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Fig. 6. Redistribution of cell-cortex proteins during OHC apical
reshaping. (A) Organs of Corti at the base of cochleas from mice aged
between P1 and P7.5 were double-stained with the anti-ZO1
monoclonal antibody and the anti-myosin IIA, anti-myosin Vlla or anti-
Shroom2 polyclonal antibody. Each panel shows a maximum projection
of two adjacent confocal optical sections. The ZO1 immunolabeling,
shown only in combination with the myosin IIA staining (first column
from the left) was used in each case to control the flatness of the
reticular lamina. The second column shows single channel myosin 1A
immunostaining. The third and fourth columns show myosin Vlla and
Shroom2 immunostaining, respectively. (B) Confocal sections at three
consecutive levels showing that the lateral arms of the V-shaped hair
bundle extend over the F-actin-filled lobes. The right panel shows an
orthogonal projection of both F-actin and ZO1 channels from the
whole z-stack at the level of the horizontal white line. Scale bar: 1 um.

myosin VIla at this stage. Strikingly, the Shroom2 staining
disappeared from the cuticular plate in the fully developed lobes at
P7.5 and adopted a distribution reminiscent of that seen at P1, while
F-actin, although abundant in the cuticular plate, no longer showed
an accumulation in the lobe subregions.

Redistribution of myosin Il, myosin Vlla, Shroom2
and F-actin fails in mouse mutants with abnormal
hair bundle morphogenesis

Considering the aforementioned deleterious effect of hair bundle
anomalies on the OHC apical circumference reshaping, we next
studied the distributions of myosin I, myosin VIla, Shroom2 and F-

actin in P5 mutant mice with hair bundle dysmorphism. In the
Myo7a*026SBM626SB and Cdh237~ mutants, we observed that myosin
Il remained distributed all along the apical circumference (Fig. 7A).
In addition, myosin VIla was diffusely spread in the cuticular plate
of the Cdh23™~ OHCs (Fig. 7B). Shroom2 remained distributed at
cell-cell junctions in the Myo7a*20SB462658  Cgn 23~ and Ushic™~
mutants, and on occasion was seen to localize ectopically in patches
close to the OHC circumference (Fig. 7C). In these mutants, F-actin
was, however, predominantly present at the OHC neural side. By
contrast, the distributions of Shroom2 and F-actin in OHCs from
whirler mice, which still develop small lateral lobes, did show an
accumulation in the region of the lobes, although it was less
pronounced than in wild-type OHCs.

DISCUSSION

We showed that during postnatal development in the mouse,
cochlear OHCs acquire a non-convex apical circumference molded
to the V-shape of their overlying hair bundle. Strikingly, this
remodeling of the OHC apical junctions occurs during the period
(between P2 and P12 in mice) that corresponds to the onset of OHC
electromotility (Abe et al., 2007; Belyantseva et al., 2000; Zheng et
al., 2000).

Which cellular mechanisms are involved in the
reshaping of the OHC apical circumference?

The surface of the organ of Corti acquires its organization in rows
of sensory cells and supporting cells between embryonic day E14.5
and birth in the mouse by a convergent extension process that is
thought to involve the planar cell polarity signaling pathway (Kelly
and Chen, 2007; Montcouquiol and Kelley, 2003; Montcouquiol et
al., 2003; Yamamoto et al., 2009). This process consists of extension
along the cochlear duct accompanied by a thinning of the
epithelium, during which cell intercalations occur and cell-cell
junctions appear or disappear (Keller et al., 2000; Kelly and Chen,
2007). By contrast, the shape transition described here preserves all
existing contacts between neighboring cells. The observed changes
in shape of the OHC apical circumference are inconsistent with a
passive process driven by minimization of surface energy, which
would lead to a convex (typically hexagonal) circumference.
Therefore, active mechanisms should participate in these changes.
During the period between P1 and P8, the width of the reticular
lamina decreases nearly by a factor two at the cochlear base, while,
in parallel, the microtubule-filled supporting cells undergo
rearrangements at and under the surface of the organ of Corti
[notably, the bases of the inner and outer pillar cells separate from
each other to form the tunnel of Corti (Whitlon et al., 1999)]. One
might argue that the resulting compression of the OHC apical
circumference against the developing cuticular plate, which is
presumably reinforced in the region of the hair bundle, could be
sufficient to induce the observed non-convexity. Such a scenario,
however, would not apply at the cochlear apex where the reticular
lamina width does not decrease, but rather increases during the same
period (Burda and Branis, 1988). Moreover, a shape transition
mechanism driven primarily by such ‘external’ epithelial forces
acting on the OHC apical circumferences would not explain the near
normal shape of these circumferences in the rare OHCs showing
strong polarization defects (Fig. 4A). Consistent with this view,
redistributions of myosin II, myosin VIIa, Shroom2 and F-actin
during the transition were not observed elsewhere than inside OHCs
or at the apical junctions of OHCs with their supporting cells. No
obvious change in the staining pattern of these molecules was
detected inside supporting cells, nor at the IHCs. Thus, our results
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Fig. 7. Distribution of cell-cortex proteins in P5 mutant mice with
hair-bundle defects. \Wholemount organs of Corti were double-
immunostained with the anti-ZO1 monoclonal antibody and the anti-
myosin llA, anti-myosin Vlla or anti-Shroom2 polyclonal antibody, or
with TRITC-conjugated phalloidin to label actin filaments. Each confocal
acquisition was taken at the cochlear base, where the wild-type shape
transition is most pronounced. (A) Myosin IIA is present all along the
OHC apical circumference in the Cdh237~ and Myo7a*62658/462658 mjce.
(B) Myosin Vlla is abnormally distributed in the cuticular plate and along
the OHC apical circumference in Cdh23™ mice. (C)In
Myo7a%62658/462658 ' Cih 237~ and Ush1c”~ mice, Shroom2 and F-actin
are abnormally distributed, whereas in Whrn""* mice, in which OHC
lobes are detectable, Shroom2 and F-actin are still detected within the
lobes. Scale bar: 2 pm.

argue in favor of a major role of cortical processes internal to the
OHC s in the non-convex reshaping of their apical circumference.
However, some of the differences in the circumferential shapes of
the three OHC rows might reflect differences in the configuration of
their adjacent supporting cells. In particular, at points where the
junction between two supporting cells met an OHC, a local outward
deformation of the OHC apical circumference could often be
observed (see Fig. 2A, images from the cochlear base and middle at
P5, P6 and P7). Thus, in OHCs from the first row, part of the
variability in the negative curvature of the apical circumference
could be ascribed to the variable number (1 or 2) of inner pillar cells
that these OHCs contact on their neural side. This suggests that
external forces applied by supporting cells can influence the apical
circumference of OHCs.

Our analysis of mutant mice with defective hair bundle
morphogenesis shows that hair bundle integrity is required for the
OHC apical shape transition to occur. The gradual dependency of
the OHC apical circumference anomalies on the severity of hair
bundle defects supports the notion that the final shape of the AJC
circumference is determined by morphogenetic constraints that
involve the hair bundle. This raises the question of the nature of the
link between the hair bundle and the AJC of OHCs. The observation
that the shape of the OHC apical circumference closely delimits that
of the cuticular plate implies that one could describe the transition
as resulting in the molding of the cuticular plate to the shape of the
hair bundle. We further suggest that the development of the lateral
lobes is initiated in the cuticular plate. The formation of a
circumferential concavity in the cuticular plate also implies that its
neural region must be the siege of cytoskeletal reorganization during
the transition period (involving presumably plastic deformation and
polymerization-depolymerization of the F-actin network). However,
the early redistribution of myosin II out of the AJC of the
presumptive lobes could also be a triggering event. More work will
be required to sort out the causal relationships between these events.
At any rate, the anchoring of stereocilia rootlets to the developing
cuticular plate provides the most natural path for mechanical
interaction between the hair bundle and the AJC. In addition, the
present study shows that connections between stereociliary rootlets
and junctions form around P5 in mouse OHCs, suggesting that a
direct physical hair bundle-AJC coupling is established during the
shape transition period. Thus, our results suggest that the constraints
imposed by the hair bundle on the reshaping of the OHC apical
circumference are primarily of a mechanical nature.

How could the redistribution of cortical proteins
orchestrate the apical reshaping of OHCs?
According to Laplace’s law, a higher membrane curvature
corresponds to a lower membrane tension, or a larger pressure
applied across the membrane, or both. The asymmetrical
distributions adopted by myosin IT and myosin VIla during and after
the OHC apical circumference reshaping are in remarkable
agreement with this law. Indeed, the accumulation of myosin VIla
in the inner region of the lobes parallels that of F-actin and of the F-
actin bundling protein Shroom2. As Shroom?2 stabilizes F-actin at
cell-cell junctions and binds to ZO1 (Dietz et al., 2006; Etournay et
al., 2007), this suggests a reinforcement of the actin meshwork
susceptible to apply large pressures across the membrane of the
lobes. Consistent with this view, myosin VIIa, because of its high
duty ratio coupled with a high ADP affinity of'its F-actin-bound state
(Ikebe et al., 2003; Watanabe et al., 2006), has been suggested to
mediate the maintenance of tensions exerted on the early transient
stereocilia links and the tip-links (Boeda et al., 2002; Hasson and
Mooseker, 1997; Kussel-Andermann et al., 2000; Michalski et al.,
2009). As for myosin II, its depletion from the lobes is suggestive of
a reduced cortical tension in the membrane of this region (Bertet et
al., 2004), paralleling the increased pressure across this membrane
due to the recruitment of myosin VIla. We thus hypothesize that,
during and after the transition, myosin VIla generates and maintains
an internal set of tensions applied to the developing lobes, while
depletion of myosin II would assist the maintenance of a high
membrane curvature in this region. The two redistributions could be
either triggered in parallel or they could be causally linked. For
example, myosin II could redistribute in response to the increased
pressure across the membrane of the lobes (Pouille et al., 2009). In
either case, the two myosins appear to play complementary roles in
the shaping of the OHC lobes, reminiscent of their apparent
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complementary roles in the regulation of wing hair number in
Drosophila that have been previously suggested from genetic
studies (Winter et al., 2001).

How does the AJC reshaping of OHCs assist their
function in the cochlea?

One role that could be ascribed to the OHC apical shape transition
described here relates to the tilting of a large portion of the AJC of
OHCs toward the plane of the reticular lamina, due to the formation
of the lateral lobes. This tilting is likely crucial for anchoring the
apices of OHCs to the surrounding supporting cells within the
reticular lamina, thereby permitting the transmission and distribution
of potentially large sound-evoked forces at their AJC with minimal
membrane shear strain. However, it is for the detection of the very
small forces acting on the hair bundles near the hearing threshold
that OHC's have an essential role in amplifying the vibrations of the
organ of Corti (Fettiplace and Hackney, 2006). Moreover, cochlear
amplification is most important at the cochlear base, where the
apical shape changes of OHCs are the most pronounced. It has been
shown that electromotility forces produced by OHCs along their cell
bodies cause deflection of the stereocilia (Kennedy et al., 2006).
This mechanism might provide an important route for mechanical
feedback contributing to cochlear amplification. What could then be
the role of the non-convex apical circumference of OHCs? We
propose that the net result of the shape transition is to tighten the
mechanical coupling between three structures, namely the OHC
basolateral membrane, the AJC formed by the OHC and its
supporting cells, and the hair bundle. Owing to the configuration of
the OHC hair bundle, which is attached at its tip to the overlying
tectorial membrane, forces communicated at the stereocilia bases
effectively promote hair bundle deflection (Gueta et al., 2008). By
redirecting forces produced by electromotility along the OHC bodies
toward the stereocilia bases, this shape could permit small forces to
be effectively and locally converted into deflective constraints. In
this view, OHCs appear to have evolved a unique
morphomechanical solution to cope with the dual mechanical
requirements imposed by their amplifier function.
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