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centered on the developing LV and CV territories (Fig. 5B,C).
Furthermore, LTL protein exhibits what appears to be a broad
extracellular distribution throughout the interior of the pupal wing
blade (Fig. 5C).

Because loss of LTL caused excessive PCV formation (Fig. 4B)
and ectopic LTL eliminated both crossvein structures (Fig. 4E), we
next asked whether perturbations of ltl activity directly modulate
PMAD levels in the crossvein primordia. We eliminated ltl by
generating large GFP-labeled homozygous ltl2 mutant clones in a
Minute background. Under these conditions, little or no LTL
protein was detected (data not shown), and strong ectopic PMAD
staining was consistently observed associated with the PCV, along
with sporadic ectopic PMAD in the region the ACV and LV2 (Fig.
5D-E�). This demonstrates that ltl normally restricts BMP signaling
in these regions. Conversely, ectopic expression of ltl under the
control of A9-Gal4 eliminated PMAD activation in the presumptive
PCV (Fig. 5F,F�). Taken together, these results indicate that in the
pupal wing, LTL antagonizes BMP signaling at or above the level
of MAD phosphorylation. This would suggest either an
intracellular function at the level of receptor/MAD interaction, or
an extracellular function at the level of ligand/receptor interaction,
not unlike several of the known DPP/BMP modulators (Umulis et
al., 2009).

Extracellular localization of LTL
To discern autonomous versus non-autonomous function of LTL,
we used ptc-Gal4 to drive ectopic LTL in a narrow stripe of
anterior cells at the A/P boundary of the wing disc. Under these
conditions, overall wing area was reduced. Furthermore, the PCV
was non-autonomously eliminated in all progeny (see Fig. S6 in the
supplementary material). Similar effects on overall wing size were
obtained with other spatially restricted drivers such as Ap- and hh-
Gal4 (data not shown). These results are most consistent with a
non-autonomous activity of LTL, and we therefore examined the
tissue-level distribution of LTL protein in greater detail.

Immunostaining of fixed wing discs revealed an intense
extracellular distribution of LTL in the apical lumen between the
apposed peripodial and columnar epithelia (Fig. 1D). This lumenal
signal was widely dispersed beyond sites of ltl expression.
Consistent with specificity of the antibody for LTL protein,
lumenal staining was eliminated in ltl2 homozygous mutant discs
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Fig. 4. LTL functions in both wing growth and vein patterning.
(A)MARCM/Minute wing with FRT80B control clones. (B)Elimination of
LTL in ltl2 clones reduced wing size and caused ectopic vein formation
at LV2 and the PCV (arrowheads). (C)The mean size reduction in wings
bearing large ltl2/ltl2 mutant clones was variable but averaged 13%
(*P<0.0005, n20 wings). (D,E) Overexpression of LTL in the wing disc
using A9Gal4 results in adult wing size reduction and elimination of
both crossveins (arrows) compared with controls (A9Gal4/+).
(F)Quantification of the 20% size reduction in A9Gal4>UAS-ltl
compared with controls (**P<0.0001, n20 wings). Results are mean ±
s.d. (G) PMAD staining in an A9Gal4/+ control disc. (H)PMAD staining
in a wing disc from A9Gal4>UAS-ltl imaged under identical conditions.
(I)PMAD intensity profile plots show reduced BMP/DPP activity in the
LTL overexpressing discs (n20 discs). Scale bar: 400 m.

Fig. 5. LTL modulates BMP signaling at
or above the level of MAD
phosphorylation. (A)During pupal wing
development, dpp is expressed along the
longitudinal veins (green); DPP ligand is
then transported into the PCV region
where it activates PMAD expression (red).
(B)ltl mRNA is expressed in the developing
pupal vein territories, with weaker
expression visible in the presumptive
crossveins. (C)LTL protein is intracellularly
enriched in the presumptive vein territories,
but is also distributed throughout the
extracellular space between the basal
surfaces of the wing epithelium. (D)Control
PMAD staining on wild-type pupal wing
marks the forming longitudinal and
crossveins. (D�)Detail of PMAD staining in
the presumptive PCV of a control wing.
(E,E�) Elimination of LTL in large
homozygous ltl2 MARCM clones (GFP+)
induces ectopic PMAD staining along LV2,
LV3 and the PCV (yellow arrows). (F,F�)
Expression of UAS-ltl with A9Gal4 abolishes
PMAD signal in the presumptive PCV
territory (**). D
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(see Fig. S5 in the supplementary material). In confocal XZ
sections through the entire wing blade primordium, LTL showed
a punctate distribution within cell bodies of the columnar
epithelium. However, the most intense signal was detected in the
apical lumen (see Fig. S7 in the supplementary material).
Intriguingly, one of the few proteins proposed to localize to the
wing disc lumen is DPP itself (Gibson et al., 2002), although
experiments that specifically address whether lumenal DPP can
signal to the columnar epithelial cells are lacking. Still, as
extracellular LTL was also observed in the pupal wing (Fig. 5C),
we conclude that LTL is secreted and most probably functions in
the extracellular environment, either at the cell surface or in the
extracellular space.

Secreted LTL::GFP disrupts PCV development
To confirm the immunolocalization of LTL, we also examined the
distribution of LTL::GFP fusion proteins. Transgenic lines carrying
Gal4/UAS-inducible C- and N-terminal fusions were generated and
crossed to hh-Gal4, driving either UAS-ltl::gfp-C or UAS-N-gfp::ltl
expression solely in the disc posterior compartment. Wing discs
from w; hh-Gal4/UAS-ltl::gfp-C larvae exhibited an extracellular
distribution of LTL::GFP-C indistinguishable from endogenous
LTL, with the intensity of luminal fluorescence exceeding that of
the intracellular fraction (Fig. 6A). By contrast, the N-terminal
fusion product (N-GFP::LTL) was expressed but was not
detectably secreted (Fig. 6B). Intracellularly, the C-terminal fusion
(LTL::GFP-C) exhibited punctate cytoplasmic localization in the
disc posterior compartment, much like endogenous LTL (Fig. 6C).
By contrast, the N-GFP::LTL fluorescence showed a diffuse
cytoplasmic pattern (Fig. 6D), indicating that the N-terminal fusion
protein was translated but either improperly trafficked or misfolded
and thus never secreted. Under the control of hh-Gal4, secreted
LTL::GFP-C eliminated PCV formation and inhibited wing growth
in a manner similar to unmodified LTL (Fig. 6E), but non-secreted
N-GFP::LTL had no visible effect on wing development (Fig. 6F).
These experiments not only confirm the localization of LTL to the
wing disc lumen, but also strongly suggest that proper processing
and secretion of LTL is essential for its ability to regulate BMP
signaling.

LTL interacts with Cv-2 and the glypican DLP
To better define the mechanism by which LTL modulates BMP
signaling, we used both gain- and loss-of-function experiments to
screen for interactions between ltl and known pathway
components. This approach identified a synergistic genetic
interaction between LTL and CV-2, a BMP-binding protein with a
central role in crossvein patterning (Ralston and Blair, 2005; Serpe
et al., 2008). Surprisingly, weak ectopic LTL was sufficient to
rescue the phenotype of cv-2 mutants. Animals homozygous for cv-
21, a hypomorphic allele, were 100% posterior crossveinless under
standard conditions (Fig. 7A). However, in flies carrying two
copies of the leaky transgenic construct P{UAS-ltl}5, 45% of wings
showed a fully restored PCV (Fig. 7B). This rescue was dose-
dependent: one copy of the UAS-ltl5 transgene fully restored the
PCV in only 6% of wings (Fig. 7C,D). As additional evidence for
genetic interactions, the loss of cv-2 enhanced viable ltl
transheterozygotes to pupal lethality (cv-21/cv-21; ltl2/ltl4; data not
shown). This indicates that ltl and cv-2 may be partially redundant
in some developmental processes. Consistent with the possibility
that LTL and Cv-2 perform similar functions, overexpression of
each protein alone (under the control of en-Gal4) resulted in
reduction of total wing area and loss of the PCV (Fig. 7E). Co-

overexpression of both proteins led to additive effects on wing size
reduction and synergistic effects on patterning, including deletions
of LV4 in the proximity of the presumptive PCV (Fig. 7E-G).

During pupal wing development, Cv-2 is proposed to bind both
DPP and the glypican Dally (Serpe et al., 2008). Several other
morphogens are known to interact with Dally and the related
protein DLP in the extracellular space, including Wingless (Yan et
al., 2009; Lin and Perrimon, 1999) and Hedgehog (Desbordes and
Sanson, 2003; Gallet et al., 2008). We therefore used co-
overexpression assays to test for functional interactions between
LTL and DLP. Driving weak ectopic LTL with A9Gal4>UAS-
ltlHA-2XFLAG resulted in an ~14% reduction of wing size (Fig. 8A),
whereas overexpression of DLP alone using A9Gal4>UAS-dlp
(Giraldez et al., 2002) caused a slight increase of size (Fig. 8B). By
contrast, simultaneous expression of both proteins disrupted wing
morphogenesis and strongly enhanced the size reduction to ~42%
of controls (Fig. 8C,D). These findings suggest that LTL could
modulate BMP signaling through interactions with both Cv-2 and
DLP. Consistent with this, we performed co-immunoprecipitation
experiments and identified a reciprocal association between
endogenous LTL and endogenous DLP in vivo (Fig. 8E; see Fig.
S8 in the supplementary material). We could not detect similar
interactions between LTL and Cv-2 or DPP itself (data not shown).
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Fig. 6. Secretion-dependent activity of LTL::GFP fusion proteins.
(A)hh-Gal4-mediated expression of UAS-ltl::gfp-C in the wing disc
posterior compartment results in broad GFP signal in the lumen (arrow)
throughout the wing disc (anterior, A; posterior, P). (B)By contrast,
N-terminally tagged LTL is not secreted (arrowhead). (C)Intracellularly,
LTL::GFP-C is localized in granular, punctate structures (yellow arrows).
(D)By contrast, non-secreted N-GFP::LTL is diffusely distributed
throughout the cytoplasm. (E)Adult wing from hh-Gal4>UAS-ltl::gfp-C,
showing that the fusion protein retains biological activity inhibits PCV
formation (**). (F)hh-Gal4>UAS-N-gfp::ltl adult wing. The non-
secreted N-GFP::LTL fusion has no detectable biological activity.
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Based on these findings, we propose that LTL is secreted into the
extracellular space where it physically associates with glypicans
and acts to modulate BMP signaling through functional interactions
with Cv-2 and perhaps additional factors. Importantly, the physical
association of LTL with DLP also suggests an avenue by which
LTL could modulate additional signaling pathways.

DISCUSSION
Regulation of DPP/BMP signaling can occur at the level of ligand
processing and activation (Kunnapuu et al., 2009), ligand homo-
and heterodimerization (Aono et al., 1995; Bangi and Wharton,
2006), spatial control of receptor expression levels (Funakoshi et
al., 2001) and modulation of intracellular signal transduction
(Tsuneizumi et al., 1997). An additional level of regulation plays
out in the extracellular space and is mediated by secreted proteins
that promote or inhibit ligand movement or sequester BMPs from
their receptors (Vuilleumier et al., 2010; Umulis et al., 2009). In
this study, we used microarray analysis of mutant cell clones to
assess the transcriptional response to BMP signaling in the wing
imaginal disc. This approach identified the novel DPP/BMP target
ltl, which encodes an LRR protein we propose to be an
extracellular feedback regulator of BMP signaling. In the larval
wing blade primordium, DPP/BMP signaling is both necessary and
sufficient for ltl expression (Figs 1 and 2). In the pupal wing, ltl

expression also closely mirrors the pattern of DPP/BMP activity.
Elimination of LTL from developing wing primordia caused a
reduction of overall wing size and resulted in ectopic venation
attributable to localized increases of DPP/BMP activity at the level
of MAD phosphorylation (Figs 3-5). Overexpression of LTL
caused a reduction of peak PMAD intensity in the larval disc and
a reduction of wing size in adults. During pupal stages, LTL
overexpression caused a complete loss of PMAD activity in cells
of the presumptive PCV (Fig. 5F). Combined, our gain- and loss-
of-function results suggest that LTL can modulate BMP activity in
a stage-, concentration- or context-dependent manner.

An important, but still enigmatic, aspect of this study was the
intense localization of both LTL protein and LTL::GFP-C to the
apical lumen of wing imaginal discs (Fig. 1D; Fig. 6A). Despite a
report of nearly identical DPP localization (Gibson et al., 2002), the
protein composition of the lumen and the role of apical/lumenal
proteins in imaginal disc development remain unclear. Studies by
Belenkaya et al. (Belenkaya et al., 2004) and Han et al. (Han et al.,
2004) advocate models of facilitated extracellular DPP and HH
morphogen movement by the glypicans Dally and DLP. Precisely
where this movement occurs along the apical-basal axis of the
epithelium is less clear, but recent evidence indicates that apical
secretion is a crucial component of DLP function, and that DLP
may govern the uptake of both WG and HH ligands at the apical
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Fig. 7. ltl genetically interacts with cv-2. (A)cv-
21 homozygous wings lack the PCV (arrow). Scale
bar: 400 m. (B)Introducing two copies of a leaky
UAS-ltl5 transgene fully rescued the PCV in 45% of
cv-21 homozygotes and partially in 43%
(arrowhead). (C)A single copy of UAS-ltl5 fully
rescued the PCV in 6% of cv-21 homozygotes, and
partial rescue was detected in 28% (arrowhead).
(D)Quantification of PCV rescue indicating the
mean results (n100 male wings in all cases).
(E) Overexpression of either UAS-ltl1 or UAS-cv-2
using enGal4 results in wing size reduction and
loss of the PCV (asterisks). Co-overexpression of
both proteins results in stronger wing size
reduction, loss of the PCV and deletions in LV4,
mostly in the proximity of the PCV territory
(arrowhead). Scale bar: 500 m. (F) Quantification
of the size reduction of each genotype in both
sexes. Data represent the mean relative wing area;
error bars indicate s.d. (n50 wings).
(G) Quantification of the phenotypes described in
E, from both sexes for each genotype (n50
wings).
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epithelial surface (Gallet et al., 2008). The findings presented here
suggest that LTL activity requires secretion (Fig. 6), and provide
evidence that LTL forms a complex with DLP in vivo (Fig. 8E).
Interestingly, two vertebrate chondroitin sulfate LRR proteins,
Biglycan (Moreno et al., 2005) and Tsukushi (Ohta et al., 2004),
form an extracellular inhibitory complex with BMP4 and Chordin,
the vertebrate homologs of DPP and SOG. The general function of
extracellular LRR proteins thus remains an important avenue for
future experiments.

Although we have been able to define a function for LTL in
BMP antagonism in the presumptive crossveins, LTL exhibits a
paradoxical role with respect to growth. Here, both increasing and
decreasing LTL levels reduced the size of the wing (Fig. 4). It is
not yet clear whether these effects result from the role of LTL in
BMP modulation, or perhaps effects on other growth-regulatory
processes. Indeed, if LTL interacts with HSPGs, it is conceivable
that multiple signaling pathways are affected. In the case of BMP
signaling, one possibility is that gain and loss of ltl both flatten the
activity gradient in the larval disc. However, we did not detect
obvious effects on the PMAD activity gradient in wing discs from
ltl2 homozygous escapers (data not shown). A second formal
possibility is that the growth defects in ltl mutant wings result from
a disruption of pupal development, when BMPs are not generally
thought to regulate growth. A third and final alternative is
suggested by recent work on the biphasic DPP modulator Cv-2.
Extracellular Cv-2 binds to DPP and facilitates receptor-ligand
interaction, and elimination of Cv-2 inhibits signaling. At the same
time, overexpression of Cv-2 protein is proposed to bind DPP in
excess, resulting in elimination of the PCV (Serpe et al., 2008), and
also causing wing size reduction (Fig. 7E). As Cv-2 and LTL have
at least partially redundant functionality (Fig. 7), endogenous levels

of LTL could similarly facilitate movement or activity of BMPs,
whereas excessive levels of LTL could oversaturate the system and
cause an inhibitory effect. In this sense, both gain- and loss-of-
function manipulations would produce the same result: a smaller
wing. Future experiments should distinguish between these
possibilities.
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Table S1. Phenotypes associated with transheterozygotic combinations of ltl alleles
ltl1 ltl2 ltlN ltl3 ltl4

ltl1 Larval lethal,
bloated

ltl2 Larval lethal,
bloated

Larval lethal,
bloated

ltlN Larval lethal,
bloated

Larval lethal,
bloated

Larval lethal,
bloated

ltl3 Pupal lethal,
bloated

Pupal lethal,
bloated

Pupal lethal,
bloated

Viable, no
phenotype

ltl4 Viable, ectopic
veins

Viable, ectopic
veins

Viable, ectopic
veins

Viable, no
phenotype

Viable, no
phenotype


