












SDF1 in the pial meninges and its receptor CXCR4 in PCN are
crucial for controlling two distinct processes of PCN migration: (1)
positioning the migratory streams to the appropriate VP level; and
(2) regulating the anterior migration of pontine neurons.

Role of SDF1/CXCR4 signalling in the tangential
migration of PCN
Evidence suggests that SDF1/CXCR4 signalling controls the VP
position of migrating PCN in both the PES and AES, most likely
via chemoattraction by the meningeal SDF1: (1) PCN emigrating
from the LRL were attracted by the meningeal SDF1 in vitro; (2)
the highest SDF1 protein concentration was found in the pial
meninges and the pial surface of the hindbrain (Fig. 2), suitably
located to attract PCN to migrate along the marginal path. Thus,
the scenario presented here resonates with recent findings in the
developing cortex, where the meningeal SDF1 confines the
tangential migration of hem-derived Cajal-Retzius cells and a
subset of cortical interneurons to the marginal zone via
chemoattraction (Borrel and Marín, 2006; Li et al., 2008; Lopez-
Bendito et al., 2008; Tanaka et al., 2009). As SDF1 is expressed
in the pial meninges surrounding the entire central nervous system
(CNS) (McGrath et al., 1999; Tissir et al., 2004), these findings

imply that chemoattraction by the meningeal SDF1 could be a
general mechanism for controlling pathfinding events taking
place in the CNS marginal zone.

The second role of SDF1/CXCR4 signalling appears to be
regulating the anterior migration of pontine neurons. Two types of
defective anterior migration were observed in Cxcr4 knockout mice.
The first comprises pontine neurons that derail from the marginal
stream and migrate towards the midline deep within the
neuroepithelium. Two lines of evidence indicate that these neurons
may have completely failed to turn anteriorly. First, their leading
processes appear to orient circumferentially towards the midline in
Egfp-electroporated Cxcr4–/– samples (see Fig. S2 in the
supplementary material). Second, the deep ectopic cluster they
formed was located in rhombomeres (r) 6 and 7 (Y.Z. and F.M.,
unpublished), the axial levels where the pontine progenitors were
shown to originate by genetic fate mapping (Farago et al., 2006).
The second type of defect comprises pontine neurons that appear to
migrate marginally. Many of them are likely to have migrated for
some distances anteriorly, as most superficial type II clusters they
formed were located more anterior than the deep type I cluster.
Nevertheless, they failed to complete the full course of the anterior
pathway, turning towards the ventral midline prematurely in a rather
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Fig. 6. CXCR4 functions cell-autonomously in the migrating PCN. Egfp or Cxcr4 (with co-expressed Egfp) was introduced into the LRL of wild-
type (A,B,E,F) or Cxcr4–/– (C,D,G,H) mouse embryos by in utero electroporation at E12.5. (A-D) Transverse sections of E14.5 samples after EGFP and
laminin (labels the meninges) double immunohistochemistry. Insets show views of whole sections. Egfp electroporation labelled a marginal PES
directly abutting the laminin-positive meninges in the wild type (A). Expression of Cxcr4 in the wild type did not affect the appearance of the PES
(B). In Cxcr4–/–, PES appeared broadened, with many cells migrating at a distance from the pial surface (C). This defect was rescued by expressing
Cxcr4 in Cxcr4–/– LRL (D). (E-H) Whole-mount E16.5 hindbrains after electroporation at E12.5. Asterisks indicate the gV rootlets. In the wild type,
expressing either Egfp (E) or Cxcr4 (F) labelled similar profiles: a largely ipsilateral PN and the stereotypic anterior path of the AES (arrows in E and F).
Egfp electroporation in Cxcr4–/– labelled the posterior type I and type II clusters (G, arrowhead and open arrowhead, respectively). Note that the
characteristic anterior migratory path was missing. Cxcr4 expression in Cxcr4–/– LRL restored PN in their normal position as well as the anterior
migratory path (H, arrow). (I-J� ) Transverse sections at indicated axial levels in G and H, respectively. Higher-magnification of the boxed areas in I
and J are shown in I�-I� and J�-J� . (I) In Cxcr4–/– expressing only EGFP, many GFP-labelled cells were located in the type I ectopic cluster, many of
which were PAX6-positive (inset). But in Cxcr4–/– expressing CXCR4, few labelled cells were found in the type I ectopic cluster. Scale bars: 400μm in
A-D,I-I� ,J-J� ; 800μm in E-H.
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unpredictable manner. As both defects were rescued by expressing
Cxcr4 in the Cxcr4–/– LRL, it is unlikely that they were secondary
to disruptions in other hindbrain architectures.

Mechanisms of SDF1/CXCR4 signalling in the
anterior migration of pontine neurons
What is the mechanism(s) for the anterior migration of pontine
neurons? We think the two anterior migration defects reflect the
requirement of SDF1 in two distinct aspects.

The first type of defect in which cells went straight to the ventral
midline without apparent anterior turning may be secondary to their
failure in migrating marginally. This is because most pontine
neurons that migrated marginally travelled anteriorly for some
distances, as discussed above. If the guidance cue(s) instructing the
anterior migration is spatially confined to the pial surface, the
pontine neurons derailed from the marginal stream would miss the
cue(s) and escape its influence.

The second type of defect may reflect a direct involvement of
SDF1/CXCR4 signalling in the anterior migration of pontine
neurons. A most straightforward explanation would be that an
anterior-high posterior-low SDF1 gradient instructs the anterior
migration of pontine neurons by way of chemoattraction. Indeed,
we detected such a graded distribution of SDF1 protein underlying
the anterior migrating pontine neurons (see Fig. S4 in the
supplementary material). An instructive role of SDF1 is further
supported by the gain-of-function experiment that showed that
ectopic expression of SDF1 in the LRL prevented pontine neuron
precursors from leaving the LRL (see Fig. S5 in the supplementary
material). However, the fact that some marginally migrating
pontine neurons can move anteriorly for some distances suggests
the existence of other instructive cues. Alternative to, or in addition
to, the instructive role of SDF1, SDF1/CXCR4 signalling may
serve to modulate the responsiveness of pontine neurons to other
anterior guidance cue(s), as has been demonstrated in developing
retinal ganglion cell axons and sensory axons (Chalasani et al.,
2003; Chalasani et al., 2007).

SLIT2 expressed by the facial motor nucleus appears to regulate
the anterior migration of pontine neurons by preventing the
ROBO1/ROBO2-expressing pontine neurons from leaving their
anterior pathways prematurely (Geisen et al., 2008). It is unlikely
that SDF1/CXCR4 signalling promotes the anterior migration of
pontine neurons chiefly via modulating the SLIT-ROBO signalling
pathway, because the anterior migration defects reported here in
Cxcr4 or Sdf1 knockout mice were more severe than those in mice
depleted of SLIT-ROBO signalling: in the former, a majority of
pontine neurons failed to reach their normal anterior positions,
whereas in the latter only a minority failed.

Consequences of disrupted migration on
precerebellar nuclei formation
Precerebellar nuclei formation takes place as a consequence of proper
migration of PCN. The derailment from marginal migratory streams
in Cxcr4 knockout mice appears to be manifested differently in the
PES- and AES-derived nuclei. Whereas the derailed cells in the PES
can form the LRN and ECN in their normal positions, those in the
AES fail to migrate anteriorly and form a deep ectopic pontine cluster
at a posterior position. This difference could be due to two reasons.
First, the displacement from the marginal position in the PES is
smaller than that in the AES, meaning that the derailed PES cells may
be able to encounter instructive cues for nuclei formation. The smaller
derailment in PES might be due to the presence of additional guidance
cues for PES neurons in the marginal/submarginal region in the caudal
hindbrain. Second, whereas the PES is a straightforward ventral
migration, the AES is a tortuous trajectory comprising ventral-
anterior-ventral switches. Therefore, the consequence of failing to
migrate marginally earlier on was amplified by their failure to
encounter the anterior migratory cues.

Those pontine neurons that migrated marginally but fell short of
anterior migration formed multiple ectopic clusters that exhibited
left-right asymmetry. The fact that the pattern of this asymmetry
varies among individuals raises the possibility that it might arise as
a result of intrinsic and environmental noises that the developing
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Fig. 7. Corticospinal tract axons extend
ectopic collateral branches towards the
ectopic pontine clusters. (A) Schematic
depicting motor corticospinal tract (CST) in a
parasagittal plane of an early postnatal brain
(see O’Leary and Terashima, 1988). The box
outlines the approximate area shown in
B,C,E,F. (B,C) The DiI-labelled CST in a P5
Cxcr4fl/fl hindbrain shows stereotypic collateral
branching initiated from the CST segment
overlying PN. PN were labelled by PAX6
immunoreactivity (C). No notable site-specific
collateral branching occurred from the trunk of
CST posterior to PN. (D) Higher-magnification
of the PN region. (E-H) In a Wnt1-Cre;Cxcr4fl/fl

hindbrain, ectopic collateral branching
occurred at multiple locations along the trunk
of CST in the hindbrain, each one of which
was correlated with a PAX6-positive ectopic
pontine cluster. Two such sites (arrows in F) are
shown at higher magnification in G and H. pd,
pyramidal decussation. Scale bars: 200μm. 
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pontine neurons experience during their production and migration.
The fluctuations in phenotypes owing to noises might be normally
buffered and equalised between the left and right by an intact and
robust anterior guidance mechanism, but become unmasked
phenotypically when the robustness of that mechanism is weakened,
as might be the case in the Cxcr4 knockout. Interestingly, similar
left-right variations were reported in a recent study in which anterior
migration of pontine neurons was affected in Hoxa2-, Hoxb2-,
Phox2b-, Robo1-Robo2- and Slit1-Slit2-deficient mice (Geisen et
al., 2008). These observations taken together suggest that several
molecular mechanisms may contribute additively to the optimal
robustness of the anterior migration of pontine neurons.

Pontine neurons control the formation of
collateral branching from the CST
The presence of multiple ectopic pontine clusters in Cxcr4 knockout
mice tempted us to test in vivo whether the pontine neurons
themselves trigger the formation of collateral branches from the
CST, a possibility that was only inferred from in vitro evidence
(Heffner et al., 1990). By using a conditional knockout strategy to
circumvent lethality at birth, we could obtain postnatal pups that had
multiple ectopic pontine clusters. The motor CST in these samples
extended few collateral branches at the pontine flexure, as PN were
largely missing at their normal positions. Instead, we observed
multiple ectopic clusters of collateral branches posteriorly along the
CST, each of them correlated with an ectopic pontine cluster,
suggesting a causal relationship between these two events. As the
ectopic pontine clusters exist before the growth of motor CST, it is
reasonable to conclude that the ectopic pontine neurons trigger the
ectopic collateral formation.

It should be noted that not every ectopic pontine cluster was
accompanied by a collateral cluster. This could be because our focal
DiI injection labelled only a small fraction of motor CST axons.
However, an alternative is that only subpopulations of pontine
neurons can induce collaterals from the motor CST. In support of
this alternative is the mature pattern of motor corticopontine
projection in wild-type mice, in which collaterals arise at a specific
rostral and a caudal site from CST segments overlying PN. The
motor CST axons, however, seem to be capable of extending
collateral branches from diverse rostrocaudal positions within the
hindbrain in response to the induction of ectopic pontine clusters,
suggesting that these axons themselves do not have an intrinsic
mechanism that governs the sites of collateral extension. These
observations, taken together, provide the first in vivo evidence that
the formation of collateral branches from CST is controlled by cues
derived from pontine neurons.
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