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H) or the cellular response to induction (Fig. 7G, see Fig. S4A,B in
the supplementary material and below). Indeed, our results suggest
that internalised activin is destined for lysosomes rather than for re-
secretion and long-range signalling (Fig. 6). These results are
consistent with some aspects of previous work (Kinoshita et al.,
2006), but extend it by visualising activin ligand directly.

Our efforts to fit the extracellular distribution of Alexa488-activin
to an exponential or power trend line have failed, perhaps because
the bead used to supply the activin does not represent a continuous
source (see Fig. S1 in the supplementary material and data not
shown). We do observe, however, that the distribution of internalised
activin fits a power trend line to a good approximation from 2 hours
onwards. The elevated decay of activin close to the source of the
ligand suggests that the rate of intracellular degradation exceeds the
rate of uptake, because we show that significant amounts of activin
do not leave the cell after endocytosis (Figs 5 and 6).

Our conclusion that long-range signalling in Xenopus occurs
through an extracellular route differs from the suggestion made for
the Drosophila imaginal wing disc that Dpp might traverse cells by
transcytosis (Entchev et al., 2000; Gonzalez-Gaitan and Jackle,
1999). We note, however, that the Drosophila imaginal disc consists
of a closely packed polarised epithelium, whereas cells in the
Xenopus blastula are arranged as a looser mesenchyme. Contacts in
the Xenopus tissue are likely to be less stable and fewer in number
than in the imaginal disc, so that long-range signalling by
transcytosis is likely to be much less efficient in this tissue.

Receptor density but not Rab5-mediated
endocytosis influences signalling range
In some respects our results are consistent with those of Scholpp
and Brand (Scholpp and Brand, 2004), who find that inhibiting
internalisation of Fgf8 in the neurectoderm of the zebrafish
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Fig. 6. Colocalisation studies using Alexa488-activin. (A-F) Confocal images of dissociated Xenopus animal pole blastomeres incubated with
Alexa488-activin (green). Early endosomes are marked by the expression of a Rab5-Cherry construct (red). (A-C) Images acquired 30 minutes after a
10-minute treatment with labelled activin. (D-F) Images acquired 60 minutes after a 10-minute activin treatment. 
(G-I) Confocal images of dissociated animal cap cells treated with Alexa488-activin (green) and counterstained with LysoTracker Red. Images were
acquired 3.5 hours after a 10-minute treatment with labelled activin. Insets in A,D,G represent the area outlined in the main part of the image, and
show a merged image (top) and images taken using green (middle) and red (lower) fluorescence filters separately. (J-L) Control cells not exposed to
Alexa488-activin and counterstained with LysoTracker Red. (M-O) Cells treated with Alexa488-activin only. Images in B,E,H,K,M were acquired using
488 nm excitation and a narrow 521-531 nm filter for green fluorescence emission to reduce background. Images in C,F,I,L,O were acquired using
561 nm excitation and a narrow 601-613 nm filter for red fluorescence emission. All cells were seeded on glass-bottomed dishes that had been
coated previously with E-cadherin. (P) Quantitation of colocalisation of Alexa488-activin with the indicated fluorescent markers. An average of ten
cells was counted for each point, with each cell containing at least ten aggregates of Alexa488-activin.
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extends its signalling range, while elevating internalisation
reduces it. Consistent with these results, our data show that an
increase of the ligand-receptor interaction surface due to
overexpression of an activin receptor causes the accumulation of
ligand inside and at the surface of responding cells, and this
prevents its movement further into responding tissue (Fig. 4).
Similarly, in Drosophila, levels of a type I receptor limits the

range of Dpp signalling (Lecuit and Cohen, 1998). Together, our
data remain consistent with a model in which long-range
signalling by morphogens occurs by simple extracellular diffusion
(Belenkaya et al., 2004; Lander et al., 2002).

However, in contrast to Scholpp and Brand (Scholpp and Brand,
2004), we find that inhibition of activin internalisation does not
significantly extend its signalling range (Fig. 8G,H). One
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Fig. 7. Inhibition of endocytosis by Rab5S43N does not prevent gene
induction in response to activin. (A)Animal pole blastomeres derived
at the late blastula stage from an embryo previously injected with RNA
encoding lactate dehydrogenase (Ldh; control RNA) and then cultured in
the presence of Alexa488-activin. Note the internalised fluorescent
activin. (B)Animal pole blastomeres derived at the late blastula stage from
embryos previously injected with RNA encoding Rab5S43N (DNRab5) and
then cultured in the presence of Alexa488-activin as in A. Note the strong
inhibition of internalisation of labelled activin. (C)Control animal pole
blastomeres derived as in A but not exposed to Alexa488-activin. Note
the yolk autofluorescence. (D)Animal pole blastomeres were derived from
embryos injected with RNAs encoding Ldh and the transferrin receptor
and were then cultured in the presence of Alexa594-transferrin. Note the
internalised transferrin. (E)Animal pole blastomeres were derived from
embryos injected with RNAs encoding Rab5S43N and the transferrin
receptor and were then cultured in the presence of Alexa594-transferrin.
Note the slight inhibition of internalisation of fluorescent transferrin. All
embryos in A-E were also injected with RNA encoding the CFP-GPI
membrane marker (blue). (F)Quantitation of experiments illustrated in A-
E. (G) Expression of Gsc in whole embryos and in animal pole regions
treated as indicated and analysed by real-time quantitative PCR at the
indicated stages (n=2). Other target genes are shown in Fig. S4A,B in the
supplementary material (n=2). Bars represent standard errors of technical
replicates. Three additional experiments of this sort were performed in
which gene expression analysis was carried out at a single time point;
these gave similar results.

Fig. 8. Effect of Rab5S43N on activin passage and long-range
signalling. (A) Three juxtaposed animal pole regions with white
lines representing borders between explants. A bead previously
soaked in Alexa488-activin was implanted in the left-hand animal
cap and the middle section expressed both CFP-GPI and Rab5S43N.
All three explants expressed CFP-histoneH2B. Note the
extracellular Alexa488-activin in the middle section at a distance
from the bead (n=7). (B) Control for A in which the middle section
does not express Rab5S43N. Images on right represent
enlargements of outlined areas. (C-F) Three juxtaposed animal
pole regions in which all tissues expressed Smad2/4-BiFC reagents
and CFP-histoneH2B, and the left-hand animal cap expressed
activin and CFP-GPI (n=9). In C and D the centre and right-hand
animal pole regions expressed Rab5S43N. (C,E) Fluorescence
derived from Smad2/4-BiFC. Note the long-range signalling and
activation of Smad2/4-BiFC even in the presence of Rab5S43N.
(D,F) CFP-histoneH2B fluorescence to reveal nuclei.
(G,H) Quantitation of Smad2/4-BiFC fluorescence normalised to
CFP-histoneH2B (as described in Fig. 3) in the samples illustrated
in C,D (G) and E,F (H) (n=3).
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explanation might be that the two systems, zebrafish neurectoderm
and Xenopus animal pole tissue, differ with respect to the space
available for ligand distribution. In particular, our system provides
a space that is effectively infinite, because the morphogen can
eventually diffuse beyond the edges of the explant. The significance
of this extended space is under investigation, and we also note that
the signalling ranges of different ligands (Fgf8 and activin) in
different tissues (neurectoderm and animal pole tissue) may well be
subject to different types of regulation.

Receptor-mediated endocytosis is not required for
gene activation
Our experiments also reveal that Rab5-mediated endocytosis is
not required for the activation of the activin signal transduction
pathway, as revealed both by Smad2/4-BiFC (Fig. 8C-H) and by
the induction of gene expression (Fig. 7G and see Fig. S4A,B in
the supplementary material). The elevation of Xbra expression
associated with the inhibition of Rab5 activity (see Fig. S4B in
the supplementary material) is likely to be due to an indirect
effect.

There is no consensus in the literature about the requirement for
endocytosis in growth factor function. There are likely to be
differences between different ligands and different cell types, and
the point at which the pathway is inhibited might also be
significant. Consistent with our results, which show that Rab5S43N

does not inhibit gene induction by activin in Xenopus animal pole
regions (Fig. 7G), the inhibition of endocytosis by RN-tre,
dynaminK44A (a dominant-negative form of dynamin) and an
antisense morpholino oligonucleotide directed against Rab5 does
not prevent gene activation in response to Fgf8 (Scholpp and
Brand, 2004). Our results differ, however, from those of Jullien
and Gurdon, who report that dynaminK44E inhibits activin-induced
induction of Xbra and eomesodermin in Xenopus blastomeres
(Jullien and Gurdon, 2005). As discussed above, we do not yet
understand the reason for this apparent discrepancy, which is under
investigation.

Finally, we noted in the course of our experiments that Alexa488-
activin occasionally accumulated at the site of membrane scission
following cytokinesis (20-30% of cells; Fig. 1B; see Movie 1 in the
supplementary material). A similar accumulation of transferrin has
been suggested to occur as a result of the directed transport of
recycling vesicles carrying receptor-bound ligand to the midbody
region (Schweitzer et al., 2005). This may ensure the equal
distribution of signalling complexes between daughter cells (Bokel
et al., 2006). Cells lacking functional Rab11, a marker of recycling
vesicles, fail to complete cytokinesis (Yu et al., 2007); a similar
effect is observed following overexpression of Cherry-Rab11 (see
Movie 1, left cell in the supplementary material).
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