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A computational statistics approach for estimating the
spatial range of morphogen gradients
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SUMMARY

A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators
of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that
can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and
confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the

dorsoventral pattern of the Drosophila embryo.
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INTRODUCTION

In one of the most widely studied tissue patterning mechanisms,
locally produced proteins establish signaling gradients that provide
spatial and temporal control of gene expression within the tissue
(Tabata and Takei, 2004; Ashe and Briscoe, 2006). Also known as
morphogen gradients, spatially distributed inductive signals can
establish multiple gene expression boundaries within the patterned
field. Although some transcriptional effects of morphogens can be
direct, other effects may be mediated by combinatorial strategies,
based on regulatory cascades and tissue pre-patterning. As a first
step in assessing the contributions of direct and indirect effects of
morphogen gradients, it is necessary to quantify their spatial range:
the distance over which they can act as spatial regulators of gene
expression. Here, we present a straightforward statistical approach
for estimating this important parameter.

Far from the source of ligand production, a signaling gradient
decays to some basal value that corresponds to the ‘off” state of the
pathway. If a gene expression boundary is directly controlled by
the signal, then this boundary must be located within the part of the
tissue where the spatial distribution of the signal is graded, i.e.
before it decays to the basal level. Although this is not a sufficient,
but only a necessary condition for the regulatory connection
between a signal and its target, it holds true for any gene expression
boundary that is controlled by the signal. Based on this argument,
we define the range of the signal as a part of the system where the
signal level is different from the basal value.
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To illustrate how this definition works in practice, we
characterize the range for the nuclear localization gradient of
Dorsal (DI), a Rel-family transcription factor that controls the
dorsoventral (DV) pattern of the Drosophila embryo (Roth et al.,
1989; Rushlow et al., 1989; Steward, 1989). This gradient is
established by the localized activation of Toll receptors on the
ventral side of the embryo (reviewed by Morisato and Anderson,
1995). In the absence of Toll activation, DI is located
predominantly in the cytoplasm, in a complex with its binding
protein Cactus (Govind and Steward, 1993). Toll activation leads
to degradation of Cactus, enabling import of DI into the nucleus,
where it binds the regulatory regions of its target genes. Among
these targets are transcription factors and signaling molecules that
work together with DI in gene regulation (Zeitlinger et al., 2007).

Several lines of evidence support a model in which Dl is directly
involved in positioning multiple gene expression boundaries along
the DV axis (reviewed by Hong et al., 2008). If this is indeed the
case, then the spatial pattern of nuclear DI must be graded over the
region that contains all of these boundaries. We describe a statistical
approach that can be used to test this condition. We quantified the
gradient of nuclear DI using a recently developed microfluidic
device, which allows us to vertically orient large numbers of
embryos and image nuclear DI along the entire DV axis (Chung et
al., 2011). To analyze the resulting dataset, we used a non-parametric
statistical approach, which is based on empirical distribution of signal
intensity across the tissue. This yields both the point estimate and the
confidence interval for the spatial range of the DI gradient.

Based on this estimate, we conclude that the spatial pattern of
nuclear DI is sufficiently graded over two-thirds of the DV axis,
consistent with the model where this signal plays a direct role in
specifying gene expression borders throughout the tissue. A similar
approach is readily applicable to other experimental systems (e.g.
Affolter and Basler, 2007; Dessaud et al., 2008; Schier, 2009;
Porcher and Dostatni, 2010; Umulis et al., 2010).

MATERIALS AND METHODS

Flies, immunostaining and in situ hybridization

OreR flies were used as the wild-type strain for all experiments. Antibody
staining was performed as described previously (Coppey et al., 2008).
Mouse anti-D1 (1:100 Monoclonal Ab from Developmental Studies
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Hybridoma Bank) was used as the primary antibody, DAPI (1:10,000,
Vector Laboratories) was used to stain the nuclei and Alexa Fluor
conjugates (1:500, Invitrogen) were used as secondary antibodies. To
visualize the sog transcript, fluorescence in situ hybridization (FISH) was
used as described previously (Perry et al., 2010). Embryos were hybridized
with digoxigenin (DIG)-labeled antisense probe to sog introns overnight at
60°C. Sheep anti-DIG (1:125; Roche) was used as primary antibody and
Alexa Fluors (1:500) were used as secondary antibodies.

Microscopy

Imaging was performed on a Zeiss LSM 510 confocal microscope. Zeiss
20X [numerical aperture (NA) 0.6] A-plan objective was used for DI
gradient quantification. sog FISH staining was imaged with Zeiss 40X (NA
1.2) C-Apo water-immersion objective. High-resolution images (1024 X
1024 pixels, 12-bit depth for DI experiments and 512X512 pixels, 12-bit
depth for sog experiments) were obtained. All images were obtained from
the focal plane ~70 pwm from either the anterior or posterior pole. Embryos
were imaged in 90% glycerol solution.

DI gradient quantification in 2D

Protein gradients were extracted from confocal images by using a
previously described Matlab (MathWorks) program (Coppey et al., 2008).
DAPI staining provided nuclear masks, which were then used to quantify
the ventral-to-dorsal nuclear concentration gradient of DI. To orient the
extracted gradients, the raw nuclear DI gradient was fitted to a Gaussian
curve. These fits were not an accurate representation of the raw data itself.
Therefore, the fits were used only to find the ventralmost position of the
DI gradient, whereas the entire analysis was based on the original raw
measurements itself. After finding the ventralmost position of the gradient,
the intensity was interpolated onto a uniform grid of 100 points, which is
roughly equal to the average number of nuclei along the DV axis in a single
cross-section. Since the embryo has bilateral symmetry, the measurement
from one embryo provided two gradients of nuclear DI from the ventral to
the dorsal end. The ventralmost point is denoted as x=0 and the dorsal-most
point as x=1.

3D quantification of the DI gradient

Two-color 3D images of entire Drosophila embryos, containing signals
for a-Dl and Histone, were acquired with scanned light sheet-based
microscopy (Keller et al., 2010), using a z-step size of 2 um between the
2D planes in each 3D image stack. A custom analysis pipeline was
implemented to calculate dorsoventral gradients of a-Dl signal as a
function of AP axis position. In the first step, the nuclear channel was
used, which labels all of the nuclei, to generate an embryonic cellular
mass shell by Gaussian smoothening, followed by application of a global
threshold. The AP axis was then determined by identifying those pairs
of points on the shell that were maximally separated. The anterior-
posterior coordinates were calculated by averaging the coordinates of
the top 100 pairs. Furthermore, thin planar slabs (2% of AP length),
perpendicular to the AP axis, were generated such that (1) the normal
surface vector coincided with AP axis direction and (2) the AP axis went
through the middle plane of the slab at a pre-defined position.
Intersecting the shell and the planar slabs resulted in approximate planar
rings, which were further subdivided into non-overlapping cuboids (Fig.
1C) such that the lines connecting centers of two neighboring sub-
regions and the geometric center of the ring were arranged at an angle
of 5°. Finally, the second channel, which contained the a.-DI signal, was
super-imposed onto these cuboids to calculate mean intensities.

Quantification of FISH images

DAPI staining was used to extract nuclei close to the surface of the embryo
(Fig. 4A). This was carried out by choosing a cutoff threshold for DAPI
signal intensity. All pixels above the threshold were considered to be in the
nuclear layer (Fig. 4B). sog introns were identified based on the three criteria
(Fig. 4C). They should be present within the nuclear layer in the FISH
staining, they should be bright and they should have sharp features.
Specifically, the intronic signal was extracted by applying a cutoff threshold
to intensity of the sog staining (Fig. 4D). As a result, only the blobs above a
certain level of brightness were detected. A cutoff threshold was also applied

to the nonlinearly filtered image of the staining (Fig. 4E). The purpose of this
operation is to identify blobs with sharp features (Bretzner and Lindeberg,
1998; Lindeberg, 1998; Lindeberg, 2010). Non-linear filtering involved two
steps. First, median filtering was used to reduce the noise in the image (Fig.
4E"). The MATLAB command ‘ordfilt2’ with order ‘9’ and domain
‘ones(3,3)” is used for the purpose. The median filtered image was then
Gaussian filtered (blurred) with a width of about 25 pixels to create an image
that served as a proxy for the background (Fig. 4E”). The MATLAB
command ‘imfilter’ was used for the purpose. Subtraction of the blurred
image from the median filtered image resulted in an image with reduced
noise and enhanced sharp features (Fig. 4E). Finally, those pixels that were
above the cutoff thresholds in the original and filtered image were identified
as those originating from sog introns (Fig. 4F).

In order to orient the image along the DV axis, each image was
simultaneously stained with DI and the position of peak nuclear DI
intensity was chosen as the ventral-most position. The DV position of
intronic spots is given by the angle between the ventral-most point and the
sog intronic probe with respect to the center of the embryo. The
measurements for angular positions are then distributed into 100 equivalent
bins along the circumference (Fig. 4G). Each bin contains a binary entry —
0 or 1 —where 0 corresponds to the case that there is no sog staining within
the bin and 1 corresponds to the case where there is at least one non-zero
pixel within the bin (Fig. 4H). Similar to the analysis of the DI gradients,
due to bilateral symmetry, each image provides two samples of sog
expression along the DV axis.

Statistical methods

All calculations were carried out using MATLAB (MathWorks) functions.
Empirical densities of DI intensity at two positions were compared using
‘matched two sample #-test’ where the two points from the same gradient
are paired. MATLAB function ‘ttest’ was used for the purpose. This test
takes into account the dependence of the observations at two positions
along the same gradient.

We calculated a 99% confidence interval (CI) for probability of sog
expression P(i) at each DV position using a Bayesian approach
(Wasserman, 2003). We took this approach because some of the intervals
showed no instances of expression, thereby making the frequentist CIs
nonsensical (i.e. the CI is [0,0] when no expression is observed in all n
observations in an interval). We took a standard approach and placed a
Uniform (0,1) prior on P(i) (Wasserman, 2003). This implies that the
posterior distribution for a given interval is distributed Beta (1+x(7),
1+n-x(7)) where x(7) is the number of instances of expression observed
in interval i and » is the total number of observations (n=68). This
distribution yields a posterior expectation of E[P(i)|x(i)|=(1+x(?))/(2+n),
which provides a point estimate of P(i). Next, we calculated the 99%
Bayesian ‘credible interval’ based on Pr(P(7)|x(i)) by obtaining the 0.5%
and 99.5% percentiles of the distribution. As the lowest possible
posterior expectation is 1/(2+n) when x(i)=0, we called an interval
estimated to be not expressed whenever the Bayesian CI did not overlap
with this value. This occurred whenever x(i/)>4. The 99% Bayesian CI
for sog expression shown in Fig. 5 is shown by the dashed curves in Fig.
5B. We found that the Bayesian and usual frequentist Cls largely agreed
when x(7)>7, particularly at the qualitative level.

The frequency distribution of the spatial ranges of the DI gradient and
sog expression pattern was estimated using the bootstrap technique (Efron
and Tibshirani, 1993; Wasserman, 2003). Ten-thousand bootstrap datasets
were generated from the original datasets by sampling with replacement.
For each of the bootstrap datasets, the spatial range was estimated as
described in the main text. Increasing the number of resampling times did
not affect the estimated frequency distributions.

RESULTS

Data collection: end-on and multi-view imaging
Immunofluorescence techniques have been successfully used to
quantify patterns along the anteroposterior (AP) axis of the
Drosophila embryo (Jaeger et al., 2004; Gregor et al., 2005;
Janssens et al., 2005; Coppey et al., 2008; He et al., 2008).
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Fig. 1. Data collection. (A) End-on imaging: DV cross-section of a Drosophila embryo stained using antibody against DI (left) and DAPI (right).
Ventral side is at the bottom and dorsal side is at the top. The nuclear mask (white) was established based on the DAPI signal. (B) Representative
spatial pattern of nuclear DI (black dots) as a function of DV position. The gradient is interpolated onto a uniform grid (blue squares). As the nuclei
are spaced very tightly, linear interpolation does not introduce any artifact to the gradient. Solid red line represents the Gaussian fit that is used to
find the ventralmost position along the DV axis. (C) 3D imaging of a Drosophila embryo stained with o-DI antibody using scanned light sheet-based
microscopy. The bands correspond to positions along the AP axis of the embryo where the DV pattern of nuclear DI was quantified. (D) DV profile
of nuclear DI at 15% (solid) and 85% (dashed) of the AP axis from the anterior pole in one embryo. (E) Gaussian width (o) of nuclear DI profile as a
function of position along the AP axis for three independent embryos. Arrows indicate the depth at which cross-sectional views are imaged using
the microfluidic device. (F) Comparison of the estimated Gaussian widths of nuclear DI profiles, measured 15% from anterior and posterior poles,
obtained by scanned light sheet-based microscopy (3D) with those obtained by end-on imaging in a microfluidic device (2D).

Quantitative analysis of DV patterns has been less extensive, owing
to the difficulties associated with imaging the distributions of
protein and transcripts throughout the entire DV axis. This goal can
be achieved by an ‘end-on’ approach, in which embryos are aligned
with the optical axis of the microscope (Witzberger et al., 2008;
Kanodia et al., 2009; Belu et al., 2010). The applicability of the
end-on approach has been limited by the need to orient individual
embryos manually. To enable large scale end-on imaging studies,
we have recently developed a microfluidics platform for rapid and
robust orientation of hundreds of embryos in a single experiment
(Chung et al., 2011). Within this framework, a suspension of
embryos is introduced into a microfluidic chip that has the
dimensions of a regular microscope slide.

For this study, fixed embryos were stained with the anti-DI
antibody and DAPI, which marks the nuclei, providing a mask for
gradient quantification (Fig. 1A). Multiple embryos, vertically
oriented on a single microfluidic chip, were imaged using a
confocal microscope, at a depth of ~70 um from the embryonic
poles. Beyond this depth, the quality of images obtained in a
single-photon confocal microscope deteriorates. Here, we focus on

the analysis of the nuclear DI gradients during the last nuclear
division cycle in the syncytial blastoderm (nuclear cycle 14), a time
interval of ~45 minutes (Foe and Alberts, 1983).

Fig. 1B provides an example of the pattern of nuclear DI,
quantified by microfluidic-based end-on imaging. This figure also
shows a Gaussian fit, used to locate the position that corresponds
to the maximum of the gradient, which acts as a proxy for
the ventralmost point along the DV axis (Fig. 1B). The
anterior/posterior orientation of embryos loaded into a microfluidic
device is essentially random. We found no significant differences
in the widths of the gradients collected from the anteriorly and
posteriorly oriented embryos (P>0.01). Based on this, we combine
all the gradients from a single experiment into a common dataset.
Furthermore, owing to the bilateral symmetry of the embryo, one
image provides two gradients of DI from the ventral to the dorsal
side of the embryo.

To verify the quantification of DI gradient using the microfluidic
device, we used a multi-view imaging approach that measures the
Dl intensity levels in the entire embryo. Briefly, anti-DI and nuclear
signals are measured in 3D using scanned light sheet-based
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microscopy (Keller et al., 2010). Fig. 1C presents a reconstructed
3D view of the spatial pattern of nuclear DI, along with specific
positions along the AP axis where this gradient was quantified.
Representative examples of measured nuclear DI gradient at
different positions along the AP axis in one embryo are shown in
Fig. 1D. Fig. 1E shows that the width of the nuclear DI gradient
decreases slightly from the pole towards the center of the embryo.

The multi-view approach provides information about the DI
gradient at arbitrary positions along the AP axis (Fig. 1C,D).
However, owing to the considerable amount of time required for
sample preparation and instrument alignment in whole-embryo
imaging, multi-view light sheet microscopy is not yet suitable for
high throughput analyses of signaling patterns. Thus, we used the
light sheet-based imaging approach mainly to verify the
measurements made in 2D in a whole-embryo context and to test
our assumption of the AP symmetry of the gradients visualized by
end-on imaging.

In the microfluidic device, the DI gradient was measured at ~70
um from the pole; about 15% of AP axis. The histogram of fitted
nuclear DI gradient widths for measurements using the microfluidic
device is superimposed with the fitted gradient widths for 3D
measurements (Fig. 1F). The width of the DI gradient measured by
light sheet microscopy agrees well with the corresponding width
obtained from end-on imaging. Furthermore, light sheet imaging
reveals that estimated widths of nuclear DI gradients at a distance
of 15% from either pole are similar. Based on this, we conclude
that the high throughput measurements in a microfluidic device do
not introduce systematic biases owing to imaging, shape of the
embryo or choice of the embryonic pole at which the measurement
is performed.

Point estimate and confidence interval for the
spatial range

Once the ventralmost position is defined, we interpolate the raw
intensity levels onto a uniform grid with 100 points, which
corresponds to the average number of nuclei along the
circumference of the DV cross-section. Repeating this process for
all embryos imaged in a single experiment and extracting the
fluorescence intensity measurements at each position along the
grid, we construct the empirical distribution for the nuclear levels
of DI at all positions along the DV axis (Fig. 2). These empirical
distributions form the basis for our statistical analysis of the spatial
range of the nuclear DI gradient.

As already discussed, we define the spatial range of the signal
as that part of the system where the signal is statistically different
from the baseline level. For the spatial pattern of nuclear DI, the
fluorescence intensity level at the dorsalmost position provides a
natural baseline value, as this position is most distant from the
maximum of Toll receptor activation. To estimate the spatial range,
we used a pairwise -test to compare the means of the distributions
between the dorsalmost position and all other grid points along the
DV axis. For example, for x=0.2, which corresponds to the
boundary of presumptive mesoderm (the boundary of Snail
expression), the #-test comparing intensity levels at x=0.2 and x=1
leads to a P-value of 107", indicating that the intensity level at
x=0.2 is clearly different than the basal level. For more dorsal
locations (x=0.4, 0.6, 0.8), the P-values are higher, indicating the
fact that the fluorescence intensity levels become closer to the
baseline value (Fig. 3A).

As a final step in quantifying the spatial range of a graded signal,
we select a threshold P-value, above which the two means are
considered indistinguishable. Choosing the threshold P-value
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Fig. 2. Empirical distributions. (A) Raw intensity measurements of
nuclear DI (36 embryos, 72 nuclear DI gradients from ventral to dorsal
end). 0/1 corresponds to the ventral/dorsal sides of the embryo,
respectively. Colored arrows indicate the specific positions at which the
empirical distribution functions are shown in B. (B) Empirical
distributions of fluorescence intensities at x=0.2, 0.4, 0.6, 0.8 (solid line)
compared with the basal level at x=1 (broken black line).

provides a point estimate for the spatial range of a graded signal.
For the set of data presented in Fig. 2A, the spatial range is
relatively insensitive to threshold P-value between 0.001 and 0.05,
and so we chose P=0.01 as a threshold. This yields x=0.68 as a
point estimate for the spatial range (Fig. 3A). In other words, the
fluorescence intensity levels are statistically different from the
baseline level for all x<0.68.

We used two approaches to analyze the accuracy of our point
estimate for the spatial range of the DI gradient. First, we used a
standard bootstrap method to computationally obtain the
frequency distribution for the point estimates (Efron and
Tibshirani, 1993; Wasserman, 2003). Briefly, starting with a
collection of N gradients, we generated multiple data sets of the
same size by sampling from this collection with replacement. For
each of these bootstrap resampling data sets, we calculated the
point estimate for the spatial range as described above. The
frequency distribution for the point estimates, obtained from the
t-test, is shown in Fig. 3B. Based on this distribution, one can
easily obtain the confidence intervals (CI) for the point
estimates. For example, the 95% CI for the data shown in Fig.
2A is given by [0.56-0.8]. This interval covers the true parameter
value with 95% confidence.

As an independent way to assess the variability of our point
estimates, we analyzed the results of seven additional experiments,
each of which led to collection of several dozen gradients imaged
during the last nuclear division in the syncytial blastoderm. The
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Fig. 3. Point estimate and associated confidence interval. (A) P-
value for pairwise comparison of the means of the signal intensities at a
given position along the DV axis (x) and a baseline value (x=1). Dotted
line indicates the cut-off chosen for level of significance. The estimated
range of nuclear DI gradient is indicated by the solid arrow.

(B) Probability distribution for the estimated spatial range. Dotted lines
indicate the 95% confidence interval. Stars represent the estimated
range of DI for eight independent experiments using the pairwise t-test.
Sample sizes for the experiments are as follows ny=72, n,=76, n3=50,
ny=72, ns=78, ng=74, n;=74, ng=80. (C) 95% confidence interval
estimated by each independent experiment. Stars represent the
estimated range of DI for all experiments using pairwise t-test.

point estimates computed based on the results of these experiments
are compared in Fig. 3B. Importantly, we found that estimates from
replicate experiments lie well within the CI estimated from the first
collection of gradients. We calculated the 95% CIs for each of these
estimates and found that the point estimates obtained from each
independent experiment lie close to each of the independent
estimated CIs (Fig. 3C). Thus, the combined results obtained from
eight independent repeats of nuclear DI gradient quantification
establish the robustness and reliability of the results obtained from
a single experiment.

The uncertainty in our estimates reflects the combined effect of
multiple factors contributing to the variability of fluorescence
intensity profiles in our data. One of these factors is the dynamics
of the DI gradient, which increases in amplitude throughout the DV
axis during nuclear cycle 14. Based on the published accounts of
the DI gradient dynamics, we expect that this factor alone
contributes ~30% to the variability at the ventralmost position.
Quantitative contributions of other sources of variability are
difficult to assess at this time.

Comparing the range of the DI gradient with the
spatial extent of DI-dependent gene expression

In order to compare our estimate for the spatial range of the D1
gradient with the spatial range of DI-dependent transcriptional
effects, we quantified the spatial pattern of the expression of
short gastrulation (sog). This gene encodes a secreted inhibitor
of Bone Morphogenetic Protein signaling and is essential for
patterning of the presumptive neural ectoderm and dorsal
ectoderm tissues (O’Connor et al., 2006). sog is expressed in two
lateral stripes, reflecting its broad activation by DI and ventral
repression by Snail (Sna). Based on the previously published in
situ hybridization images, the dorsal extent of sog expression is
one of the largest among all known transcriptional targets of the
DI gradient (Stathopoulos and Levine, 2002). Thus, analysis of
the sog expression pattern can be used to probe the spatial extent
of Dl-dependent gene expression. We quantified this pattern
using FISH with a probe that hybridizes to the sog intronic
sequence. Because introns are rapidly degraded, FISH stainings
with this probe provide a snapshot of the transcriptional activity
of the sog locus.

Fig. 4 outlines the data processing pipeline for the FISH data
(also see Materials and methods). Briefly, processing of images
from a single embryo generates a vector with binary components
(Fig. 4H). Each component of this vector corresponds to a specific
position along the DV axis. The value of the i-th vector component
(0 or 1) corresponds to the absence or presence of sog introns at
this position. Thus, the value of this component can be viewed as
a realization of a Bernoulli random variable. A Bernoulli random
variable takes only two values: 1, with probability P, and 0 with
probability (1-P). Based on this, we use P(i) to denote the
probability of sog expression at a specific position along the DV
axis.

To estimate P(i), we use data from multiple embryos that were
stained together and imaged on the same microfluidic device (Fig.
5A). The result, based on data from 34 embryos, is shown in Fig.
5B. In addition to estimating P(i), we calculated the corresponding
Bayesian confidence intervals, also called credible intervals (see
Materials and methods for details), which were used to quantify the
spatial extent of sog expression. We defined this extent based on
the largest index of the bin for which the 99% confidence interval
for P(i) does not contain the expected value of P(7) when there are
no instances of expression. This implies that the extent of sog
expression is the region of the tissue where the probability of
expression has posterior probability of not overlapping with the
case of no expression equal to 99% or more. For the dataset that
led to the spatial pattern of P(i) shown in Fig. 5B, the spatial range
of sog expression is equal to 0.66. A distribution function for this
estimate, based on bootstrapping, is shown in Fig. 5C. The spatial
extent of sog expression is in a good agreement with our estimates
for the spatial range of the DI gradient. Indeed, the distribution
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Fig. 4. Quantification of sog expression. (A) Nuclear staining using DAPI. (B) Nuclear layer close to the embryo surface, obtained by applying a
cutoff threshold for intensity in A. (C) Fluorescent in situ hybridization staining for sog intronic probe. (D) sog signal within the nuclear layer. (E) Non-
linear filtering of the image in D. E’ is obtained from D using median filtering. E” is obtained from E’ using Gaussian blurring. (F) Identified sog
probes in the embryo, obtained by applying cutoff thresholds for the images in D and E simultaneously. (G) Binning the expression of sog intronic
probes along the DV axis. (H) Binary vector resulting from image processing of data from a single embryo.

function for the range of sog expression is localized around our
estimate for the spatial range of the graded distribution of nuclear
DL

DISCUSSION
As a practical definition for the spatial range of morphogen
gradient, we propose to use the part of the system over which the
level of signal is statistically different from the baseline level.
Using the nuclear DI gradient as an illustrative example, we
presented a systematic computational approach for evaluating both
the point estimate and confidence intervals for the range defined in
this way. Our analysis of multiple independent experiments
suggests that an accurate estimate for the range can be based on
data from 50-70 gradients. This is within the reach of current
experimental approaches, which means that our approach can be
readily applied to multiple systems regulated by graded chemical
signals (Mizutani et al., 2006; Affolter and Basler, 2007; Dessaud
et al., 2008; Kicheva and Gonzalez-Gaitan, 2008; Porcher and
Dostatni, 2010; Umulis et al., 2010).

Our results suggest that the spatial pattern of nuclear DI is
graded over two-thirds of the DV axis, which includes the
presumptive mesoderm and neuroectoderm territories. This

conclusion is based on comparing the nuclear levels of DI at a
given location along the DV axis with the level at the dorsalmost
position. The estimate for the range of the DI gradient agrees very
well with the spatial extent of the expression of sog, a gene that is
expressed in broad lateral pattern and is a direct transcriptional
target of DI. Based on this, we suggest that the dorsal limit of sog
expression is determined by diminishing levels of nuclear DI. At
this point, there is no doubt that DI is not the only signal that
regulates the DV pattern of the fly embryo (Chopra and Levine,
2009). The spatial patterns of other regulators can be spatially
uniform, which is the case for Zelda, the activator of the early
zygotic transcription (Liang et al., 2008; Liberman and
Stathopoulos, 2009), or graded, which is the case for Twist and
phosphorylated Mad, established by cascades that act downstream
of DI (Ip et al., 1992; Dorfman and Shilo, 2001). The spatial ranges
of these graded signals can be estimated using the presented
approach.

Our approach is based on statistical analysis of an ensemble of
gradients collected from multiple embryos. The variability of this
dataset reflects combined effects of stochastic processes in a given
embryo, embryo-to-embryo variations, as well as the variability of
sample manipulation and imaging procedures. Because all of these
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Fig. 5. Spatial range of sog expression.

(A) Examples of sog expression profiles in different
embryos (n=68). (B) Mean sog expression profile
during nuclear cycle 14 of embryogenesis. 0/1
corresponds to the ventral/dorsal sides of the
embryo, respectively. Dashed curves indicate the
99% Bayesian confidence interval for probability of
transcription at each point. From x=0 to x=0.66, the
99%Cl for probability of transcription does not
include the expected value of P(j) when there are no
instances of expression. Therefore, we estimate the

range of sog expression to be 0.66. (C) Probability
distribution for the estimated range of sog
expression.
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effects increase the variability within the analyzed ensemble, our
estimate for the spatial range is conservative. In other words, the
spatial range we estimate is lower than the true spatial range.
Gradients analyzed in this study were collected over a relatively
wide time window, ~45 minutes during the last nuclear division
cycle in the syncytial blastoderm. The DI gradient changes during
this time, increasing in amplitude throughout the DV axis (Kanodia
et al., 2009; Liberman et al., 2009). Therefore, a fraction of the
variability in our estimate for the spatial range reflects the
dynamics of the DI gradient. In the future, our approach can be
extended to gradients collected with higher temporal resolution.
These measurements should clarify the differential effects of the
dynamics of DI and other regulatory factors in the DV patterning
system.

The presented approach is not restricted to gradients of
transcription factors in the Drosophila embryo and can be readily
applied to morphogens in other developmental contexts, such as the
gradients that pattern the vertebrate neural tube (De Robertis, 2008;
Dessaud et al., 2008). As more molecular readouts of patterning
events appear, the presented statistical framework can be used to
analyze the range of other spatially distributed chemical,
mechanical and electrical signals that organize pattern formation
and tissue morphogenesis. In all of these cases, the estimated
ranges must be interpreted with caution. For systems with small
sample size, the sample mean can be different as compared with
the true mean gradient. Thus, the point estimate for the spatial
range must always be interpreted along with the corresponding
confidence interval. Our study describes a straightforward
computational approach for doing this systematically.
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