Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation

Yosuke Ogura1, Asako Sakaue-Sawano2,3, Masashi Nakagawa4, Nori Satoh5, Atsushi Miyawaki2,3 and Yasunori Sasakura1,*

SUMMARY
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermoids occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.

KEY WORDS: Cell cycle, Morphogenetic movement, Chordate, Neurulation, Epidermis, Ciona intestinalis

INTRODUCTION
At the initial stages of animal embryogenesis, blastomeres undergo rapid and synchronous cell division called cleavage, which is characterized by very short gap (G1 and G2) phases. When embryogenesis proceeds, longer G1 and/or G2 phases are introduced, and from then on, blastomeres undergo the conventional cell cycle (Kipreos, 2005; Philpott and Yew, 2008). This transition in cell cycle composition is thought to be an adjustment that allows morphogenetic movement to occur (Duncan and Su, 2004). Studies in the protostome Drosophila melanogaster have shown that the G2 phase is added at the 14th cell cycle from fertilization (Grosshans and Wieschaus, 2000; Nabel-Rosen et al., 2005). The addition of the G2 phase is necessary for proper morphogenetic movement, as disruption of the G2 phase insertion in tribbles mutants leads to gastrulation defects (Mata et al., 2000). A similar phenomenon has been observed in the vertebrate Xenopus laevis, in which cell cycle arrest around the midblastula transition (MBT) is necessary for gastrulation (Murakami et al., 2004) and for the convergent extension of paraxial mesoderm (Leise and Mueller, 2004). These studies suggest the importance of changes in cell cycle composition for morphogenesis in both protostomes and deuterostomes. To understand the mechanisms of morphogenesis, we must determine how morphogenetic movement and the cell cycle are balanced.

Neurulation is a key morphogenetic movement of chordate embryos that involves the dorsal hollow neural tube (Gilbert, 2006). Neurulation occurs in two parts, primary neurulation and secondary neurulation. Primary neurulation consists of multiple steps: formation of the neural plate; invagination of the neural plate to form the neural groove; convergent extension of the neural plate cells; and closure of the neural tube by the fusion of the left and right neural folds, including the epidermal layer that overlaps the neural tube (Colas and Schoenwolf, 2001). Cellular and molecular mechanisms of neurulation have been analyzed extensively; the invagination of the neural plate occurs by apical constriction mediated by Shroom (Hildebrand and Soriano, 1999) and p190RhoGAP (Brouns et al., 2000), and convergent extension of the neural plate is caused by the planar cell polarity (PCP) pathway (Wallingford, 2006). It has been shown that neurulation cannot be accomplished solely by means of the intrinsic movement of the neural plate: contribution from the surrounding epidermis is required for appropriate neural tube formation. The transcription factor AP-2, which is expressed in the epidermis but not in the neural plate, is necessary for proper neural tube closure (Zhang et al., 1996). It has been suggested that the expansion of the epidermal layer, which can be attributed to changes in cell shape, position and number, produces the pushing force that causes the neural plate to bend (Sausedo et al., 1997). Hence, epidermal cells engage in both cell division and morphogenetic movement during neurulation. However, coordination between the cell cycle and the morphogenetic movement of the epidermal layer has not been fully elucidated in vertebrate neurulation. One limitation is that vertebrate neurula-stage embryos consist of an enormous number of cells, and it is thus difficult to trace the cell cycle in a tissue-specific manner. Another experimental system is needed to overcome this problem.

The ascidian Ciona intestinalis is an excellent species in which to observe cell cycle progression during neurulation (Satoh, 2003). Like vertebrate embryos, Ciona embryos undergo neurulation to...
construct a dorsal hollow neural tube. The manner of Ciona neurlulation is closely related to primary neurulation in vertebrates (Nicol and Meinertzhagen, 1988a; Nicol and Meinertzhagen, 1988b; Lowery and Sive, 2004). Ciona embryos and larvae are semi-transparent, and the number of constituent cells is extraordinarily small. The larva consists of ~2,600 cells, with approximately 800 monolayer epidermal cells (Satoh, 1994). The small cell number is advantageous for observing the cell cycle during neurulation at cellular resolution (Nicol and Meinertzhagen, 1988a; Nicol and Meinertzhagen, 1988b). Cell lineage studies have allowed the observation of cell cycle progression in a specific lineage (Nishida, 1987; Pasini et al., 2006). The lineage tracing experiments have shown that epidermal cells undergo seven divisions before the initiation of gastrulation at the 110-cell stage, and divide four times during gastrulation, neurulation and tailbud formation. The epidermal cells then stop dividing until the hatching of larvae (Pasini et al., 2006).

A fluorescent ubiquitination-based cell cycle indicator (Fucci) was recently developed to trace the cell cycle during development in vivo (Sakaue-Sawano et al., 2008). The Fucci system utilizes fusions of fluorescent proteins and the ubiquitination boxes of two proteins, Geminin and Cdt1. Geminin is accumulated in the S, G2 and M phases and degraded in the late M phase, whereas Cdt1 is accumulated in the G1 phase and degraded during the S, G2 and M phases (Nishitani et al., 2004). Therefore, fluorescence of the Geminin-based indicator corresponds to the G2/M phases and the Cdt1-based indicator corresponds to the G1 phase. In this study, we introduced this system into Ciona embryos together with time-lapse imaging to observe cell cycle progression during neurulation. We found that a long G2 phase is inserted in the specific cell cycle between the tenth and eleventh divisions of epidermal cells. This cell cycle event coincides with the timing of neural tube closure by means of the fusion of the left and right epidermis. Through genetic and pharmacological analyses we show that the prolongation of the cell cycle is necessary for neural tube closure to occur.

MATERIALS AND METHODS

Constructs

A Ci-EF1α promoter (Sasakura et al., 2010) was inserted into the multicloning site of pCDNA3-mAG-hGem(1/110), pCDNA3-mVenushGem(1/110), pCDNA3-mKO2-hCdt1(1/100), pCDNA3-mKO2-hCdt1(30/120) or pT2-mKO2-hCdt1(1/170). An RfC1 cassette was inserted into pCDNA3-CieiF1α-mKO2-hCdt1(1/100), pCDNA3-CieiF1α-mKO2-hCdt1(30/120) and pT2-CieiF1α-mKO2-αCdt1(1/170). Ci-EF1α-mAG-hGem(1/110) was inserted by the Gateway system (Invitrogen). gap43-egfp of pSP72-pFOG::B1-GAP43-GFP-B2 (Roure et al., 2007) was inserted into pSPgfpCAAX to create pSPCiEpi1GAP43C. A Ci-Ep1 promoter was inserted into pSPGAP43C to create pSPCiEpi1GAP43C. A CAAAX box (Fukano et al., 2007) was subcloned into pSPKaede (Hozumi et al., 2010), pSPVenus and pSP-M-Chee to create pSP-KCAAX, pSPVCAAX and pSPmChCAAX, respectively. A Ci-Ep1 promoter was inserted into pSPKCAAX to create pSPCiEpi1KCAAX. A BamHI fragment of Ci-ETR promoter was inserted into pSPmChCAAX to create pSPCiETRMChCAAX. The egfp cDNA of pSP-egfp was replaced by a cDNA of Ci-cdc25, then a Ci-Ep1 promoter was inserted to create pSPCiEpi1Cdcd25, CiEp1-gap43-ecfps, CiEp1-KCAAX, CiEpi1-VCAAX, and CiEp1-mChCAAX were subcloned into pSPCiEpi1Cdcd25 to create pSPCiEpi1Cdcd25CiEp1GAP43C, pSPCiEpi1Cdcd25CiEp1KCAAX, pSPCiEpi1Cdcd25CiEp1VCAAX and pSPCiEpi1Cdcd25CiEp1mChCAAX, respectively. The egfp cDNA of pSP-egfp was replaced by a histone 2B ORF (Roure et al., 2007) fused with mCherry, and then a Ci-Ep1 promoter was inserted to create pSPCiEpi1H2BmCherry. Fucci constructs and H2BmCherry cassettes were inserted into pBS-HTB (Akanuma et al., 2002). mRNA was synthesized with the Megascript T3 (Ambion), cap structure analog (New England Biolabs), and poly(A) tailing kit (Ambion).

Time-lapse imaging using wide-field microscopy

The vectors shown in Fig. 1A were electroporated into one-cell-stage embryos (Corbo et al., 1997). The embryos were reared at 18°C until imaging. Time-lapse imaging was performed using the Aximalger Z1 wide-field fluorescent microscope system (Carl Zeiss). Imaging was performed in a room maintained at 20°C. We found no significant deviation from the developmental table (Hotta et al., 2007) defined at 18°C until ~8 hours post fertilization (hpf). pSPCiEp1GAP43C and pSPCiEp1Cdcd25CiEp1GAP43C (linearized with XhoI) were microinjected into unfertilized eggs together with mVenus-hGem(1/110) mRNA. At 6.0 hpf, the embryos were mounted on a glass-based dish, and time-lapse imaging was performed. The recording interval was 5 minutes. In the aphidicolin administration experiment, imaging was halted at 6 hours and 55 minutes, aphidicolin was added at the concentration of 2 μg/ml, and imaging was restarted from 7.0 hpf.

Time-lapse imaging using confocal laser scanning microscopy

To observe the global cell cycle progression pattern, we microinjected mAG-hGem(1/110) and mKO2-hCdt1(1/100) mRNA into unfertilized eggs. For epidermal cell tracking experiments, mRNA of H2BmCherry was microinjected with mRNA of mAG-hGem(1/110). At 5-6 hpf, the embryos were mounted on a glass-based dish, and time-lapse 3D imaging was performed using an EV10i confocal microscope (Olympus) at 20°C. The recording interval was either 5 minutes or 10 minutes. At each time point, z-stack images were generated in the Fluoview viewer (Olympus). To observe cell shape change during the neural tube closure, pSPCiEpi1KCAAX or pSPCiEpi1Cdcd25CiEpi1KCAAX was electroporated into one-cell-stage embryos. At 5-6 hpf, the embryos were mounted on a glass-based dish and 10 μM FM4-64 (Molecular Probes) was added. Embryos were treated with 100 μM Y-27632 from 6.0 hpf.

Whole-mount in situ hybridization

Whole-mount in situ hybridization was performed essentially according to Yasuo and Satoh (Yasuo and Satoh, 1994). pSPCiEcd25 was digested with SalI and EcoRI, and this partial cDNA fragment of Ci-cdc25 was inserted into the SalI and EcoRI sites of pBluescript SKII+. This vector was used as a template to synthesize digoxigenin-labeled probes for in situ hybridization. Probes were washed at 55°C and the final washing step was carried out using 30 mM NaCl, 3 mM sodium citrate, 0.1 % Tween 20.

Incorporation of EdU

The embryos were treated with 10 μM 5-ethyl-2′-deoxyuridine (EdU) at 6.5 hpf, 7.0 hpf or 7.5 hpf for 30 minutes at 18°C. After fixation with 5% formaldehyde in sea-water, EdU incorporation was detected with a Click-iT EdU Alexa Fluor Imaging Kit (Invitrogen).

Immunostaining and phallolidin staining

mVenus-hGem(1/110) was immunostained with anti-GFP antibody (1:1000; Naclalai Tesque) and Alexa-488 conjugated anti-rabbit antibody. Embryos were treated with 100 μM 1,4-diamino-2,3-benzquinone (Sigma-Aldrich), and poly(A) tailing kit (Ambion). Whole-mount in situ hybridization was performed essentially according to Yasuo and Satoh (Yasuo and Satoh, 1994). pSPCiEcd25 was digested with SalI and EcoRI, and this partial cDNA fragment of Ci-cdc25 was inserted into the SalI and EcoRI sites of pBluescript SKII+. This vector was used as a template to synthesize digoxigenin-labeled probes for in situ hybridization. Probes were washed at 55°C and the final washing step was carried out using 30 mM NaCl, 3 mM sodium citrate, 0.1 % Tween 20.

RESULTS

Application of live-imaging probes to monitor cell cycle progression in Ciona intestinalis embryos

Several derivatives of Fucci probes have been created that are optimized for vertebrates (Sakaue-Sawano et al., 2008; Sugiyama et al., 2009). We tested whether these Fucci probes could monitor cell cycle progression in Ciona. For the Geminin-based Fucci, we tested mAG-hGem(1/110) and mVenus-hGem(1/110), which are
fusions of a part of human Geminin (amino acids 1-110) with monomeric Azami Green (mAG) and monomeric Venus-YFP (mVenus), respectively. The Geminin-based Fucci probes emit green fluorescence. For Cdt1-based Fucci, there are two different human Cdt1 (hCdt1)-based Fucci probes: one includes amino acids 1-100 [hCdt1(1/100)] and the other includes amino acids 30-120 [hCdt1(30/120)]. We also tested a zebrafish Cdt1 (zCdt1)-based probe that includes amino acids 1-170. DNAs encoding these partial Cdt1 proteins were fused with cDNAs of monomeric Kusabira Orange 2 (mKO2), resulting in emission of orange fluorescence upon expression.

Expression of these Fucci probes was driven in the Ciona embryos and larvae with a ubiquitous promoter of Ci-EF1α (Fig. 1A) (Sasakura et al., 2010). At the larval stage, most cells in the tail stop cell cycle progression, and therefore cells in the S/G2/M phases are restricted to the trunk region (Nakayama et al., 2005). Accordingly, the fluorescence of mAG-hGem(1/110) and mVenus-hGem(1/110) was observed exclusively in the trunk (Fig. 1B, left), suggesting that these Fucci probes successfully monitor the S/G2/M phases in Ciona embryos. When mKO2-hCdt1(1/100) and mAG-hGem(1/110) were simultaneously expressed, the orange fluorescence rarely overlapped with the green fluorescence, suggesting that mKO2-hCdt1(1/100) is degraded at the S/G2/M phases. Almost all cells in the tail showed orange fluorescence exclusively, suggesting that their cell cycle is arrested at the G1/G0 phase. When mKO2-hCdt1(30/120) and mAG-hGem(1/110) were simultaneously expressed, the green fluorescence in the trunk always overlapped with the orange fluorescence (Fig. 1B, middle), suggesting that their cell cycle is arrested at the S/G2/M phases. Because cells at the tail region showed mKO2-hCdt1(30/120) fluorescence exclusively, cell cycle progression was not strongly affected by mKO2-hCdt1(30/120). When mKO2-
zCdt1(1/170) was expressed together with mAG-hGem(1/110), the
cells in the tail expressed both green and orange fluorescence (Fig.
1B, right), suggesting that mKO2-zCdt1(1/170) inhibits normal cell
cycle progression. Our results indicate that mAG-hGem(1/110),
mVenus-hGem(1/110) and mKO2-hCdt1(1/100) can be used to
monitor cell cycle progression during Ciona embryogenesis.

To confirm this, we imaged mAG-hGem(1/110) and mKO2-
hCdt1(1/100) fluorescence at single-cell resolution. After these two
Fucci probes were simultaneously expressed in the epidermal cells
of a tailbud embryo, epidermal cells with green nuclei were time-
lapse imaged (Fig. 1C). The intense mAG-hGem(1/110)
fluorescence in the nucleus was redistributed throughout the cells,
probably upon nuclear envelope breakdown (Fig. 1C, 30 minutes).
The dispersion of the Gemini-based Fucci signal can be used to
determine the timing of the beginning of prometaphase. The
cytokinesis of these cells that follows the prometaphase was
observed in the form of dispersed mAG-hGem(1/110) fluorescence
making an outline of the cell shape (Fig. 1C, 45 minutes). After cell
division was completed, mAG-hGem(1/110) fluorescence was
again accumulated in the nuclei (Fig. 1C, 60-75 minutes) and then
disappeared after 30 minutes. mKO2-hCdt1(1/100) started to
accumulate in the nuclei soon after cell division was finished (Fig.
1C, 60-90 minutes), and the timing was complementary to that of
mAG-hGem(1/110). We concluded that mAG-hGem(1/110),
mVenus-hGem(1/110) and mKO2-hCdt1(1/100) can be used to
observe cell cycle progression in Ciona embryos and larvae.

Cell cycle progression of epidermal cells during
neurulation

By using mAG-hGem(1/110) and mKO2-hCdt1(1/100), we
monitored cell cycle progression in the epidermis at whole-embryo
resolution (Figs 2 and 3). In vitro-synthesized mRNAs of the two
Fucci probes were simultaneously introduced into unfertilized eggs
by microinjection, and observation was begun after fertilization.
This method reduces the mosaicism of the expression levels of
probes among cells in comparison with DNA electroporation. The
eighth mitosis of the epidermal cells was completed by 5.0 hpf and
could not be followed by the accumulation of mAG-hGem(1/110)
due to a lack of detectable fluorescence. The accumulation of
mAG-hGem(1/110) was observed at ~5.0 hpf (see Movie 1 in the
supplementary material), after the eighth mitosis. The ninth mitosis
occurred at 5.5-6.0 hpf (Fig. 2, Fig. 3A,E; see Movie 1 in the
supplementary material). The b-line (posterior) epidermal cells
divided ~5 minutes faster than the a-line (anterior) cells, as was
described previously (Nishida 2005). After this ninth division, the
accumulation of mKO2-hCdt1(1/100) was not detected and mAG-
hGem(1/110) accumulation was soon restarted (Fig. 2; see Movie
1 in the supplementary material), suggesting that there is only a
short G1 phase and that cells enter the S/G2 phase soon after the
ninth division. The tenth mitosis occurred at 6.5-7.0 hpf (Fig. 2,
Fig. 3B,E; see Movie 1 in the supplementary material). We found
that the timing of this division differed along the anterior-posterior
(A-P) axis of the embryo. Posterior cells tended to start dividing
earlier than anterior cells (Fig. 3B). After this tenth division, the
accumulation of mKO2-hCdt1(1/100) was not detected, and mAG-
hGem(1/110) accumulation was soon restarted (Fig. 2; see Movie
1 in the supplementary material). The fluorescence of mAG-
hGem(1/110) showed that the eleventh division occurred at ~8.0-
9.0 hpf (Fig. 2, Fig. 3C; see Movie 1 in the supplementary
material). At the time of the eleventh cell division, epidermal cells
can be subdivided into four groups with different mitotic domains:
cells around the ventral midline (MD1) and dorsal midline (MD2)
and cells on the trunk lateral side (MD3a) and tail lateral side
(MD3b) (Fig. 3C,D). In this study, the term ‘mitotic domain’ (Foe
and Odell, 1989) indicates a group of cells consisting of a single
mitotic wave and sharing the timing of the entrance into the
prometaphase. The eleventh mitosis started in the following order:
MD1, MD2, MD3a (Fig. 3C). In MD1, MD2 and MD3a, posterior
cells started mitosis earlier and the mitotic wave moved toward the
anterior (Fig. 3D). Cells at MD3b showed a different pattern:
mitosis started from both the anterior and posterior sides, and cells
in the middle part underwent mitosis later (Fig. 3D). After the
eleventh division, the epidermal cells started to accumulate mKO2-
hCdt1(1/100) (Fig. 2; see Movie 1 in the supplementary material).

The intervals between the prometaphases of the tenth and
eleventh cell divisions were an average of 36-47 minutes longer
than those between the ninth and tenth divisions for cells of each
mitotic domain, suggesting that the eleventh cell cycle is longer than
the tenth cell cycle (Table 1). Because mAG-hGem(1/110) was
accumulated in the nuclei at the early phase of the eleventh cell
cycle (namely between the tenth and eleventh divisions) and no
accumulation of mKO2-hCdt1(1/100) was detected, the longer
interval in this period is thought to be due to the long S phase and/or
G2 phase. EdU was incorporated around this cell cycle to determine
the timing of the S phase at the eleventh cell cycle. When embryos were treated with EdU at 6.5-7.0 hpf, incorporation of EdU was not observed in the epidermal cells, whereas the neural plate cells showed strong EdU incorporation at this stage (Fig. 4A, left). Because epidermal cells enter the prometaphase of the tenth division at 6.5-7.0 hpf (Fig. 3E), these cells are in the M phase in most of this time window. We cannot exclude the possibility that there is a G1 phase that is too short to detect with Fucci. At 7.0-7.5 hpf, incorporation of EdU was again lost in the epidermal cells (Fig. 4A, right). Therefore, the S phase at the eleventh cell cycle occurs within 30 minutes at 7.0-7.5 hpf. Because epidermal cells start to enter the M phase at 8.0 hpf, they are arrested for at least 30 minutes in the G2 phase of this cell cycle. To confirm that epidermal cells are in the G2 phase at 7.5-8.0 hpf, EdU incorporation was performed using embryos in which mVenus-hGem(1/110) was expressed in this time window. Epidermal cells showed accumulation of mVenus-hGem(1/110) in the nuclei, the hallmark of S/G2 phases, whereas no EdU incorporation was detected (Fig. 4B), suggesting that epidermal cells were in the G2 phase.

Time-lapse imaging revealed that closure of the neural tube by the fusing of the left and right epidermis occurred during this long G2 phase (Fig. 4C).

Table 1. Comparison of the length of the intervals among the ninth, tenth and eleventh cell divisions

<table>
<thead>
<tr>
<th>Mitotic domain</th>
<th>Interval between the prometaphases of the ninth and tenth cell divisions* (minutes)</th>
<th>Interval between the prometaphases of the tenth and eleventh cell divisions* (minutes)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD1</td>
<td>0 4 8 4 60</td>
<td>0 1 3 7 1 96.3</td>
<td></td>
</tr>
<tr>
<td>MD2</td>
<td>4 6 2 2 55.7</td>
<td>1 0 5 2 0 3 0 96.4</td>
<td></td>
</tr>
<tr>
<td>MD3b</td>
<td>4 6 2 2 55.7</td>
<td>0 2 1 2 4 3 1 1 99.3</td>
<td></td>
</tr>
<tr>
<td>MD3a</td>
<td>0 2 2 4 60.4</td>
<td>0 0 0 0 13 12 1 107.7</td>
<td></td>
</tr>
</tbody>
</table>

*Number of cells with the corresponding interval length is shown.
Fig. 4. Fusion of the epidermis during neural tube closure occurs at the G2 phase of the eleventh cell cycle. (A) The S phase of the eleventh cell cycle is ~7.0–7.5 hours post fertilization (hpf). Ciona embryos were treated with 5-ethyl-2'-deoxyuridine (EdU) for 30 minutes at 6.5–7.0, 7.0–7.5 and 7.5–8.0 hpf. Green, incorporation of EdU; magenta, DAPI. Embryos were viewed from the dorsal side. Epidermal cells and neural plate (np) cells showed incorporation of EdU at 7.0–7.5 hpf and 6.5–7.0 hpf, respectively. Scale bar: 50 μm. (B) EdU incorporation at 7.5–8.0 hpf in embryos in which mVenus-hGem(1/110) was expressed. Green, mVenus-hGem(1/110); magenta, EdU. Epidermal cells did not incorporate EdU, whereas cells in the neural lineage (np) did. Me, mesenchyme. Scale bar: 50 μm. (C) Cell shape changes of epidermal cells during neural tube closure, as revealed by the fluorescence of Kaede-CAAX fusion driven by the Ci-Epi1 promoter. The top row shows the entire embryo, the bottom row shows a magnified view of the area indicated by the squares in the top row. At 25 minutes, the posterior cells of the dorsal epidermis elongated towards the anterior (red asterisk), and the cells at the lateral side elongated laterally (blue asterisk). These cells made contact at the focus (arrowhead). At 55 minutes, the neural tube of the tail was closed. The cellular focus at the zippering origin moved towards the anterior (arrowhead). At 80 minutes, half of the trunk midline was closed. The eleventh cell division of three cells was tracked (170 minutes) and their daughter cells are marked with asterisks of the same color. Scale bars: 50 and 10 μm for the upper and lower columns, respectively. (D) Epidermal cells tend to divide parallel to the A-P axis at the eleventh division. On the left is an example of measurement of the angle between the division orientation and the A-P axis. Sister cells are indicated by dots of the same color. A pair of sister cells just after the eleventh division (red spots in the square in the upper image) is shown at the bottom. The angle (θ) is 15° in this case. On the right is a rose diagram of division orientation of 110 epidermal cells in three embryos. Division angles with respect to the A-P axis are binned from –180° to +180° in bins of 10°. Scale bars: 50 μm for upper image; 10 μm for lower image. (E) Filopodia formation of the dorsal midline epidermal cells during neural tube closure. At 40–45 minutes after imaging was started, filopodia (arrowheads) were elongated towards the midline. Scale bar: 10 μm. (F) Accumulation of F-actin at the medial end of the dorsal midline epidermis (arrowheads) during neural tube closure, as revealed by phalloidin staining. Red spots indicate the position of the dorsal midline epidermal cells. Insets are magnified colored images of the areas indicated by the squares. Green, phalloidin staining; magenta, plasma membrane of epidermal cells labeled with mCherry-CAAX driven by a promoter of Ci-Epi1. Scale bar: 50 μm.
posterior-most region, and the fused plane moved in the anterior direction (see Movie 2 in the supplementary material). Membrane-bound fluorescent proteins were expressed in the epidermal cells to label their plasma membranes, allowing us to observe the cell shape changes of the epidermal cells during the fusion. Epidermal cells that had finished their tenth division were round, and no cell polarity was recognized. At the onset of neural tube closure, epidermal cells at the posterior midline became elongated towards a focus at the dorsal midline (Fig. 4C, arrowheads). These epidermal cells made contact at the focus, which then became the origin of zippering. The left and right lateral epidermal cells moved towards the midline, changed their shape to fill the gap and aligned tightly along the midline to close the furrow (Fig. 4C, 55 minutes). Short filopodia were formed during the cell movement (Fig. 4E), and F-actin was accumulated strongly at the medial end of the midline epidermis (Fig. 4F). The movement and alignment of midline epidermal cells were transmitted towards the anterior and the midline was closed as if zipped (Fig. 4C, 80 minutes; see Movie 2 in the supplementary material). After this zippering, the epidermal cells underwent the eleventh division (Fig. 4C, 170 minutes). Epidermal cells of all mitotic domains tended to divide parallel to the A-P axis (Fig. 4C, 170 minutes; Fig. 4D). During neural tube closure, the tail started elongating towards the posterior end of the embryo.

Different timing of cdc25 expression in epidermal cells along the A-P axis

CDC25 is a conserved cell cycle regulator that promotes both G1/S and G2/M transitions (Boutros et al., 2006). Transcriptional regulation of cdc2 is crucial for tissue-specific timing of G2/M progression (Edgar et al., 1994; Lehman et al., 1999). If *Ciona* cdc25 is responsible for the regulation of epidermal cell G2/M progression, this gene might be expressed at different times along the A-P axis of the embryo. To examine this possibility, we investigated the expression profile of a cdc25 homolog of *Ciona intestinalis* (Ci-cdc25) by whole-mount in situ hybridization (Kawashima et al., 2003). Expression of Ci-cdc25 was observed in all of the epidermal cells in the early gastrula stage at 5.0-5.5 hpf (see Fig. S1A,B in the supplementary material). At 5.5 hpf, strong expression of Ci-cdc25 was also observed in cells of the neural lineage (see Fig. S1B in the supplementary material). At 6.0 hpf, ~30 minutes before the start of the tenth mitosis, Ci-cdc25 expression was observed exclusively in the trunk epidermal cells, and the expression was reduced at 6.5 hpf, except for the anterior-most epidermis (see Fig. S1C,D in the supplementary material). At 7.0 hpf, when the epidermal cells had finished the tenth division and entered the S/G2 phase of the eleventh cell cycle, no expression of Ci-cdc25 was observed in the epidermal cells (see Fig. S1E in the supplementary material). At 7.5 hpf, when the epidermal cells were in the long G2 phase, expression of Ci-cdc25 at the posterior-most epidermis restarted (see Fig. S1F in the supplementary material). At 8.0 hpf, when the posterior-most epidermal cells started the eleventh mitosis, strong expression of Ci-cdc25 was observed in the epidermal cells near the posterior pole of the embryo (see Fig. S1G in the supplementary material). At 8.5-9.0 hpf, when the embryos had finished closing the tail neural tube, weak expression of Ci-cdc25 was detected in all of the tail epidermal cells (see Fig. S1H,I in the supplementary material). These results indicate that the timing of the expression of Ci-cdc25 was different in the anterior and posterior epidermal cells. This difference is in accordance with the above-mentioned observation that the timing of cell division in the epidermis differs along the A-P axis of the embryo, and that Ci-CDC25 is a candidate regulator of cell cycle progression of embryonic cells, or at least epidermal cells, during *Ciona* embryogenesis.

A long G2 phase at the eleventh cell cycle of epidermal cells is required for neural tube closure

The temporal correlation between the insertion of the long G2 phase at the eleventh cell cycle of epidermal cells and the closure of the neural tube suggests a causal relationship of these two developmental events. We attempted to reduce the period of this long G2 phase by overexpression of *Ci-cdc25* in epidermal cells in order to observe its effects on neural tube closure (Fig. 5A). *Ci-Epi1* is an epidermis-specific gene that starts to be expressed around the neurula stage (Chiba et al., 1998), and we utilized its cis element for overexpression of *Ci-cdc25*. The cell cycle progression of the epidermal cells of *Ci-cdc25*-overexpressing embryos was normal until the tenth division, as was revealed by the fluorescence of mVenus-hGem(1/110) (Fig. 5B). At the eleventh cell division, a clear difference was observed compared with the control embryos. The *Ci-cdc25*-overexpressing embryos started the eleventh division an average of 40 minutes earlier than the controls. Namely, the period of the eleventh cell cycle (between the tenth and eleventh divisions) was shortened to ~50 minutes compared with 90 minutes in normal embryos. Precocious eleventh cell cycle division in the *Ci-cdc25*-overexpressing embryos was confirmed by immunostaining of phospho-histone H3 (PH3), a marker of cells during mitosis, at 7.75 hpf (see Fig. S2 in the supplementary material). These *Ci-cdc25*-overexpressing embryos failed to close the neural tube (80%, n=25; Table 2). When viewed from the cross-section, the nerve cord of the normal embryos formed a clear tube consisting of four rows of neural cells (see Fig. S3 in the supplementary material). By contrast, neural plate cells of *Ci-cdc25*-overexpressing embryos were aligned laterally to maintain ‘sheet’ morphology (see Fig. S3 in the supplementary material), suggesting that the sheet-to-tube transition of the neural tissue is arrested by shortening the G2 phase. Forty percent of *Ci-cdc25*-overexpressing embryos had a severe phenotype (Table 2); they did not demonstrate neural tube closure in either the tail or trunk regions (Fig. 5B; see Fig. S4A,B in the supplementary material). In these embryos, epidermal cells underwent the eleventh cell division before the initiation of closure. Formation of a clear zippering origin was not observed at the posterior end of the embryos, and movement of the epidermal cells towards the midline did not occur (Fig. 5C; see Movie 3 in the supplementary material). Forty percent of the embryos (Table 2) showed a milder phenotype; their epidermal cells completed neural tube closure at the tail region but not at the trunk region (see Fig. S4C in the supplementary material). The remaining 20% of the embryos completed neural tube closure (n=25; Table 2). In these embryos the eleventh division took place just after the closure, although the timing of the division was earlier than in the wild-type controls (see Fig. S4D in the supplementary material). These results suggest that the eleventh cell

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>Trunk + tail</th>
<th>Trunk</th>
<th>Completed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

*Number of embryos with defects in neural tube closure at both trunk and tail.

*Number of embryos with defects in neural tube closure at trunk.

*Number of embryos with completed neural tube closure.
division of epidermal cells must take place after neural tube closure for this morphogenetic movement to occur. We examined the orientation of the eleventh epidermal cell division in Ci-cdc25-overexpressing embryos. The epidermal cells tended to divide parallel to the A-P axis as in the control embryos, suggesting that the induction of a precocious eleventh mitosis by Ci-cdc25 did not disrupt its orientation (see Fig. S5 in the supplementary material).

The above data suggest that a long G2 phase at the eleventh cell cycle might be necessary for the eleventh division to occur after the completion of neural tube closure. If this is the case, the long interval between the tenth and eleventh cell divisions is not necessarily the G2 phase. To examine this possibility, we treated embryos with aphidicolin, an inhibitor of DNA replication (Ikegami et al., 1978), between the tenth and eleventh divisions of

Fig. 5. Overexpression of Ci-cdc25 in the epidermis disrupts neural tube closure. (A) Schematic diagram of a DNA construct used in the Ci-cdc25 overexpression experiments. Ci-Epi promoters, the gap43-ecfp fusion cassette and Ci-cdc25 cDNA are indicated by brown, blue and gray boxes, respectively. (B) Overexpression of Ci-cdc25 disrupts neural tube closure. Time-lapse images of embryos into which mVenus-hGem(1/110) mRNA and pSPCiEpi1GAP43C (control), or mVenus-hGem(1/110) and pSPCiEpi1Cicdc25C1Epi1GAP43C (Ci-cdc25 overexpressed), were microinjected. Time-lapse imaging was done at 5 minute intervals and from the dorsal side. In this figure, time-lapse images taken at 10 minute intervals are shown. The beginning of the tenth cell division was set as 0 minutes in each case. Fluorescence of GAP43-CFP fusion (bottom row of each set) shows the area covered by the epidermis. Cells that entered into the prometaphase within the next 10 minute interval were marked with dots (red, dorsal midline epidermal cells; orange, other epidermal cells; blue, neural precursor cells). Note that the eleventh division started 40 minutes after the tenth division in the Ci-cdc25-overexpressing embryo, whereas it started at 80 minutes after the tenth division in the control embryo. In the Ci-cdc25-overexpressing embryo, neural tube closure did not occur (red bracket). Arrowheads indicate the posterior end of the neural plate. Scale bars: 50 μm. (C) Cell shape changes of the epidermal cells during neural tube closure. Single confocal planes of the embryos expressing pSPCiEpi1KCAAX (control) or pSPCiEpi1Cicdc25C1Epi1KCAAX (Ci-cdc25 overexpressed), dorsal view. Green, plasma membrane of the epidermal cells labeled with Kaede-CAAX; magenta, plasma membrane of all cells stained with FM4-64. In the control embryo, the epidermal cells were elongating towards the midline (20-40 minutes, double-headed arrow). At 40 minutes, the tail epidermal cells moved towards the midline, and the left epidermis and right epidermis were fused. In the Ci-cdc25-overexpressing embryo (0-30 minutes), elongation of epidermal cells was not observed and zipper was not initiated, even 65 minutes after the tenth division. Instead, some epidermal cells performed the eleventh division at 30 minutes. Two pairs of daughter cells are indicated by asterisks. Scale bars: 50 and 10 μm for the upper and lower rows within each set, respectively.
the epidermal cells, and observed its effect on neural tube closure. When embryos were treated with aphidicolin just after the tenth division and before the eleventh division, neural tube closure at the tail region occurred as in the normal embryos (86%, n=21). The trunk neural plate did not completely close in the aphidicolin-treated embryos. This could have been because cell cycle progression of the trunk neural plate cells was also affected by aphidicolin. The aphidicolin-treated embryos showed either delayed or no eleventh mitosis of epidermal cells, suggesting that aphidicolin effectively suppressed progression through the S phase of the eleventh cell cycle.

By utilizing aphidicolin, we performed a rescue experiment of the overexpression phenotype of Ci-cdc25 by arresting cells at the S phase. We noted the occurrence of neural tube closure at the tail. As a result, the Ci-cdc25-overexpressing and aphidicolin-treated embryos showed neural tube closure at the tail much more frequently than did Ci-cdc25-overexpressing control embryos (Fig. 6 and Table 3), suggesting that induction of a longer interval after the tenth cell division rescued the effect of Ci-cdc25 overexpression. Fluorescent cross-section showed that a proper tail nerve cord was formed in the Ci-cdc25-overexpressing and aphidicolin-treated embryos (see Fig. S3 in the supplementary material). Taken together, these findings suggest that a long interval between the tenth and eleventh cell divisions of epidermal cells is crucial for neural tube closure. The interval is not necessarily the G2 phase, but in normal embryogenesis it occurs as a long G2 phase.

We performed a quantitative analysis to determine how much the shortening of the G2 phase affected the shape change of epidermal cells. As mentioned above, the dorsal midline epidermis was elongated towards the midline during neural tube closure. We measured the length of the cells along the mediolateral axis and the width along the A-P axis to calculate the length/width (L/W) ratio (Table 4); the scores were about 2.21 and 1.69 in the tail and trunk epidermal cells of control embryos, respectively. When Ci-cdc25 was overexpressed, the L/W ratios were reduced to 1.58 and 1.38, respectively, and aphidicolin administration restored the scores to 1.98 and 1.69, respectively. Therefore, the prolongation of the interphase is necessary for the dorsal midline epidermis to elongate towards the midline. The elongation was also interfered with by treating embryos with Y-27632, an inhibitor of Rho-kinase (ROCK) (Uehata et al., 1997), suggesting that this cell shape change is a result of Rho-mediated ROCK regulation. Y-27632 treatment did not affect the timing or pattern of cell cycle progression (data not shown).

We examined further the effect of the shortening of the G2 phase on F-actin accumulation at the medial end of the dorsal midline epidermis. As a result, F-actin accumulation was significantly decreased in the dorsal midline epidermal cells of Ci-cdc25-overexpressing embryos (see Fig. S6 in the supplementary material). F-actin accumulation was ameliorated by prolongation of the S phase with aphidicolin in Ci-cdc25-overexpressing embryos (see Fig. S6 in the supplementary material). Therefore, a prolonged interphase at the eleventh cell cycle is necessary for F-actin to accumulate at the medial end of the dorsal midline epidermis. Y-27632 treatment also abolished the accumulation of F-actin (see Fig. S6 in the supplementary material), suggesting that this phenomenon is also dependent on the Rho/ROCK pathway.

DISCUSSION

Cell division requires a large quantity of cytoskeletal elements for forming the mitotic spindle and contractile ring. Morphogenetic movement also requires a large amount of actin filament for forming filopodia/lamellipodia and microtubules for coordinated cellular movement (Rodriguez et al., 2003). It is thought that these two developmental events are incompatible, because they compete for the cytoskeletal components (Mata et al., 2000). Therefore, these two events cannot take place simultaneously and embryonic cells must regulate their timing for coordinated embryogenesis. In ascidian embryogenesis, we observed strong coordination between a single round of cell cycle progression in epidermal cells and neural tube closure. Epidermal cells prolong the G2 phase at the eleventh cell cycle to adjust the timing of the eleventh cell division so that it follows neural tube closure. This regulation is necessary because neural tube closure and the eleventh mitosis cannot take place simultaneously; epidermal cells achieve the coordination of mitosis and their morphogenetic movement by delaying the timing of mitosis. Disrupting the morphogenetic movement of the epidermis affected the sheet-to-tube morphogenesis of the neural plate, suggesting that the epidermis is necessary for the neural plate to form a tube. The contribution of the epidermis to neurulation seems to be a general feature among chordates.

During the G2 phase, dorsal midline epidermal cells elongate towards the midline to close the furrow. This cell shape change and movement, which is dependent on Rho/ROCK-mediated actin filament accumulation, could make the force that pushes the neural plate to form a tube. The morphogenetic movement and mitosis might compete against the actin filament in the epidermis during neurulation. Precocious eleventh mitosis inhibited both cell shape...

Table 3. Aphidicolin treatment prevents defects in neural tube closure in the tail region

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>Treatment</th>
<th>Normal</th>
<th>Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ci-cdc25-OE + DMSO*</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Ci-cdc25-OE + Aph§</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ci-cdc25-OE + DMSO</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Ci-cdc25-OE + Aph§</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

*Ci-cdc25-overexpressing embryos treated with DMSO from 7.0 hpf.
§Number of embryos with normal neural tube closure in the tail region.
Number of embryos with defects in neural tube closure in the tail region.

Table 4. Length-width (L/W) ratio of epidermal cells during neural tube closure

<table>
<thead>
<tr>
<th></th>
<th>Tail dorsal midline*</th>
<th>Trunk dorsal midline†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.21±0.65 (n=67 cells)</td>
<td>1.69±0.56 (n=67 cells)</td>
</tr>
<tr>
<td>Ci-cdc25</td>
<td>1.58±0.67 (n=68 cells; P<0.0001)</td>
<td>1.38±0.34 (n=78 cells; P<0.018)</td>
</tr>
<tr>
<td>Ci-cdc25 + Aph treated</td>
<td>1.98±0.50 (n=70 cells; P=0.001)</td>
<td>1.69±0.53 (n=75 cells; P<0.006)</td>
</tr>
<tr>
<td>Y-27632 treated</td>
<td>1.17±0.25 (n=63 cells; P<0.0001)</td>
<td>1.25±0.25 (n=63 cells; P<0.0001)</td>
</tr>
</tbody>
</table>

*L/W ratio was measured at 8.0 hpf when tail dorsal midline epidermal cells in the control showed the highest L/W value.
†L/W ratio was measured at 8.5 hpf when trunk dorsal midline epidermal cells in the control showed the highest L/W value.
‡Statistically significant shift in the distribution of the L/W ratio compared with control, confirmed using the Kolmogorov-Smirnov two-sample test.
§Number of embryos with defects in neural tube closure in the tail region.
| Aph, aphidicolin; hpf, hours post fertilization; OE, overexpression. |
The importance of the transcriptional regulation of *Ci-cdc25* has been reported in several organisms (Edgar et al., 1994; Bissen, 1995; Wickramasinghe et al., 1995; Nogare et al., 2007) and this regulation could be common among various animals.

The orientation of mitosis is also regulated in epidermal cells during neural tube closure. At their eleventh division, epidermal cells tend to divide along the A-P axis, which is perpendicular to the orientation of neural tube closure. A plausible role of this regulation is that it provides an adjustment for the rapid elongation of the body length at this stage, which is caused by elongation of the tail. In the neurulation of chick embryos, epidermal cells divide in both a rostrocaudal and a mediolateral orientation (Sausedo et al., 1997). The former division is suggested to play a role in longitudinal lengthening, which seems to be common with *Ciona*. By contrast, the latter division might play a role in the medial expansion of the epidermis. This is in contrast with *Ciona*, in which epidermal cells do not divide during the closing of the neural tube, and cell shape change and movement towards the midline are major driving forces behind the fusion of the epidermal layer at the midline.

For the closure of the neural tube to occur, many developmental events have to be carried out in coordination. To achieve this coordination, the cell cycle of *Ciona* epidermal cells has to be regulated at the single-cell-cycle level. Such strict regulation might have been adopted because of the small cell number of ascidian embryos, in which a single round of cell division has a strong effect on overall development. It is important to elucidate the detailed mechanisms by which such cell cycle regulation is achieved. These molecular mechanisms of cell cycle regulation should be linked with those regulating neural tube closure. In vertebrates, the PCP/Wnt pathway plays crucial roles in morphogenesis, including neural tube closure (Ueno and Greene, 2003; Gong et al., 2004; Ciruna et al., 2006; Wallingford, 2006), and it is possible that similar genetic cascades regulate cell cycle progression, the orientation of cell division and morphogenesis during neural tube closure in ascidian embryos. Additionally, the description of cell cycle regulation in other cell types and morphogenetic movements in *Ciona* development is important. Previous studies have shown that neural cells of *Ciona* exhibit elongation of the cell cycle during neurulation (Nicol and Meinertzhagen, 1988a; Nicol and Meinertzhagen, 1988b). Cell cycle regulation similar to that of epidermal cells might occur in neural-fated cells; this possibility will be investigated in a future study. Fucci probes are valuable tools for observing cell cycle progression and mitosis in detail. Finally, neural tube closure is a key event in neurulation among chordates (Colas and Schoenwolf, 2001). As mentioned above, the epidermal layer contributes to proper neural tube formation in vertebrates. Epidermal cells generate the force needed to bend the neural plate via both cell division and morphogenesis (Sausedo et al., 1997). There is likely to be a mechanism that coordinates the two cellular processes in the epidermis of vertebrates. The present study indicates that fusion of the epidermis during neural tube closure occurs at the G2 phase and that cell shape change via actin regulation during this phase is a key event in *Ciona* embryos. Whether mechanisms similar to these are conserved among chordates is an interesting question.

Acknowledgements

We thank the National Bio-resource Project, Shigeki Fujiwara and all members of the Maizuru Fishery Research Station of Kyoto University and the Education and Research Center of Marine Bioresources of Tohoku University for providing us with *Ciona* adults. We are grateful to Hiroki Nishida and Patrick Lemaire for providing pBS-HTB and gateway vector set, respectively. This study was supported by Grants-in-Aid for Scientific Research from JSPS to Y.S. and N.S.

Fig. 6. Aphidicolin treatment reverses the *Ci-cdc25* overexpression effect on neural tube closure. Top row: *Ci-cdc25*-overexpressing control embryos that were treated with DMSO from 7.0 hpf (+DMSO) showed defects in neural tube closure in the tail region, whereas *Ci-cdc25*-overexpressing embryos that were treated with aphidicolin from 7.0 hpf (+Aph) completed neural tube closure in the tail region. Arrowheads represent the position of the anterior margin of the closed neural tube. Bottom row: Fluorescence of mVenus-hGem(1/110) in the *Ci-cdc25*-overexpressing embryos. In the aphidicolin-treated embryos, some epidermal cells showed nuclear localization of mVenus-hGem(1/110), suggesting that their cell cycle progression was arrested. Scale bar: 50 μm.
Competing interests statement
The authors declare no competing financial interests.

Supplementary material
Supplementary material for this article is available at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.053132/-/DC1

References

Dorsalventral patterning of the vertebrate neural tube is conserved in a protochordate. Development 124, 2335-2344.

DEVELOPMENT

Mitotic timing during chordate neurulation

RESEARCH ARTICLE

587