












synaptic markers vGlut1 and NR1, demonstrated that
depolarization increases the level of sFz5 at synapses from 20% to
39% (Fig. 6E,I). Together, these results demonstrate that
depolarization not only increases the trafficking of Fz5 to the cell
surface but also stimulates its mobilization to synapses.

Different patterns of electrical stimulation
differentially modulate Fz5 levels at the cell
surface and synaptic sites
To further investigate the role of neuronal activity on Fz5
localization, we examined the effect of patterned electrical
stimulation, shown to regulate the distribution of a number of
receptors (Du et al., 2000; Hayashi et al., 2000; Rodriguez et al.,
2008; Shi et al., 1999). We used two different electrical stimuli to
induce neuronal activity. Intermittent high-frequency stimulation
(HFS), where a regular stimulation pattern comprising trains of 20
stimuli at 50 Hz (10 millisecond interval) delivered every 5 seconds
was used to mimic average neuronal activity in vivo (an average of
4 action potentials per second) (Schoenbaum et al., 1999; Attwell
and Laughlin, 2001). We also used low-frequency (LFS)
stimulation at 4 Hz (250 millisecond interval), known to induce
LTD (Zamani et al., 2000; Dudek and Bear, 1992). Neuronal
activation induced by HFS was confirmed by a 74% increase in the
levels of CaMKII Thr286 phosphorylation when compared with
unstimulated cells (Fig. 7A,B). Then, sFz5 levels were measured
by biotinylation after HFS or LFS. Surface Fz5 increased by 52%
in HFS cells, whereas LFS induced a 35% decrease in sFz5,
without changing the total level of Fz5 (Fig. 7C,D). These results
show that patterned electrical stimulation can differentially regulate
the amount of Fz5 present at the cell surface.

We next examined the effect of HFS and LFS on sFz5 by
confocal microscopy. These two stimuli exert opposing effects on
sFz5 localization. HFS increased the number of sFz5 puncta by
47%, the volume by 90% and their intensity by 57% (Fig. 7E-H),
whereas LFS decreased the number of sFz5 puncta by 61% without
changing their volume or intensity (Fig. 7E-H). In addition, HFS
increased the amount of sFz5 at synapses from 21% to 43%,
whereas LFS decreased synaptic sFz5 to 15% (Fig. 7E,I). When the
number of synapses was analyzed (as determined by the
colocalization of vGlut1 and NR1), we found that HFS increased
the number of synapses by 152%, whereas LFS decreased the
synapse number by 49% (Fig. 7E,J), consistent with previous
reports (Bastrikova et al., 2008; Antonova et al., 2001; Bozdagi et
al., 2000). Under basal conditions, 45% of synapses contained
sFz5, whereas after HFS, 65% of synapses contained sFz5 (Fig.
7E,K). Following LFS, however, only 20% of synapses contained
sFz5 (Fig. 7E,K). These results demonstrate that neuronal activity
modulates the localization of sFz5 to synapses and that the outcome
depends on the stimulation frequency used. Neuronal activity
triggered by HFS enhances the trafficking of Fz5 to the cell surface
and its localization to synaptic sites. By contrast, LFS significantly
reduces the amount of sFz5 and impairs its localization to synapses.

Wnts contribute to HFS-induced synapse
formation and synaptic localization of Fz5
Neuronal activity regulates the expression of Wnts in hippocampal
neurons (Wayman et al., 2006; Yu and Malenka, 2003; Gogolla et
al., 2009). Therefore, HFS could modulate the mobilization of Fz5
through changes in endogenous Wnt proteins. To test this
hypothesis, we blocked endogenous Wnts that bind to Fz5 by using
Fz5CRD. Cultured neurons were exposed to control or Fz5CRD-
containing conditional media during HFS. Surface biotinylation

indicated that, in unstimulated cells, Fz5CRD decreased the
amount of receptor present at the surface by 40%, whereas it
completely abolished the increase in sFz5 induced by HFS without
affecting the total level of the protein (Fig. 8A,B). Using confocal
microscopy, we found that, under basal conditions, Fz5CRD
decreases the number, volume and intensity of sFz5 puncta (by
41%, 47% and 41%, respectively), while it completely blocks the
effect of HFS on sFz5 levels (Fig. 8C-F).

As Fz5CRD blocked Wnt-mediated synaptogenesis after 16
hours of exposure (Fig. 4), we tested whether it affects the
increase in synapse number induced after 1 hour of HFS. In
unstimulated cells, Fz5CRD did not significantly change the
number of synapses (Fig. 8C,G). By contrast, Fz5CRD prevented
the increase in synapse number that follows HFS (Fig. 8C,G),
suggesting that Wnts participate in the formation of synapses
induced by activity. In addition, Fz5CRD completely abolished
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Fig. 7. High-frequency stimulation and low-frequency
stimulation have opposite effects on Fz5 levels at the surface
and at synapses. (A)Effect of high-frequency stimulation (HFS) on
CaMKII phosphorylation in cultured hippocampal neurons. Upper
panel: CaMKII phosphorylated on Thr286. Lower panel: total CaMKII.
(B)Quantification showing the level of phosphorylation of
Thr286CaMKII after normalization to total CaMKII. (C)Surface Fz5
levels following HFS and low-frequency stimulation (LFS). sFz5,
biotinylated sFz5; Fz5, total Fz5; Tub, -tubulin. (D)Surface Fz5/total
Fz5 ratio calculated to show the effects of HFS and LFS on Fz5 levels.
(E)Representative images of sFz5, vGlut1 and NR1 staining following
HFS and LFS. (F-I)Effects of HFS and LFS on the number (F), volume (G),
intensity (H) and synaptic localization (I) of sFz5 puncta. (n3
experiments; 8-12 cells were used per condition for each experiment).
(J)Quantification of synapse number following HFS and LFS (n3
experiments; 8-12 cells were used per condition for each experiment).
(K)Percentage of synapses containing sFz5 after HFS and LFS (n3
experiments; 8-12 cells were used per condition for each experiment).
Scale bar: 2m in E. *, P<0.05; **, P<0.01; ***, P<0.001. D
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the increase in synaptic sFz5 induced by HFS (Fig. 8C,H). The
percentage of synapses that contained sFz5 decreased in the
presence of Fz5CRD, from 52% to 33% in unstimulated cells
and from 72% to 32% in HFS cells (Fig. 8C,I). Therefore, under
basal conditions, Fz5CRD decreases the amount of synapses that
contain sFz5 by merely decreasing the amount of receptor
present at the cell surface. In stimulated cells, Fz5CRD decreases
the amount sFz5 located at synapses and also blocks the increase
in synapse number induced by HFS. These data suggest that
endogenous Wnts play a role not only in Fz5 localization but
also in HFS-induced synaptogenesis.

To further confirm that Wnt proteins play a role in Fz5
localization following HFS, endogenous Wnts were blocked using
two secreted Wnt antagonists, Sfrp1 and Sfrp3 (Sfrps). Neurons
were treated with Sfrps during the HFS protocol. We found that
Sfrps did not affect the levels of sFz5 under basal conditions or in
stimulated cells, as determined by surface biotinylation (see Fig.
S2A,B in the supplementary material). Confocal microscopy
revealed a similar effect: Sfrps did not change the number, volume
or intensity of Fz5 puncta in either non-stimulated or stimulated
cells (see Fig. S2C-F in the supplementary material). These results
show that Sfrps do not significantly affect the changes in surface
levels of Fz5 induced by neuronal activity.

As Sfrps block the synaptogenic activity of Wnts in cultured
neurons (Hall et al., 2000; Krylova et al., 2002; Rosso et al., 2005),
we investigated whether Sfrps affect the number of synapses in our
experimental model. Under basal conditions, Sfrps decreased the
number of synapses by 34% and partially blocked the ability of
HFS to induce synapse formation (see Fig. S2C,G in the
supplementary material). In addition, in unstimulated cells, Sfrps
significantly decreased the amount of sFz5 located at synapses
from 21% to 15% but did not change the percentage of synapses
containing sFz5 (see Fig. S2C,I in the supplementary material). In

HFS cells, the Wnt antagonists partially blocked the increase in
synaptic sFz5 (see Fig. S2C,H in the supplementary material). In
addition, Sfrps decreased the percentage of synapses that contained
sFz5 in stimulated cells (from 75% to 66%; see Fig. S2C,I in the
supplementary material). Thus, blockade of endogenous Wnts with
Sfrp1 and 3 decreases synaptic sFz5 without changing the surface
levels of the receptor in stimulated neurons.

DISCUSSION
Signalling pathways activated by synaptogenic factors such as
Wnts are beginning to be understood. However, the identity and
localization of their receptors remain poorly characterized. Here,
we report that the Wnt receptor Fz5 is present at synapses and is
upregulated during synaptogenesis in the hippocampus. Fz5, by
binding Wnt7a, induces presynaptic differentiation. Neuronal
activity differentially regulates the surface levels of Fz5 and its
localization at synapses. Importantly, blockade of Fz5-mediated
signalling abolishes both the insertion of Fz5 at synapses and the
formation of new synapses induced by HFS. Thus, under these
conditions, Wnt signalling is necessary for HFS-induced
synaptogenesis in hippocampal cultures. In summary, neuronal
activity through endogenous Wnts modulates the distribution of
surface Fz5 at synapses and the formation of synaptic sites.

In the nervous system, Fz receptors mediate a range of
functions from neuronal differentiation (Van Raay et al., 2005)
to cell survival (Liu et al., 2008; Wang et al., 2001), cell polarity
(Prasad and Clark, 2006), cell migration (Pan et al., 2006;
Vivancos et al., 2009), axon guidance (Lyuksyutova et al., 2003;
Wang et al., 2002) and synapse formation (Varela-Nallar et al.,
2009; Klassen and Shen, 2007). Here, we focus our attention on
Fz5, previously shown to regulate neuronal development (Liu
and Nathans, 2008; Liu et al., 2008). In the hippocampus, Fz5 is
developmentally upregulated during synaptogenesis. Fz5
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Fig. 8. Fz5CRD abolishes the effect of HFS on the
localization of Fz5 at the surface and the formation of
synapses. (A)Representative blots showing the effect of
Fz5CRD on sFz5 in stimulated and non-stimulated neurons.
sFz5, biotinylated sFz5; Fz5; total Fz5. (B)Surface Fz5/total
Fz5 ratio that shows sFz5 levels in stimulated or
unstimulated cells incubated with Fz5CRD (n3
experiments). (C)Unstimulated or HFS neurons incubated
with Fz5CRD followed by staining for sFz5, vGlut1 and NR1.
(D-F)Quantification showing the effect of Fz5CRD on the
number (D), volume (E) and intensity (F) of sFz5 puncta in
unstimulated or stimulated cells (n3 experiments; 8-12
cells were used per condition for each experiment).
(G-I)Effect of Fz5CRD on the total number of synapses (G),
synaptic sFz5 (H) and percentage of synapses containing
sFz5 (I) in unstimulated or stimulated cells (n3 experiments;
8-12 cells were used per condition for each experiment).
Scale bar: 1m in C. *, P<0.05; **, P<0.01; ***, P<0.001;
****, P<0.0001.
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exhibits a punctate distribution in axons, where it colocalizes
with vGlut1, and in dendrites, where it colocalizes with PSD-95
and NMDA receptors. Fz5 is also present at sites where both pre-
and postsynaptic markers colocalize. Consistently, Fz5 is found
in synaptosomes, the SMF and the PSD. Therefore, Fz5 is
present at both pre- and postsynaptic sites at the peak of
synaptogenesis, where it could mediate bidirectional Wnt
signalling to regulate synaptic assembly.

Fz5 is required for Wnt7a-mediated synapse formation in
hippocampal neurons. Several pieces of evidence suggest that
Fz5 functions as a receptor for Wnt7a. First, Wnt7a (Davis et al.,
2008) and Fz5 are expressed in the hippocampus during the peak
of synaptogenesis. Second, Wnt7a binds to the CRD domain of
Fz5, crucial for signalling (Povelones and Nusse, 2005). Third,
axonal Fz5 expression induces the clustering of presynaptic
markers as observed with Wnt7a (Ahmad-Annuar et al., 2006;
Cerpa et al., 2008). Fourth, Fz5 knockdown or Fz5CRD blocks
the ability of Wnt7a to induce presynaptic differentiation. Fz5
might not be the only receptor that mediates the synaptogenic
effect of Wnt7a, as Fz1 also stimulates synapse formation in
hippocampal neurons (Varela-Nallar et al., 2009). However, our
findings strongly support the idea that endogenous Fz5 functions
as a receptor for Wnt7a to regulate synapse formation in
hippocampal neurons.

Neuronal activity regulates the localization of transmembrane
proteins to sub-cellular compartments. For example, activity
increases the level of surface TrkB receptors (Du et al., 2000;

Meyer-Franke et al., 1998) and the mobilization of N-cadherin
to synapses (Bozdagi et al., 2000; Tanaka et al., 2000). Neuronal
activity also drives the synaptic incorporation of AMPAR and
NMDAR and their lateral diffusion between synaptic and
extrasynaptic sites (Lau and Zukin, 2007; Newpher and Ehlers,
2008; Heynen et al., 2000). Here, we show that neuronal activity
has a profound effect on the distribution and synaptic
localization of Fz5 (Fig. 9). Depolarization and HFS increase the
levels of Fz5 at the cell surface and the percentage of synapses
that contain Fz5. By contrast, LFS decreases the amount of Fz5
at the surface and the percentage of synaptic Fz5. The total
levels of Fz5 remain unaffected, suggesting that neuronal activity
regulates the trafficking of the receptor from intracellular stores
to the plasma membrane and to synaptic sites. Importantly, in
these experiments, the patterns of HFS and LFS were chosen
such that they both deliver, on average, 4 stimulation pulses per
second. As the cultures received the same number of stimuli, it
is clear that distinct temporal patterns of synaptic activation,
such as HFS and LFS, modulate the insertion of Fz5 receptors in
opposing ways.

How does neuronal activity induce Fz5 recruitment to
synapses? Activity has previously been shown to regulate the
expression and/or secretion of Wnt proteins. Depolarization
stimulates Wnt2 transcription in cultured hippocampal neurons,
resulting in increased dendritic arborization (Wayman et al.,
2006). The Wnt inhibitor Dkk1 blocks depolarization-induced
dendrite growth in cultured hippocampal neurons (Yu and
Malenka, 2003). Moreover, experience-induced plasticity
enhances Wnt7a/b expression, which regulates hippocampal
axon remodelling (Gogolla et al., 2009). At the Drosophila
neuromuscular junction, neuronal activity increases the secretion
of Wg to stimulate pre- and postsynaptic assembly as well as
dendritic refinement (Singh et al., 2010; Ataman et al., 2008).
Thus, neuronal activity modulates the levels of Wnts, which in
turn could regulate Fz receptor localization. Indeed, Wnt proteins
control the localization of Fz receptors in neurons (Ataman et al.,
2008; Klassen and Shen, 2007). However, a role for neuronal
activity in Fz localization to synapses has not been documented.
By blocking Wnts using two different approaches, we
demonstrate that secreted Wnts contribute to the regulation of
surface Fz5 localization to synapses elicited by neuronal activity.

Neuronal activity regulates the formation and maintenance of
synapses (Craig et al., 2006; Blankenship and Feller, 2010). Here,
we demonstrate that Wnts and Fz5 are necessary for stimulation-
evoked synaptogenesis in 14 DIV hippocampal cultures, as
blockade of Fz5 signalling with Fz5CRD completely abolishes the
synaptogenic effect of HFS. We propose a model where neuronal
activity modulates the secretion of Wnts, which then stimulate the
formation of synapses through binding to Fz5. Our results provide
a link between neuronal activity, Wnt-Fz5 signalling and synapse
formation.
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Fig. 9. Regulation of sFz5 localization and synapse formation by
neuronal activity and secreted Wnts. The insertion of Fz5 to synapses
is differentially regulated by distinct temporal patterns of synaptic
activation. LFS drives Fz5 out of synapses, whereas HFS, through a
mechanism that involves secreted Wnts, increases the levels of Fz5 at the
surface and at synaptic sites. In addition, Wnt-Fz5 signalling participates
in the formation of new synapses induced by neuronal activity.
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