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those required to inhibit Notch signalling as monitored by Lfng
expression (see Fig. S6 in the supplementary material). These and
our other results argue that Wnt signalling lies upstream of Notch

in the chick anterior PSM, and that reduced Lef1 expression at high
drug concentrations is probably due to interference with other gene
pathways.

Wnt and Notch signalling cooperate in somite
border formation
1-integrin knockdown embryos fail to express cMeso1 (Fig.
3B,D) in the anterior compartment of presomite –1, indicating that
their lack of somites is due to a failure to establish somite
boundaries. However, the cells still retained the appropriate
mesenchymal identity, expressing the PSM marker Tbx6 (Fig. 6E).
Tbx6 has previously been shown to be a Wnt target in the mouse
PSM (Dunty et al., 2008). Perhaps knockdown leaves sufficient
residual Wnt activity to maintain Tbx6 expression, although we
cannot exclude the possibility that there are distinct modes of
regulating Tbx6 expression in mouse and chick.

cMeso1 expression depends on both Wnt and Notch activity in
the anterior PSM, as expression was lost in embryos incubated in
either Dkk1 or DAPT to inhibit the respective pathways (Fig. 6F-
H). Wnt activation of cMeso1 might be indirect, being mediated by
Notch activity. Alternatively, the two pathways could act on
cMeso1 in combination. To distinguish between these mechanisms,
we examined whether constitutive activation of Wnt or Notch
signalling could restore cMeso1 expression in 1-integrin
knockdown embryos. Activating either pathway alone (via NICD or
-CatAct) caused only very weak cMeso1 expression (Fig. 6K-N),
but higher-level expression was achieved when both pathways
were activated (Fig. 6O). Thus, the Wnt and Notch signalling
pathways collaborate downstream of 1-integrin signalling in chick
somite border formation.

DISCUSSION
Previous data have implicated integrin signalling in segmentation,
one suggestion being to control cell adhesion properties that
contribute to the maintenance of intersomitic borders (Jülich et al.,
2005; Koshida et al., 2005; Yang et al., 1999). Our studies of chick
somitogenesis reveal that 1-integrin signalling in the anterior PSM
acts to establish somite boundaries by regulating other signalling
pathways. Signalling via ILK directs phosphorylation of GSK3 to
permit Wnt and, thereby, Notch signalling. Together, these drive
somite compartmentalisation and boundary formation.

Although 5-integrin activity only appears necessary for the
formation of subsets of somites in zebrafish and mouse (Jülich et
al., 2005; Koshida et al., 2005; Yang et al., 1999), we find that 1-
integrin is required essentially throughout chick somitogenesis.
This is probably also true in the mouse in which the candidate
ligand, fibronectin, is required to form somites (George et al.,
1993). Perhaps a different  subunit partner substitutes in forming
the 5-independent somites.

The utilisation of specific integrin subunits and ligands during
somitogenesis seems to vary between species, particularly between
zebrafish and higher vertebrates. Zebrafish and mice differ in their
domains of 5 requirement, and also in the necessity for
fibronectin activity, which is essential for somite formation in the
mouse but required only for the maintenance of somite boundaries
in zebrafish (Koshida et al., 2005). loc (ilk) mutant fish lack a
segmentation phenotype (Postel et al., 2008). These differences
might be due to compensation by paralogues or related genes that
are lacking in the chick or mouse.

Wnt and Notch signalling activities are sensitive to modulation
of 1-integrin expression (Figs 3, 5), but not vice versa (Fig. 2),
indicating that 1-integrin signalling lies upstream of Notch and
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Fig. 6. Functional Wnt and Notch pathways are both required for
cMeso1 expression. (A-C) Dominant-active -catenin (-CatAct), which
constitutively activates Lef1 transcription (C, n7/9), restores Lfng
expression (B, n8/8) that is otherwise reduced by dominant-negative
ILK (A, n8/11). (D,E) Tbx6 expression is maintained following RNAi
knockdown of 1-integrin RNAi, showing that 1-integrin is not
required to maintain the mesodermal character of anterior PSM cells (E,
n21/21). (F-O) Embryo treatments and electroporations that
manipulate Notch and Wnt signalling show that cMeso1 expression is
dependent on both of these pathways (see main text for details). F,
n5/5; G, n12/12; H, n11/12; I, n14/15; J, n10/12; K, n10/10; L,
n8/11; M, n8/10; N, n11/14; O, n17/23. (P-U) Integrin signalling
via ILK promotes Wnt and Notch signalling only in the presence of a
functional Wnt pathway. Lef1 (Q) and Lfng (T) are downregulated in
embryos cultured in Dkk1, as compared with control embryos cultured
in the presence of DMSO (P,S). Electroporation of constitutively active
S343D ILK does not restore Lef1 (R) or Lfng (U) expression in Dkk1-
cultured embryos. n15 for each condition. Asterisks, anterior PSM.
(V) Model of the hierarchical regulation by 1-integrin of Wnt and
Notch signalling pathways in chick somite formation.
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Wnt activity in the chick anterior PSM. Wnt signalling appears to
be regulated by 1-integrin/ILK, but still in a ligand-dependent
manner, being blocked by Dkk1, which acts by interfering with
Wnt ligand binding (Bafico et al., 2001; Mao et al., 2001; Semenov
et al., 2001).

Inhibiting Notch signalling does not affect Wnt signalling (see
Fig. S6B in the supplementary material). Rather, Notch is a target
of Wnt: reduced -catenin function in the PSM of 1-integrin
knockdown embyos leads to severe downregulation of the Notch
targets Hairy2 and Lfng (Fig. 5H,F; see Fig. S5B,D in the
supplementary material), which is due, at least in part, to reduced
transcription of Notch1 and Delta1 (Fig. 5B,D). Evidence for direct
regulation of mouse Delta1 expression by Wnt has been described
previously, including the presence of multiple Lef1 binding sites in
its promoter and the defects in mouse somitogenesis caused by
mutating Lef1 (Galceran et al., 2004). Although 1-integrin could
also regulate NICD activity directly, as proposed for neural stem
cells (Campos et al., 2006), such a mechanism would have to be
secondary to regulation via Wnt/-catenin.

A series of epistasis experiments support the above model. Lef1
expression is restored in 1-integrin knockdown embryos that
express constitutive ILK (Fig. 4L). -CatAct expression restores
Lfng expression in embryos expressing dominant-negative ILK
(Fig. 6B).

Levels of phospho-Ser9-GSK3 in the anterior PSM correlate
with Wnt signalling activity during segmentation, being reduced by
knocking down 1-integrin or by expression of dominant-negative
forms of ILK, and being enhanced by expression of wild-type or
constitutive ILK (Fig. 4M; see Fig. S4 in the supplementary
material). These phosphorylation changes are linked with effects
on Wnt signalling: Lef1 expression is lost in Ilkconstit embryos
expressing the constitutive, non-phosphorylatable S9A-GSK3
mutant (Fig. 4O).

One interpretation of our results is that ILK directly
phosphorylates and inactivates GSK3 during segmentation.
Indeed, we find that the kinase-like domain is important for ILK
activity in vivo; mutating K220 in ILK so that it can no longer bind
ATP efficiently renders the protein dominant negative (see Fig. S4
in the supplementary material). This explanation is also consistent
with a recent study showing that ILK is a bona fide
serine/threonine protein kinase that phosphorylates GSK3 in vitro
(Maydan et al., 2010).

However, the ILK kinase domain also behaves as a protein-
protein binding interface (Fukuda et al., 2009; Legate et al., 2006;
Wickström et al., 2010), and several lines of evidence argue for this
being its major mode of action. Mutation of the putative ATP-
binding site of ILK in Drosophila, mice and worms supports
almost normal development (Lange et al., 2009; Mackinnon et al.,
2002; Zervas et al., 2001). Also, although ILK can phosphorylate
GSK3 on Ser9 in vitro, this modification does not necessarily
inactivate ILK in vivo; S9A-GSK3 transgenic mice appear to
develop normally (McManus et al., 2005).

Thus, we cannot exclude the possibility that ILK acts indirectly
on GSK3 during segmentation, e.g. as a protein adapter. Our
results also leave open the possibility that ILK affects Wnt
signalling in additional ways (e.g. by directly modulating the
nuclear localisation of -catenin) (Oloumi et al., 2006). Indeed,
ILK might have different modes of action in different tissue
contexts.

The posterior PSM differs from the anterior in several respects.
Levels of -catenin are higher (Aulehla et al., 2008), although
levels in the anterior must still be sufficient to support the anterior

expression of Lef1 (Gibb et al., 2009; Olivera-Martinez and Storey,
2007) and Ripply2 (Biris et al., 2007). Genetic regulatory
interactions also differ between the two domains (Morales et al.,
2002; Morimoto et al., 2005), presumably due in part to
combinatorial interactions between signalling pathways and
regionalised accessory factors that together determine regionally
restricted outcomes such as the Wnt responsiveness of Lef1
transcription (Fig. 3G,H). Thus, our studies make no predictions
about how 1-integrin, Wnt and Notch signalling interact in the
posterior PSM.

Jülich and co-workers have proposed a contrasting model for
somite formation in which Notch signalling enhances the affinity
of 5/1 receptors for binding their fibronectin ligand (Jülich et al.,
2005; Jülich et al., 2009). Such an inside-outside signalling model
might predict that modulating Notch signalling would alter the
efficiency of ligand accumulation and integrin signalling, and
should thereby affect Wnt signalling. However, blocking Notch
signalling with low doses of DAPT does not affect fibronectin
accumulation or Lef1 transcription (see Fig. S6B,E,F in the
supplementary material), and NICD electroporation has no effect on
the levels of phospho-Ser9-GSK3 (see Fig. S6D in the
supplementary material), indicating that signalling by Wnt, and
hence by 1-integrin, lies upstream of that by Notch.

Somite compartmentalisation and boundary formation appear to
rely on Wnt and Notch acting together. Blocking either pathway
inhibits somite formation and the cMeso1/Mesp2 expression that
prefigures somite compartmentalisation and boundary formation
(Fig. 6G,H). cMeso1 expression is efficiently restored in 1-
integrin knockdown embryos only by co-activation of both Wnt
and Notch pathways (Fig. 6O). This result is consistent with studies
showing that mouse Mesp2 is regulated by Wnt activity (Dunty et
al., 2008). As the role of Mesp2 during mouse somitogenesis is, at
least in part, to negatively regulate Notch signalling (Morimoto et
al., 2005), our results indicate that Mesp2 acts both upstream and
downstream of Notch activity in establishing somitic boundaries.

Integrin may act by modulating Wnt and Notch activities in
other contexts, e.g. in the axial extension that accompanies
segmentation. Interfering with 1-integrin activity leads to
truncated embryos (see Fig. S1F,H,J in the supplementary material)
that resemble those caused by reduced Wnt and Notch activity
(Dunty et al., 2008; Huppert et al., 2005; Takada et al., 1994).
Integrin signalling might also target these pathways to promote
axial cell proliferation.

Somitogenesis provides an example of outside-inside integrin
signalling regulating cell epithelialisation via a signal cascade.
Nevertheless, we do not exclude a second, later role for inside-
outside integrin signalling, e.g. in somite maintenance and in
regulating Eph/ephrin signalling (Durbin et al., 2000; Watanabe et
al., 2009). Our results showing that 1-integrin activity lies
upstream of Wnt and Notch in primitive presomites do not preclude
integrins acting downstream of Notch in forming or formed
somites (Nakajima et al., 2006).

Integrin regulation of Wnt signalling is likely to be a recurrent
theme during animal development; tissues in which Notch is a Wnt
target might recapitulate the signalling network that we have
defined for the anterior PSM. Other tissues might use part or
variants of the cascade. Genetic studies have demonstrated related
Notch and integrin mutant phenotypes in vascular development
(Karsan, 2008; Leong et al., 2002), suggesting that these signalling
pathways cross-regulate each other. Elevated ILK expression and
activity are associated with a variety of cancers in humans (Ahmed
et al., 2003; Bravou et al., 2003; Graff et al., 2001), and ILK levels
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and activity correlate with -catenin-dependent transcription and
with human colon tumour grade progression (Bravou et al., 2006;
McDonald et al., 2008). In leukaemic cells, ILK activity stimulates
Notch1 and Hes1 expression and promotes phosphorylation of
GSK3 (Tabe et al., 2007). Thus, Notch and Wnt dysregulation in
cancer might be linked to excessive integrin signalling.
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