Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development

Kelly A. Smith1,2,*, Anne K. Lagendijk1, Andrew D. Courtney2, Huijun Chen2, Scott Paterson2, Benjamin M. Hogan2, Carol Wicking2 and Jeroen Bakkers1,3,*

SUMMARY

The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.

KEY WORDS: Forward genetics, Atrioventricular canal, Tmem2, Zebrafish

INTRODUCTION

During mammalian embryonic development, the primitive linear heart tube undergoes dynamic morphogenesis to give rise to the looped heart. This process begins as an asymmetric positioning of the heart tube followed by subsequent ballooning of the developing chambers and constriction of the atrioventricular canal (AVC). The AVC partitions the atrial and ventricular chambers and gives rise to the endocardial cushions (ECs), which later contribute to the developing valves and septa of the heart. The AVC remains in an undifferentiated state, in contrast to the differentiating chamber myocardium, and employs a defined genetic programme to establish and maintain this spatially discrete region (Moorman and Christoffels, 2003). Developmental defects arising from improper AVC formation give rise to atrioventricular septal defects. These malformations constitute the largest subset of human congenital heart malformations and can have devastating consequences for the affected individual (Lagendijk et al., 2010). Identifying and characterising the molecular regulators of AVC development are crucial to understanding and managing this group of diseases.

For more than a decade, the zebrafish has successfully been used as a model with which to identify regulators of cardiac morphogenesis, including the AVC. Mutants for genes such as ugdh (jekyll) (Walsh and Stainier, 2001), notch1 (Timmerman et al., 2004) and foxn4 (slipjig) (Chi et al., 2008) exhibit a loss or diminution of EC development. By contrast, mutations in apc (Hurlstone et al., 2003), tbx5 (heartstrings) (Camarata et al., 2010; Garrity et al., 2002) or hey2 (gridlock) (Rutenberg et al., 2006) result in an expansion of the AVC. In this latter category of mutants, the AVC-chamber boundary is compromised. Although the AVC defects in these mutants are phenotypically and molecularly diverse, each case is accompanied by cardiac looping defects, suggesting that appropriate patterning of the AVC is essential for correct looping and morphogenesis of the heart.

Here, we describe a novel zebrafish mutant, wickham (wkm), identified in a forward genetic screen by a defect in cardiac looping. We show that the wkm mutant harbours a mutation in tmem2, a previously undescribed regulator of cardiac development that is expressed in the zebrafish and mammalian heart.

MATERIALS AND METHODS

Fish and mouse lines and fish mutagenesis

Fish were kept under standard conditions as previously described (Westerfield, 1995). The tg(myl7:dsRed) and tg(kdrl:gfp) lines were described previously (Huang et al., 2003; Lawson and Weinstein, 2002; Mably et al., 2003). Pregnant wild-type CD1 mice were sacrificed and embryos dissected at the required stages.

ENU mutagenesis was performed as previously described (Wienholds et al., 2002). F1 progeny from mutagenised Tuebingen Longfin males were crossed to an AB strain to produce F2 families. Subsequent incrossing of F2 progeny generated F3 embryos that were screened for cardiac morphogenesis defects. All animal work conformed to ethical guidelines and was approved by the relevant animal ethics committees at the Hubrecht Institute and the University of Queensland.

Positional cloning of wkm

The tmem2hu4800 allele was mapped using standard meiotic mapping with simple sequence length polymorphisms (SSLPs). Unique SSLP primer sequences for the region (CA1-CA4) are listed in Table S1 in the
supplementary material. Linkage for the tmem2hu5935 allele was also performed using SSLP markers. Subsequent genotyping of the tmem2hu5935 allele was performed by sequencing using the primer pair 5'-ATGTCTTGGACCTTCTCACTC-3' (forward) and 5'-AGAACAGATGAAAGCCCTTCGTG-3' (reverse). The genomic region was analysed with reference to Ensembl assembly zv8, release 55, December 2008.

**Probe sequence and morpholino injections**

A 1500 bp fragment of zebrafish spp1 (Image clone 5602411, Imagenes) was cloned into pBluescript+ (Stratagene) for RNA probe synthesis. Morpholino oligonucleotides (MOs) (Gene Tools) were dissolved in water and injected at 1 nl per embryo. The tmem2 MO was targeted to the exon 5 donor site with the sequence 5'-ACAAACCAAAGCCATCTCAC CTTGA-3'. The splice-targeting bmp4 MO was as previously described (Chocron et al., 2007). The standard p53 control MO from Gene Tools was used.

**In situ hybridisation (ISH), immunohistochemistry and sectioning**

ISH analysis of zebrafish was carried out as previously described (Smith et al., 2009). For sectioning, embryos were mounted in Technovit 8100 (Heraeus Kulzer) and sectioned at 7 µm. Whole-mount ISH analysis of mouse embryos was as described previously (Fowles et al., 2003). Immunohistochemistry was performed as previously described (Smith et al., 2008). Hyaluronic acid staining was performed on paraffin sections as described previously (Bakkers et al., 2004).

**BAC recombineering**

BAC recombineering was performed as previously described (Hogan et al., 2009), integrating the Cherry coding sequence in place of the tmem2 stop codon in CHORI BAC clone CH73-204I21. Primer sequences are detailed in Table S1 in the supplementary material.

**Heart rate quantitation**

Heartbeats of 15 (alternating) sibling and mutant embryos were counted over a 1-minute period under a dissecting microscope.

**Imaging and image analysis**

Confocal imaging was performed using Leica SP2 and Zeiss 510 laser-scanning microscopes with 40× magnification. Embryos were mounted in ProLong Gold (Invitrogen). Imaris (Bitplane) (Figs 1, 2) and Velocity (Improvement) (Figs 3, 4) software were used for image analysis. ImageJ software was employed to remove myocardial Alcama expression in Figs 3 and 4. Statistical analyses were performed in Excel (Microsoft).

**RESULTS AND DISCUSSION**

**Identification of the wkm mutant**

To identify genetic regulators of cardiac morphogenesis and EC development, a forward genetic screen for zebrafish mutants with defective heart looping was performed. Embryos were screened at
26-32 hours post-fertilisation (hpf) to ensure normal formation and asymmetry of the cardiac tube, and at 48-54 hpf, to identify mutants with defective looping. Two alleles of the recessive lethal \textit{wkm} (\textit{wkm}^{hu5806} and \textit{wkm}^{hu5935}) mutation were identified that resulted in mutants that were indistinguishable from siblings at 26 hpf but displayed an unlooped heart at 48 hpf (Fig. 1A-C'). In heterozygous crosses the alleles failed to complement (27% affected transheterozygotes), confirming that these two mutations are allelic (Fig. 1I, I'). The gross morphology of \textit{wkm} mutants was relatively normal, as compared with siblings. The cardiac looping defect was accompanied by cardiac oedema and an accumulation of blood above the ventral tail fin. By 4 days post-fertilisation (dpf), massive pericardial oedema was observed (data not shown) and, from 5 dpf onward, lethality resulted.

\textbf{\textit{wkm} mutant hearts fail to undergo looping morphogenesis but appear otherwise normal}

The morphology of the heart was examined by in situ hybridisation (ISH) analysis. A reduction in the S-loop shape of the heart accompanied by cardiac oedema and an accumulation of blood above the ventral tail fin. By 4 days post-fertilisation (dpf), massive pericardial oedema was observed (data not shown) and, from 5 dpf onward, lethality resulted.

\textit{wkm} encodes Tmem2, a single-pass transmembrane domain-containing protein

To determine the gene responsible for the \textit{wkm} phenotype, positional cloning using traditional genetic mapping with SSLP markers was performed. The mutation responsible for one of the \textit{wkm} alleles (\textit{wkm}^{hu5806}) was localised to a genetic interval of 0.3 Mb on chromosome 5 containing five genes (Fig. 1I); however, sequencing of the coding regions failed to identify any causative mutations. For the second allele (\textit{wkm}^{hu5935}), linkage on chromosome 5 was confirmed. Sequencing the coding regions of all five genes in the genetic interval for \textit{wkm}^{hu5935} revealed an A-to-T transition at position 985 in the third exon of the 23-exon gene \textit{transmembrane protein 2} (\textit{tmem2}; accession NM_001099449). This mutation is predicted to introduce a stop codon (K329X) leading to a prematurely truncated protein (Fig. 1J). To confirm that the lesion in \textit{tmem2} is responsible for the \textit{wkm} phenotype, morpholino (MO) knockdown of \textit{tmem2} was performed and robustly reproduced the \textit{wkm} cardiac phenotype (Fig. 1K). Thus, genetic linkage, the identification of a premature stop codon and the MO phenocopy confirm that disruption of the \textit{tmem2} gene results in the \textit{wkm} phenotype (see Fig. S3 in the supplementary material).

![Fig. 2. \textit{tmem2} expression in the endocardial cells of zebrafish and mouse hearts and in the myocardial cells of zebrafish hearts.](image)

\(A\)-\(C\) ISH for \textit{tmem2} expression at 22 somites (A) and 48 hpf (B, C) shown in lateral (A, B) or frontal (C) view. \(D\) Transverse section of \textit{tmem2} ISH with tropomyosin counterstaining. White arrowheads, myocardial \textit{tmem2} expression; black arrowheads, endocardial \textit{tmem2} expression. \(E, F\) Transient expression from a \textit{Tmem2-Cherry} BAC construct. White arrowheads, myocardial \textit{Tmem2-Cherry}; black arrowheads, endocardial \textit{Tmem2-Cherry}. \(G-K\) ISH of mouse embryos stained for \textit{Tmem2} at E8.5-9.0 (G), E9.5 (J-K') and E11.0 (l). \(K\) Sagittal sectioning revealed expression in the endocardium (arrows). \(K'\) Enlargement of boxed region in K. Arrows indicate staining in the ventricular trabeculae. A, atrium; avc, atrioventricular canal; drg, dorsal root ganglion; fr, facial prominences; h, heart; la, left atrium; lb, limb buds; lv, left ventricle; OC, outer curvature; OFT, outflow tract; tg, trigeminal ganglion; V, ventricle.
The 4173 nt \textit{tmem2} transcript is predicted to encode a 1390 amino acid protein that harbours a single transmembrane domain in close proximity to the N-terminus, and a G8 domain, which is hypothesised to be involved in ligand binding and catalysis (Fig. 1L) (He et al., 2006). The long C-terminal region of the protein is predicted to reside extracellularly (Hogan et al., 2003). Until now, no functional role had been ascribed to \textit{Tmem2}.

\textbf{\textit{Tmem2} is expressed in the developing zebrafish and mouse heart}

\textit{tmem2} expression was examined in zebrafish and found to be present at the 2-cell stage (data not shown), indicating maternal deposition, and at the 22-somite stage, when it is ubiquitously expressed (Fig. 2A). By 48 hours, expression is restricted to the brain and head mesenchyme, otic vesicles, fin buds, caudal vein and the heart (Fig. 2B). Within the heart, \textit{tmem2}-positive regions included the outflow tract, ventricular regions and outer curvature of the atrium (Fig. 2C). Sectioned hearts counterstained with tropomyosin (to label the myocardium) revealed both myocardial and endocardial expression (Fig. 2D).

To expand on these analyses, a recombineered bacterial artificial chromosome (BAC) containing the \textit{tmem2} locus, with an in-frame insertion of the \textit{cherry} coding sequence replacing the \textit{tmem2} stop codon (resulting in a fusion of Cherry to the \textit{Tmem2} C-terminus), was created. Injection of BAC DNA into 1-cell stage zebrafish embryos resulted in mosaic expression of \textit{Tmem2}-Cherry protein.

In the developing heart, fusion protein expression localised to both myocardial and endocardial cells at 48 hpf, consistent with \textit{tmem2} RNA expression at the same stage (Fig. 2E,F). These approaches confirm that \textit{tmem2} is transcribed and expressed in both endocardial and myocardial cells at 48 hpf, consistent with \textit{tmem2} expression in the chambers but excluded from the A/VC (Fig. 2G). Sectioned hearts stained for \textit{meis2}, a marker of the A/VC myocardium, the A/VC endocardial marker \textit{spg1}, and the myocardial A/VC markers \textit{bmp4} and \textit{tbx2b} were upregulated and expanded, with \textit{bmp4} expression notably expanded throughout the entire ventricle in \textit{wkm} mutants (Fig. 3B-C). As with markers of the A/VC myocardium, the A/VC endocardial marker \textit{hyaluronan synthase 2} (\textit{has2}) was expanded into the chambers (Fig. 3D-D’).

Concordantly, an increase in hyaluronic acid (HA) in the chambers (Fig. 3E,E’) was also observed (see Fig. S5C, inset). Immunofluorescence analysis of endocardial-specific \textit{alcama} staining was evident in the developing heart, particularly from E9.5 onwards (Fig. 2I). Sagittal sections of stained E9.5 embryos revealed that expression was restricted to endocardial cells lining the ventricles and atria (Fig. 2K,K’). In an analogous manner to zebrafish \textit{tmem2}, \textit{Tmem2} expression became progressively restricted at later stages of mouse development (E11.0; Fig. 2J).

Although the morphology of zebrafish and mammalian hearts ultimately differ, many of the underlying molecular and cellular patterning events are conserved. The finding that \textit{Tmem2} has enriched expression in the mouse heart suggests a potential conservation of function.

\textbf{\textit{wkm} affects cardiac looping via a genetic pathway distinct from \textit{tbx5}}

The \textit{tbx5} mutant has been shown to exhibit a specific cardiac looping defect that is similar to \textit{wkm} mutants (Garrity et al., 2002).

To determine whether the looping defect observed in \textit{wkm} mutants is related to the \textit{tbx5} genetic pathway, reciprocal expression analysis was performed on both mutants. No obvious difference in \textit{tbx5} expression was observed in \textit{wkm} mutants as compared with sibling embryos (see Fig. S5A,A’ in the supplementary material).

Likewise, no difference in \textit{tmem2} expression was observed in \textit{tbx5} mutant embryos (see Fig. S5B, inset), suggesting that these genes operate in distinct genetic pathways to affect cardiac looping.

\textbf{\textit{tmem2} is required to restrict endocardial cushion development}

To more clearly define the cardiac defect in \textit{wkm} mutants, the expression of a number of regionalised cardiac markers was examined. The myocardial chamber marker \textit{anf} (also known as \textit{nppa}) was expressed in the chambers but excluded from the A/VC of \textit{wkm} mutants (Fig. 3A,A’), although the area of \textit{anf}-negative myocardial cells appeared to be broader than in siblings. Strikingly, the myocardial A/VC markers \textit{bmp4} and \textit{tbx2b} were upregulated and expanded, with \textit{bmp4} expression notably expanded throughout the entire ventricle in \textit{wkm} mutants (Fig. 3B-C’). As with markers of the A/VC myocardium, the A/VC endocardial marker \textit{hyaluronan synthase 2} (\textit{has2}) was expanded into the chambers (Fig. 3D,D’).

Concordantly, an increase in hyaluronic acid (HA) in the chambers was also observed (see Fig. S5A,A’ in the supplementary material). \textit{notch1b} expression in the AVC was less condensed but otherwise unchanged in mutants (see Fig. S5B,B’ in the supplementary material); however, expression of the Notch target \textit{hey2} was expanded (see Fig. S5C,C’ in the supplementary material). Immunofluorescence analysis of the EC marker \textit{alcama} also showed a dramatic expansion in ECs (Fig. 3E,E’), confirming an expansion of the EC region in \textit{wkm} mutants. Intriguingly, whereas

\textbf{Fig. 3. \textit{tmem2} is required to restrict the A/VC. (A-D’)} ISH for \textit{anf} (A,A’), \textit{bmp4} (B,B’), \textit{tbx2b} (C,C’) and \textit{has2} (D,D’) in zebrafish \textit{wkm} mutants and siblings at 52 hpf. (E,E’). Three-dimensional projections of endocardial-specific \textit{alcama} expression in \textit{wkm} mutants and siblings at 50 hpf. (F,F’) \textit{spp1} expression in \textit{wkm} mutants and siblings at 50 hpf. Dotted lines outline the morphology of the heart.
the suite of early AVC developmental markers showed expansion in their expression domains, spl1 (also known as osteopontin or zgc:111821) showed a substantial reduction in expression (Fig. 3F,F’). spl1 marks the developing cardiac valves at later stages of formation (Peal et al., 2009), suggesting that, although the EC primordium is expanded, there is a failure to progress to valve maturation.

**AVC expansion in wkm mutants is driven by Bmp4**

Bmp signalling is essential for the formation of the AVC (van Wijk et al., 2007). bmp2/4 have restricted expression in the AVC and outflow tract and have been demonstrated to promote cardiac jelly formation, epithelial-to-mesenchymal transition and patterning of the AVC (Ma et al., 2005). Given this role, we hypothesised that the ectopic expression of bmp4 in wkm mutants might be responsible for the expanded AVC phenotype. To test this, Bmp4 was depleted in mutant and sibling zebrafish embryos by MO knockdown and ECs examined. has2 expression was unchanged in sibling and mutant embryos injected with control p53 MO in that an expansion of has2 was evident (Fig. 4A). By contrast, whereas injection of bmp4 MO had no effect on has2 expression in sibling embryos, rescue of the ectopic expression of has2 in wkm mutants was observed. A similar rescue was observed for Alcama staining in ECs (Fig. 4A), indicating that the expanded EC phenotype in wkm mutants is Bmp4 dependent. It is noteworthy that the AVC expression of has2 and Alcama are not abolished in bmp4 morphants, suggesting that this region is not under the sole regulation of Bmp4.

The expanded AVC phenotype of wkm mutants is phenotypically indistinguishable from the defect seen in zebrafish tbx5, apc and hey2 mutants. In these cases, an expansion of bmp4 expression throughout the ventricular myocardium is observed and is associated with EC marker expansion (Camarata et al., 2010; Garrity et al., 2002; Hurlstone et al., 2003; Rutenberg et al., 2006). Here, we show that, downstream of tmem2, ectopic bmp4 expression is functionally responsible for the expansion of the immature AVC. Bmp signalling is known to activate tbx2 expression in the AVC (Singh et al., 2009; Yamada et al., 2000) and, in turn, tbx2 inhibits the chamber myocardial differentiation programme via the repression of genes such as anf (Habets et al., 2002). The boundary between the AVC and chambers is kept in check by chamber-specific genes, such as hesr1 and hesr2 (Kokubo et al., 2007). Clearly, tbx2, apc, hey2 and, now, tmem2 (Fig. 4B) are instrumental in determining this AVC boundary and regionally restricting EC development.

**Acknowledgements**

We thank the Hubrecht Screen Team and Jeroen Koring for technical assistance and Dr David Pennisi for useful discussions. Confocal microscopy was performed at the ACRF Cancer Biology Imaging Facility at the IMB, established with the generous support of the Australian Cancer Research Foundation (ACRF).

**Funding**

This work was supported by the Research Council for Earth and Life Sciences (ALV) from the Netherlands Organization for Science (NWO) to J.B. K.A.S. was supported by a UQ Postdoctoral Fellowship, Concordia Fellowship, an Institute for Molecular Bioscience (IMB) Development Grant and National Health and Medical Research Council (NHMRC) of Australia Project Grant. B.M.H. is an Australian Research Council (ARC) Future Fellow and C.W. is a NHMRC Senior Research Fellow.

**Competing interests statement**

The authors declare no competing financial interests.

**Supplementary material**

Supplementary material for this article is available at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.065375/-/DC1

**References**


