Pristionchus pacificus daf-16 is essential for dauer formation but dispensable for mouth form dimorphism

Akira Ogawa¹, Gilberto Bento¹, Gabi Bartelmes¹, Christoph Dieterich² and Ralf J. Sommer¹,*

SUMMARY
The nematode *Pristionchus pacificus* shows two forms of phenotypic plasticity: dauer formation and dimorphism of mouth form morphologies. It can therefore serve as a model for studying the evolutionary mechanisms that underlie phenotypic plasticity. Formation of dauer larvae is observed in many other species and constitutes one of the most crucial survival strategies in nematodes, whereas the mouth form dimorphism is an evolutionary novelty observed only in *P. pacificus* and related nematodes. We have previously shown that the same environmental cues and steroid signaling control both dauer formation and mouth form dimorphism. Here, we examine by mutational analysis and whole-genome sequencing the function of *P. pacificus* (*Ppa*) *daf-16*, which encodes a forkhead transcription factor; in *C. elegans*, *daf-16* is the target of insulin signaling and plays important roles in dauer formation. We found that mutations in *Ppa-daf-16* cause strong dauer formation-defective phenotypes, suggesting that *Ppa-daf-16* represents one of the evolutionarily conserved regulators of dauer formation. Upon strong dauer induction with lophenol, *Ppa-daf-16* individuals formed arrested larvae that partially resemble wild-type dauer larvae, indicating that *Ppa-daf-16* is also required for dauer morphogenesis. By contrast, regulation of mouth form dimorphism was unaffected by *Ppa-daf-16* mutations and mutant animals responded normally to environmental cues. Our results suggest that mechanisms for dauer formation and mouth form regulation overlap partially, but not completely, and one of two key transcriptional regulators of the dauer regulatory network was either independently co-opted for, or subsequently lost by, the mouth form regulatory network.

KEY WORDS: *C. elegans, P. pacificus, Dauer formation, DAF-16/FOXO, Phenotypic plasticity*

INTRODUCTION
Many organisms show an ability to adopt multiple phenotypes depending on environmental conditions. Such plasticity of phenotypes not only enables these organisms to adapt to changing environments but may also facilitate phenotypic evolution (West-Eberhard, 2003). Despite their importance, the molecular mechanisms that underlie the evolution of phenotypic plasticity have only recently begun to be understood. One example of phenotypic plasticity is nematode dauer formation (Riddle and Albert, 1997). Nematodes go through four larval stages before they reproducitively mature. When environmental conditions are unsuitable for reproduction, many nematode species arrest their development at the third larval stage and form specialized larvae called dauers (Lee, 2002). Dauer larvae are resistant to various environmental stresses and can survive for months without feeding, representing one of the major survival strategies in these organisms (Lee, 2002; Ogawa and Sommer, 2009).

In *C. elegans* dauer formation, environmental cues indicating harsh conditions are processed through several signaling pathways and eventually lower the levels of a class of steroid hormones called the dafachronic acids (DAs). The decrease in DA levels shifts the nuclear hormone receptor DAF-12 from the ligand-bound to ligand-free form, which specifies the dauer fate (Antebi et al., 2000; Motola et al., 2006). DAF-12 and the forkhead transcription factor DAF-16 [the *C. elegans* forkhead box O (FOXO) homolog], represent two crucial transcription factors that are required for the formation of dauer larvae. Loss-of-function mutations in *C. elegans* (*Cel*) *daf-12* completely abrogate the ability to form dauer larvae, resulting in strong dauer formation-defective (Daf-d) phenotypes (Antebi et al., 1998). *Cel-daf-12* mutations suppress dauer formation constitutive (Daf-c) mutations in multiple signaling pathways (Gerisch et al., 2001; Jia et al., 2002; Thomas et al., 1993; Vowels and Thomas, 1992), suggesting that DAF-12 is one of the ultimate regulators of dauer formation. We have previously shown that DAs and DAF-12 regulate the formation of dauer larvae in *P. pacificus*, which is distantly related to *C. elegans* (Fig. 1A) (Ogawa et al., 2009).

Mutations in *Cel-daf-16* severely impair the ability to form dauers and cause a Daf-d phenotype (Lin et al., 1997; Ogg et al., 1997), but they show a phenotypic spectrum different from that of *Cel-daf-12*. In combination with other Daf-c mutations or under dauer-inducing environmental conditions, individuals carrying a *Cel-daf-16* mutation fail to achieve a fully developed dauer morphology, suggesting that *Cel-daf-16* is essential for the normal morphogenesis of dauer larvae (Gottlieb and Ruvkun, 1994; Vowels and Thomas, 1992). However, several Daf-c mutations and strong dauer-inducing environmental conditions can partially suppress the Daf-d phenotype of *Cel-daf-16* mutations. When sterol precursors of DAs that antagonize DAF-12 activity are completely depleted from the culture media, the *daf-16* Daf-d phenotype is partially suppressed (Matyash et al., 2004). Under these conditions, *Cel-daf-16* animals form partial dauer larvae that are characterized by both dauer-like and non-dauer-like features, such as a non-constricted pharynx and SDS susceptibility, suggesting that *Cel-daf-16* is dispensable for the developmental arrest and for part of dauer morphogenesis upon DAF-12 activation.

In addition to dauer formation, *P. pacificus* and related nematodes have a second, unique phenotypic plasticity, which is a polyphenism in the mouth form morphology (Fig. 1A). *P. pacificus* individuals can have either a narrow and long mouth opening,
called stenostomatous (St), or a wide and shallow mouth opening, which is referred to as eurystomatous (Eu) (Bento et al., 2010; von Lieven and Sudhaus, 2000). This dimorphism is regulated by environmental cues, including starvation and population density, which are also known to regulate dauer formation. Δ7-DA and mutations in DAF-12 strongly affect the regulation of the mouth form dimorphism, indicating that these signaling mechanisms for the regulation of dauer formation were co-opted for the regulation of this novel plastic trait (Bento et al., 2010).

MATERIALS AND METHODS

Nematode strains and cultures

Worms were grown on NGM plates with a lawn of *E. coli* strain OP50. The nematode strains used in this study were PS312 (the wild-type *P. pacificus* strain) and *Ppa-daf-16* (tu414, tu415, tu416).

Complementation tests

We constructed a double-mutant strain carrying *Ppa-daf-16* (tu416) and a dumpy mutation *Ppa-daf-1*.* Hhermaphrodites of this double-mutant strain were crossed with males of other Daf-d strains. Non-dumpy F1 progeny resulting from these crosses were individually placed into wells of 96-well plates containing S-medium and *E. coli* food. After replenishing the *E. coli* food several times, we obtained densely grown worm cultures in these wells. After crosses of tu416 with tu414 or tu415, no dauer larvae were found in the cultures, indicating that these mutants do not complement each other and that they are allelic.

Preparation of concentrated dauer pheromone extracts and dauer formation assay

We prepared concentrated dauer pheromone extracts as previously described with slight modifications (Ogawa et al., 2009). The pheromone bound to charcoal was sequentially eluted with methanol and 1%, 5%, 10% and 20% toluene in methanol. Eluates were combined and evaporated under vacuum. The dauer formation assay was performed as previously described (Ogawa et al., 2009).

Preparation of lophenol plates

We slightly modified the reported protocol (Matyash et al., 2004). Agarose washed with 1:1 chloroform:methanol was dissolved in S-medium without cholesterol. We used *E. coli* strain NA22 grown in Dulbecco’s Modified Eagle Medium (Invitrogen) as food source. Lophenol (5 µg/ml; gift of F. Mende and T. Kurzchalia, Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany) was added to the bacterial suspension before being placed on agarose plates.

Mutant allele identification by Illumina genome analyzer and *Ppa-daf-16* molecular structure

We sequenced the genomes of the two alleles tu415 and tu416 and generated 42 bp paired-end reads on the Illumina Solexa platform. The strains carrying tu415 and tu416 were sequenced to an average depth of 32× and 20×, respectively. Short reads were aligned with Maq 0.7.1 (Li et al., 2008) using default settings. Single-nucleotide polymorphism (SNP) calling was performed with the Maq cns2snp command using default settings. Initially, we retained only homozygous SNP calls in genomic positions with a minimal coverage of three short reads. We further masked out SNPs that were already present in a resequencing run of our nematode strains carrying *Ppa-daf-1*.* et al., 2008) using default settings. Single-nucleotide polymorphism (SNP) generated 42 bp paired-end reads on the Illumina Solexa platform. The presence of dauer/infective juvenile (IJ) larva and mouth form dimorphism in these species is indicated. (B) Summary of signaling mechanisms involved in dauer formation and mouth form dimorphism in *P. pacificus*. The question marks indicate that it is currently unknown how DAF-12 and DAF-16 signaling cross-talk in *C. elegans* and other nematodes and whether insulin signaling is involved in *P. pacificus* dauer formation.

RESULTS AND DISCUSSION

During our previous study, we performed genetic screens for Daf-d mutants using low-cholesterol liquid medium to obtain *P. pacificus* (*Ppa*) *daf-12* mutations (Ogawa et al., 2009). Cholesterol serves as a precursor for the synthesis of DAs, and cholesterol deficiency strongly enhances dauer formation. Therefore, we reasoned that screening for Daf-d mutants in cholesterol-deficient medium should bias the mutations to genes that act in parallel to, or downstream of, DAs such as *Ppa-daf-12*. Whereas three previously described mutations constitute the *Ppa-daf-12* locus on chromosome I, we found three other mutations, tu414, tu415 and tu416, that map to chromosome V. Complementation tests indicated that these mutations are in the same complementation group.

To clone the second Daf-d locus, we subjected genomic DNA of two of the mutant strains to whole-genome sequencing by Illumina genome analyzer (see Materials and methods for details) (Sarin et al., 2008). In one of the strains (tu416) we found a nonsense mutation in an exon of *Ppa-daf-16* (Fig. 2A and see Fig. S1 in the supplementary material). cDNA sequencing of *Ppa-daf-16* in tu416 confirmed this mutation. Furthermore, cDNA sequencing of *Ppa-daf-16* in the alleles tu414 and tu415 revealed that these strains also contain a nonsense mutation in *Ppa-daf-16* (Fig. 2A and see Fig. S1 in the supplementary material). *Ppa-daf-16* encodes a forkhead (FH) transcription factor that shows greater than 90% identity to *C.
which are in close proximity (Kops et al., 1999). The forkhead (FH) domain is indicated. Three akt phosphorylation motifs are indicated by arrows. Amino acids mutated in the three alleles are indicated by arrowheads. The amino acid stretch that shows similarity to human FOXO3 is indicated by a double-headed arrow. (A) Amino acid sequence alignment of the FH domain of \(P. \) pacificus and \(C. \) elegans DAF-16. Identical amino acids are indicated by dots.

\(Ppa-daf-16 \) and \(Cel-daf-16 \) are similar to those in \(C. \) elegans DAF-16. Identical amino acids are indicated by dots.

Next, we examined whether \(Ppa-daf-16 \) is also involved in the regulation of the mouth form dimorphism, as is the case for \(DA \) and \(DAF-12 \), and found that \(Ppa-daf-16 \) mutant animals behave like wild type. First, all three alleles of \(Ppa-daf-16 \) showed a ratio of Eu to St worms that was similar to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abolish the response to dauer pheromone (Bento et al., 2010). By contrast, \(Ppa-daf-16 \) strains showed an increase in Eu worms when treated with dauer pheromone that was comparable to that of wild-type animals under well-fed conditions (Fig. 4A). Second, under starved conditions, the proportions of Eu worms were similar for all \(Ppa-daf-16 \) alleles and the wild type (Fig. 4A). We also tested the effect of dauer pheromone. Wild-type worms respond to dauer pheromone by increasing the proportion of Eu worms, and mutations in \(Ppa-daf-12 \) completely abol
Fig. 4. *daf-16* is dispensable for mouth form dimorphism in *P. pacificus*. The effect of (A) starvation, (B) dauer pheromone and (C) Δ7-dafachronic acid on the regulation of mouth form dimorphism in wild-type and *Ppa-daf-16* strains. Data are mean ± s.d.

In contrast to dauer formation, mutations in *Ppa-daf-16* did not affect the regulation of mouth form dimorphism. We have shown previously that the polynucleotidism of mouth form is regulated by starvation and dauer pheromone, two environmental cues that also regulate dauer formation (Bento et al., 2010). In addition, DAF-12 and its ligand DA were shown to play crucial roles in regulating both of these forms of *P. pacificus* phenotypic plasticity. Because both the L3/dauer and Eu/St decisions are regulated by similar environmental conditions and DAF-12, the finding that DAF-16 plays an important role in the L3/dauer but not the Eu/St decision might seem similar to the restricted role of DAF-16 in some, but not all, dauer morphological traits. The finding that the regulation of mouth forms in *P. pacificus* does not require *daf-16* in the multiple tests that we have conducted, suggests that although both dauer formation and mouth form dimorphism share a common regulatory mechanism involving DAF-12 and DA, DAF-16 can only influence dauer formation. Furthermore, these findings suggest that only part of the regulatory cascade that regulates dauer formation in ancestral species was co-opted for the novel plastic trait in the lineage leading to *P. pacificus* (Fig. 1B). Alternatively, the entire regulatory cascade that includes *daf-12* and *daf-16* was co-opted together for the regulation of mouth form dimorphism initially, but the requirement for *daf-16* was subsequently lost. In either case, these findings illustrate the highly flexible nature of the signaling networks that are involved in nematode phenotypic plasticity.

Acknowledgements

We thank F. Mende and T. Kurzchalia for instructions regarding the steroid-depletion experiments and generous provision of lophenol; C. Lanz and D. Weigel for whole-genome sequencing, and H. Haussmann for the maintenance of frozen worm stocks. This work was funded by the Max-Planck Society.

Competing interests statement

The authors declare no competing financial interests.

Supplementary material

Supplementary material for this article is available at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.058909/-/DC1

References

