking the cell cycle in S phase with
aphidicolin, or in M phase with colchicine, does not result in a block
in cardiac differentiation. Interestingly, however, we have found that
cell cycle arrest results in reduced expression of the early cardiac
markers Tbx5, Tbx20 and Nkx2.5. Thus, these findings are consistent
with the observation that none of these early cardiac proteins are
required for cardiac differentiation, and further imply that the
expression of these early cardiac transcription factors may be cell-
cycle-dependent.

Coinciding with programmed cell death, we also observe that
blocking SHP-2 activity leads to a failure of early cardiac cells to
fuse at the ventral midline. At present we cannot distinguish between
arole for SHP-2 mediating a trophic factor response and/or a role
for SHP-2 in cell adhesion. However, genetic studies in zebrafish
and mouse strongly imply that the inability of the cardiac fields to

Fig. 8. FGF functions through SHP-2 to
maintain the cardiac lineage. (A) Whole-
mount in situ hybridization for Thx5, Tbx20
and Nkx2.5 or whole-mount
immunostaining for MHC (red) performed
on explants treated with DMSO or the
FGFR1 inhibitor SU5402. (B) Explants
isolated from uninjected (control) or SHP-2
N308D-injected Xenopus embryos cultured
in DMSO or SU5402 and analyzed by in situ
hybridization for the cardiac markers Nkx2.5
and Tbx5. (C,D) Western blot analysis of
DMSO-, NSC-87877- (C) or SU5402- (D)
treated explants for phosphorylated and
total ERK; -tubulin was used as a loading
control. (E) Explants were cut at stage 22
and then incubated in either modified
Barth’s solution (MBS) or SU5402 until stage
35. Either endogenous SHP-2 was
immunoprecipitated (IP) or explants were
lysed (IB) and western analysis performed as
in Fig. 7B.
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fuse is not the primary cause of the downregulation of early cardiac
markers or the failure of SHP-2 inhibited explants to initiate cardiac
differentiation. For example, genetic mutations resulting in cardiac
bifida, such as gata5, hand2, casanova (sox32 — ZFIN), bonnie and
clyde and miles apart (edg5 — ZFIN) in zebrafish (Alexander et al.,
1999; Kupperman et al., 2000; Reiter et al., 1999) or Gata4 and
Mespl (Molkentin et al., 1997; Saga et al., 1999) in mouse, as well
as genetic mutations in cardiac cell adhesion proteins (Trinh and
Stainier, 2004), show no alteration in the expression of early cardiac
markers such as Nkx2.5 or of markers associated with terminal
differentiation. Therefore, it is most likely that the failure of cardiac
cells to migrate is a secondary consequence of cell survival or it
may be that SHP-2 has two temporally distinct roles in heart
development, in regulating cell adhesion and in cell survival.

SHP-2 and the FGF pathway

In this study we show that SHP-2 is phosphorylated on tyrosines 542
and 580 in the embryonic heart and that it co-immunoprecipitates
with FRS-2, demonstrating an in vivo interaction between SHP-2
and FRS-2 for the first time. Given that we have shown inhibitors of
both SHP-2 and FGFR to cause comparable cardiac phenotypes, and
that a constitutively active form of SHP-2 can rescue formation of
cardiac tissue in FGF-inhibited explants, we conclude that SHP-2
participates in the FGF signal transduction pathway in Xenopus
embryonic hearts.

Recent work examining the role of FGFs in response to cardiac
damage or injury lends further support for the direct role of SHP-2
in cardiac cell survival. The overexpression of both FGF-1 and FGF-
2 have been shown to promote the survival of adult cardiomyocytes
in response to ischemic injury in vivo (House et al., 2005; Jiang et
al., 2002; Jiang et al., 2004; Palmen et al., 2004), and the
cardioprotective effects of FGF-2 in the adult myocardium are
mediated through the MAPK pathway (House et al., 2005), the same
branch of the FGFR signaling cascade that we have shown in cardiac
tissue functions through SHP-2. Interestingly, the specific function
of FGF-2 in preventing programmed cell death in response to
ischemic insult was shown to be independent of its mitogenic or
angiogenic functions, suggesting that FGF-2 is functioning
specifically to promote cardiomyocyte cell survival (Jiang et al.,
2004). Together with our data showing that SHP-2 activity
downstream of FGFR is required for the maintenance of
proliferating cardiac progenitor cells, these data suggest that the
FGF/MAPK pathway functions in promoting cardiac progenitor cell
survival during development and further suggests that the FGF/SHP-
2/MAPK pathway must be maintained to promote survival of
cardiac progenitor cells in vitro. Intriguingly, the FGF/SHP-2
pathway has also recently been shown to be required for the survival
of trophectoderm stem cells and for the ability of hematopoitetic
stem cells to self-renew (Chan et al., 2006; Yang et al., 2006), thus
raising the possibility that the FGF/SHP-2 pathway is a common
pathway for progenitor cell survival.

What are the mechanisms by which SHP-2 acts to activate the
MAPK pathway and promote cell survival? Studies have shown that
SHP-2 acts as a positive regulator in the FGF pathway in at least two
ways, the first by acting as a scaffold to recruit GRB2, which in turn
recruits SOS, the guanine nucleotide exchange factor for RAS, this
leads to the activation of the ERK cascade, potentially resulting in
the destabilization of the pro-apoptotic protein BIM (Yang et al.,
2006). Alternatively, or concomitantly, SHP-2 may act as a positive
regulator in RAS signaling by inhibiting Sprouty, a key FGF/RTK
inhibitor (Christofori, 2003; Kim and Bar-Sagi, 2004; Tsang and
Dawid, 2004). Consistent with the later possibility, Sprouty has

recently been shown to be a direct substrate of SHP-2, and studies
have shown that one of the four mammalian sproutys, Sprouty 1, is
expressed in the heart and is upregulated upon cardiac insult
(Hanafusa et al., 2004; Huebert et al., 2004; Jarvis et al., 2006).
However, it remains unknown if any of the Sprouty family has an
endogenous role in early heart development or, if like in Drosophila,
Sprouty acts as an endogenous substrate of SHP-2 in vivo (Jarvis et
al., 2006).
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